Понятие шкалы измерения основные типы шкал и их применение в системном анализе реферат

Обновлено: 07.07.2024

Измерение –это совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах величин.

Свойство рассматривают как некую систему, между элементами которой действуют различные отношения: отношения эквивалентности (равенства), отношения порядка (больше, меньше), отношения аддитивности (суммирования).

В теории измерений рассматривают 5 различных типов шкал:

- шкалы наименований;

- шкалы интервалов (шкалы разностей);

- шкалы отношений;

- шкалы порядка (шкалы рангов);

- абсолютные шкалы.

Шкалы порядка –соответствуют свойствам, для которых могут быть установлены отношения эквивалентности и отношения порядкапо возрастанию или уменьшению количественного проявления свойства, но единицы измерения ввести нельзя. Это шкалы с балльной оценкой (сила землетрясения, сила ветра, твердость минералов и металлов).

Шкалы интервалов – соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности. Шкалы интервалов имеют условный ноль, заданные значения интервалов и единицу измерения.

Например, шкала времени имеет условный ноль и установленные интервалы. Единица измерения воспроизводится непосредственно как интервал времени – с, мин, час, сутки и т.д. К шкале интервалов относится температурные шкалы Цельсия и Фаренгейта. Шкала Цельсия имеет условный ноль (температуру замерзания воды или таяния льда) и заданный интервал (100 градусов Цельсия – температура кипения воды). В шкале Фаренгейта началом отсчета является температура смеси льда, поваренной соли и нашатыря. В качестве второй опорной точки выбрана температура тела человека. Единица температуры по Фаренгейту – градус Фаренгейта, определяется как одна девяносто шестая часть полученного интервала. Температура таяния льда по Фаренгейту равна 32 градусам, температура кипения воды – 212 градусов.

Шкалы отношений –соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности. Шкалы отношений считаются наиболее совершенными, так как имеют естественный ноль и единицы измерения, которые принимают по согласованию. Например, температурная шкала Кельвина имеет физически определенный ноль (абсолютный ноль – наиболее низкая возможная температура). Кельвин является одной из основных единиц СИ (до 1968 г. называлась градус Кельвина). 1 К = 1 градусу Цельсия (по определению Кельвин – это единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды, то есть точки сосуществования трех агрегатных состояний воды – жидкого, твердого и газообразного. Тройная точка воды соответствует 0,01 градуса Цельсия. Шкалами отношений также являются шкалы многих физических величин – массы, длины, силы электрического тока и др. С помощью шкал отношений возможны все арифметические операции с измеряемыми величинами: сложение, вычитание, умножение и деление.

Шкалы порядка –соответствуют свойствам с отношениями эквивалентности и порядка(по возрастанию или уменьшению количественного проявления свойства), но единицы измерения ввести нельзя. Эти величины не измеряют, а оценивают. Шкалы порядка имеют балльную оценку. Например, шкала силы землетрясения, шкалы твердости минералов и металлов, шкалы серых и синих эталонов оценки устойчивости окраски и др.

Абсолютные шкалы -соответствуют свойствам с отношениями эквивалентности, порядка и аддитивности, имеющие естественное однозначное определение единицы измерения. Например, шкала измерения плоских углов в радианах (радиан – это центральный угол, соответствующий дуге, длина которой равна ее радиусу).

Измерения классифицируют по нескольким классификационным признакам.

По числу выполненных наблюдений или снятых показаний измерения делят на однократные и многократные.

Однократнымназывают измерение, выполненное один раз. Например, снятие размерных признаков тела человека.

Многократным называют измерение, результат которого получен из нескольких следующих друг за другом измерений (то есть состоящее из ряда однократных измерений). Многократное измерение выполняют с целью снижения погрешности. Например, определение Рр и Ер ткани по стандартной методике предусматривает использование 3 проб по основе и 4 проб по утку.

В зависимости от способа получения результата измерения делят на прямые, косвенные, совместные и совокупные.

Прямыминазывают измерения, в которых искомое значение находят непосредственно из опытных данных. Например, измерение длины, массы и т.д.

Косвенныминазывают измерения, в которых искомое значение находят по результатам прямых измерений других величин, которые связаны с искомой определенной зависимостью. Например, определение линейной плотности нитей:

Совокупными называют измерения, в которых значения измеряемых величин находят решением системы уравнений, составленной по данным измерений нескольких одноименных величин. Примером является определение масс отдельных гирь в наборе по известной массе одной из них и по результатам определения масс различных сочетаний гирь.

По характеру зависимости измеряемой величины от времени измерения подразделяют на статические и динамические.

Статическими называют измерения, при которых измеряемая величина принимается за неизменную на время проведения измерения. Например, измерение Рр и Ер является статическим.

Динамическими называют измерения, при которых измеряемая величина изменяется со скоростью, превышающей возможности средства измерений отслеживать ее изменения. В этом случае возникает дополнительная динамическая составляющая погрешности, обусловленная инерционными свойствами измерительного прибора. Например, измерение дискретных значений Р и Е при растяжении пробы; измерение нарастающей влажности воздуха в корпусе установки при определении паропроницаемости материалов.

По уровню точности измерения делят на измерения максимально возможной точности, контрольные и технические(рабочие).

Измерения максимально возможной точности выполняют в метрологических центрах при создании и эксплуатации эталонов, а также в научных исследованиях по определению значений констант, стандартных справочных данных и т.д.

Контрольныеизмерения выполняют при поверке и калибровке средств измерений. Погрешность таких измерений не должна превышать некоторое заданное контрольное значение.

Технические (рабочие) измерения выполняют в промышленности с помощью рабочих средств измерений.

По особенностям обработки результатов измерения делят на равноточные и неравноточные.

Равноточными называют измерения, выполненные одинаковыми по точности средствами измерений в одних и тех же условиях.

Неравноточными называют измерения, выполненные различающимися по точности средствами измерений и/или в разных условиях.

Системы единиц

Система единиц– совокупность основных (независимых) и производных единиц величин.

Впервые принцип построения такой системы разработал немецкий ученый Гаусс в 1832 г. Разработанная им система получила название абсолютной и включала три основные единицы – миллиметр, миллиграмм и секунду. Абсолютная система не получила широкого распространения, но принцип ее построения используется до настоящего времени.

Принцип построения систем единиц заключается в том, что выбираются независимые друг от друга основные физические величины. Их единицы измерения называются основнымиединицами величин. Остальные величины называются производными, их единицы измерений - производными единицами величин. Производные единицы величин устанавливают через основные с использованием известных физических законов и соотношений. Эти соотношения в метрологии называют уравнениями связи между величинами.

Международная система единиц СИразработана по решению ГКМВ и первоначально (в 1960 г.) включала шесть основных единиц. Позднее была добавлена седьмая основная единица – количество вещества – моль, а затем две дополнительные единицы – радиан и стерадиан. Система СИ нашла свое отражение в международных стандартах ИСО и государственном стандарте РФ.

Основные единицы СИ:

- метр (м)– единица длины (L), равная пути, пройденному в вакууме светом за интервал времени 1/299 792 458 с;

- килограмм (кг) – единица массы (М), равная массе международного прототипа килограмма (прототип килограмма представляет собой гирю в виде прямого цилиндра диаметром и высотой 39 мм из сплава платины и иридия);

- секунда (с) – единица времени (Т), равная 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133;

- ампер (А) – единица силы электрического тока (I). Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2*10 -7 Н;

- кельвин (К) – единица термодинамической температуры (Θ– греч, тэта), равная 1/273,16 части термодинамической температуры тройной точки воды (то есть точки сосуществования льда, воды и пара, которая соответствует 0,01 градуса Цельсия или 273,16 К);

- кандела (кд) – единица силы света (J). Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540,10 12 Гц, электрическая сила света которого в этом направлении составляет 1/683 Вт/ср (Ватт на стерадиан);

- моль (моль) – единица количества вещества (N). Моль – это количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.

Дополнительные единицы:

- радиан (рад) – единица измерения плоского угла, равная внутреннему углу между двумя радиусами окружности, длина дуги между которыми равна радиусу;

- стерадиан (ср) – единица измерения телесного угла. Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности этой сферы площадь, равной площади квадрата со стороной, равной радиусу.

Одновременно с принятием системы СИ ГКМВ приняла десятичные кратные и дольные приставки к единицам. Приставка означает, что единица умножена на десять в целой положительной или отрицательной степени. Новая единица называется кратной или дольной (кратно превышающей или составляющей долю от исходной единицы). Из многообразия кратных и дольных единиц выбирают единицу, позволяющую получать числовые значения, удобные для применения на практике – в диапазоне от 0,1 до 1000.

Множители и приставки для образования десятичных кратных и дольных единиц, и их наименования

Множитель Наименование Обозначение
10 6 мега М
10 3 кило к
10 2 гекто г
10 1 дека да
10 -1 деци д
10 -2 санти с
10 -3 милли м
10 -6 микро мк
10 -9 нано н

Примеры: МПа, кН, гПа, даН, дм, см, мм, мкм, нм.

ГКМВ признало использование некоторых внесистемных единиц наравне с единицами СИ из-за их практической важности – минута (мин), час (ч), литр (л) и некоторые другие.

На практике для удобства применяются не только системные и допущенные внесистемные единицы величин. Например, значение атмосферного давления и кровяное давление человека привычно указывают в миллиметрах ртутного столба, а не в Па; мощность двигателей автомобилей - в лошадиных силах, а не в киловаттах и т.д.

Вопросы для самоконтроля

1. С помощью каких шкал можно выполнить наибольшее количество действий:

- шкал наименований;

- шкал интервалов;

- шкал отношений;

- шкал порядка;

- абсолютных шкалы.

2. Физической величиной, на множестве значений которой возможно выполнение операций, подобных сложению и вычитанию, является:

- сила электрического тока;

- коэффициент линейного расширения;

- твердость минералов;

- сила ветра.

3. Измерения, выполненные различающимися по точности средствами измерений и/или в разных условиях, называются:

- однократными;

- многократными;

- прямыми;

- косвенными;

- неравноточными.

4. Измерение, результат которого получен из нескольких следующих друг за другом измерений (то есть состоящее из ряда однократных измерений):

- многократное;

- прямое;

- косвенное;

- совместное;

- совокупное.

5. Из приведенных единиц измерения основнымиединицами величинявляются:

- метр, м

- килограмм, кг

- джоуль, Дж

- ампер, А

- градус, град

- кельвин, К

- секунда, с

- моль

- кандела, кд

Средства измерений

Средство измерений– техническое средство, которое предназначено для измерений и имеет нормированные метрологические характеристики. К метрологическим характеристикам относят характеристики средства измерений, которые влияют на результат измерений и его погрешность.

Средства измерений выполняют одну из двух функций:

- воспроизводят величину заданного размера (гири, линейки);

- вырабатывают сигнал (показание), несущий информацию о значении измеряемой величины.

Показания средства измерений могут непосредственно восприниматься органами чувств человека (например, показания стрелочного или цифрового прибора), либо преобразуются другими техническими средствами в сигнал, удобный для восприятия (например, записывающими устройствами).

Средства измерений подразделяют на меры, измерительные преобразователи (датчики), измерительные приборы, измерительные установки, измерительные системы.

Мера – средство измерений, предназначенное для воспроизведения и/или хранения величины одного или нескольких размеров, значения которых выражены в установленных единицах с необходимой точностью. Например, гиря воспроизводит один размер, штриховая мера длины – линейка – воспроизводит несколько размеров.

Измерительный преобразователь (датчик) – это средство измерений, предназначенное для преобразования сигналов измерительной информации в форму, удобную для восприятия или дальнейшего преобразования. Например, температурные полоски, тензометрические датчики.

Измерительный прибор – это средство измерений, предназначенное для получения значений измеряемой величины в установленном диапазоне и выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия. По форме представления измерительной информации различают показывающие и регистрирующие приборы. Показывающие приборы позволяют производить отсчет или считывание показаний. Например, стрелочные или цифровые приборы. Регистрирующие приборы записывают информацию на каком-либо носителе. Например, гигрограф записывает кривую изменения влажности воздуха на специальной бумаге в течение суток.

По форме преобразования измерительных сигналов приборы подразделяют на аналоговые и цифровые. Аналоговые приборы имеют показания в виде непрерывной функции изменения измеряемой величины. Например, к аналоговым относятся разрывные машины с маятниковым силоизмерителем, стрелочные тонометры и др. Цифровые приборы автоматически преобразуют результаты измерения непрерывной величины в дискретные сигналы, которые отображаются в виде чисел на цифровом индикаторе (в силу этого существуют отличия в определении и нормировании метрологических характеристик цифровых приборов по сравнению с аналоговыми). Например, разрывные машины с цифровой индикацией, цифровые тонометры и др.

Измерительная установка– это совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для измерения одной или нескольких величин, расположенная в одном месте. Например, установка с эксикаторами для определения паропроницаемости.

Измерительная система- это совокупность функционально объединенных средств измерений и вспомогательных устройств, размещенных в разных точках контролируемого объекта и соединенных между собой каналами связи, предназначенная для измерения одной или нескольких величин.

Вопросы для самоконтроля

1. Совокупность функционально объединенных средств измерений и вспомогательных устройств, предназначенная для измерения одной или нескольких величин, расположенная в одном месте – это средство измерений, которое называется:

- мера,

- измерительный преобразователь (датчик),

- измерительный прибор,

- измерительная установка,

- измерительная система

- показывающим измерительным приборам,

- регистрирующим измерительным приборам,

- аналоговым измерительным приборам,

- цифровым измерительным прибором.



Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Важнейшие принципы: процесс принятия решений должен начинаться с выявления и чёткого формулирования конечных целей; необх.рассматривать всю проблему как целое, как единую систему и выявлять все последствия и взаимосвязи каждого частного решения; необх. выявление и анализ возможных альтернативных путей достижения цели; цели отдельных подразделений не должны вступать в конфликт с целями всей программы. Систем. анализ основывается принципах:1) единства - совместное рассмотрение системы как единого целого и как совокупности частей;2) развития - учет изменяемости системы, ее способности к развитию, накапливанию информации с учетом динамики окружающей среды;3) глобальной цели-оптимум подсистем не является оптимумом всей системы;4) функциональности - совместное рассмотрение структуры системы и функций с приоритетом функций над структурой;5) децентрализации - сочетание децентрализации и централизации;6)иерархии - учет соподчинения и ранжирования частей;7) неопределенности - учет вероятностного наступления события;8) организованности - степень выполнения решений и выводов. Сис.анализ выполняется в след.послед-ти:1. Постановка проблемы(в исследовании сложной системы предшествует работа по структурированию проблемы);2. Расширение проблемы до проблематики(нахождение системы проблем, существенно связанных с исследуемой проблемой, без учета которых она не может быть решена).3. Выявление целей(указывают направление, в котором надо двигаться, чтобы поэтапно решить проблему).4. Формирование критериев(Критерий-количественное отражение степени достижения системой поставленных перед ней целей, это правило выбора предпочтительного варианта решения из ряда альтернативных. Критериев может быть несколько. Критерии должны описать все важные аспекты цели).5. Агрегирование критериев(объединение критериев в группы или замена обобщающим критерием)6. Генерирование альтернатив и выбор с использованием критериев наилучшей из них. 7.Исследование ресурсных возможностей, включая информационные ресурсы.8. Выбор формализации (моделей и ограничений) для решения проблемы.9. Построение системы.10. Использование результатов проведенного системного исследования. Шкала - последовательность чисел, служащая для измерения или количественной оценки каких-либо величин. Формально шкалой называется кортеж , где X- реальный объект,Y-шкала, J-гомоморфное отображение X на Y. Виды шкал: Шкалы номинального типа(объектам или их группам дается некоторый признак. Допускается только различение объектов на основе проверки выполнения отношения равенства на множестве этих элементов);Шкалы порядка(называется, если множество Ф состоит из всех монотонно возрастающих допустимых преобразований шкальных значений. Измерение в шкале порядка происходит при необходимости упорядочить объекты: во времени или пространстве; в соответствии с каким-либо качеством; если качество измеримо, но в настоящий момент не может быть измерено по некот.причинам); Шкалы интервалов(содержат шкалы, единственные с точностью до множества положительных линейных допустимых преобразований вида (x) = ах + b, где х -Y шкальные значения из области определения Y; а>0; b - любое значение); Шкалы отношений(назыв-ся, если Ф состоит из преобразований подобия (x) = ах, а>0, где х Y шкальные значения из области определения Y; а>0; а - действительные числа.Шкалы отношений отражают отношения свойств объектов);Шкалы разностей(шкалы, единственные с точностью до преобразований сдвига

(x) = х + b, где х Y шкальные значения из области определения Y; b - действительные числа. При переходе от одной числовой системы к другой меняется лишь начало отсчета.Шкалы разностей применяются,когда необходимо измерить, насколько один объект превосходит по определенному свойству другой объект).

2.Структура информационно-логической модели АСОИУ.

Логическая модель описывает понятия предметной области, их взаимосвязь, а также ограничения на данные, налагаемые предметной областью. Логическая модель данных(ЛМД): является начальным прототипом будущей базы данных, строится в терминах информационных единиц, но без привязки к конкретной СУБД, необязательно должна быть выражена средствами реляционной модели данных. Основным средством разработки ЛМД явл различные варианты ER-диаграмм (Entity-Relationship, диаграммы сущность-связь). Одну и ту же ER-модель можно преобразовать в реляционную модель данных, в модель данных для иерархических и сетевых СУБД, в постреляционную модель данных - расширенная реляцион модель, снимающую ограничение неделимости данных. Модель допускает многозначные поля – поля, значения которых состоят из подзначений. Набор значений многозначных полей считается самостоятельной таблицей, встроенной в основную таблицу. При разработке ЛМД необходимо сформулировать критерии качества в терминах физической модели и конкретной реализации и посмотреть, как различные решения, принятые в процессе логического моделирования, влияют на качество физической модели и на скорость работы базы данных. Одним из критериев явл получение качественной БД - должна адекватно отражать предметную область,т.е.выполнять следующие условия:1.Состояние БД в каждый момент времени должно соответств. состоянию предметной области(ПО).2. Изменение состояния ПО должно приводить к соответствующему изменению состояния БД.3. Ограничения ПО, отраженные в модели ПО, должны отражаться и учитываться БД.Любая БД (не элементарная), содержит програм кода в виде триггеров и хранимых процедур. Хранимые процедуры – это процедуры и функции, хранящиеся непосредственно в БД в откомпилированном виде и которые могут запускаться пользователями или приложениями, работающими с БД. Их назначение-реализация бизнес-процессов предметной области.Триггеры – это хранимые процедуры, связанные с некоторыми событиями, происходящими во время работы БД. В качестве таких событий выступают операции вставки, обновления и удаления строк таблиц. Триггер запускается автоматически всегда при возникновении события, с которым он связан. Его основ назначение - автоматическая поддержка целостности базы данных. На уровне логического моделирования определяются реляционные отношения и атрибуты этих отношений, физические структуры хранения. Чем больше взаимосвязанных отношений было создано в ходе логического моделирования, тем вероятнее что при выполнении запросов эти отношения будут соединяться, и тем медленнее будут выполняться запросы. Т.О.скорость выполнения операций с БД зависит от физической реализации базы данных.

В процессе измерения участвуют два объекта: измерительный прибор и измеряемый объект. В результате прибор приходит в некоторое состояние, которое в зависимости от вида прибора и измерительной процедуры фиксируется тем или иным способом: положением стрелки на физической приборной шкале, цветом лакмусной бумажки, цифрами на электронном табло, положительным или отрицательным ответом на вопрос социолога и т.д. Затем это состояние прибора отображается в протоколе в виде тех или иных символов - цифр, букв, слов и т.д.
Теория измерений оперирует понятием "эмпирическая система с отношениями" (Е), которая включает в себя множество измеряемых объектов (А) и набор интересующих исследователя отношений между этими объектами ®: E = < A, R >. Например, множество А это множество физических тел, а набор R - отношения между ними по весу, твердости, размерам и т.п. Для записи результатов наблюдений используется "символьная система с отношениями" (N), состоящая из множества символов (М), например, множества всех действительных чисел, и конечного набора отношений (Р) на этих символах : N = < M, P>. Отношения Р выбираются так, чтобы ими было удобно отображать наблюдаемые эмпирические отношения R. Если тело t тяжелее тела q, т.е. если имеет место отношение R(t>q), то цифровая запись веса тел t=5 и q=3 позволяет наглядно увидеть это эмпирическое событие в записи P(5>3). Договоренность использовать именно такое отображение системы E на систему N означает выбор некоторого определенного правила отображения g. Тройка элементов называется "шкалой" (не следует путать с физической приборной шкалой).
Но мы можем договориться и о некотором другом способе отображения w и тогда будем иметь дело с другой шкалой . Например, g рекомендует записывать вес тел в кг., а w - в граммах или тоннах. Цифровая запись в протоколах будет при этом разная, но эмпирическое содержание протоколов будет одинаковым. Это означает, что мы выбрали не любые способы отображений (g, w и т.д.), а только те, которые связаны между собой взаимно однозначными преобразованиями. Т.е. имеется такое преобразование f, с помощью которого по записи в языке g можно точно определить, какой будет запись в языке w (и наоборот) : g = f (w) и w = f'(g). Преобразование f объединяет указанные выше по разному выглядящие шкалы в определенную группу, которая называется "типом шкалы". Зафиксировав допустимое преобразование f, мы тем самым фиксируем конкретный тип шкалы.
В практике научных исследований получили распространение шкалы всего нескольких типов.
Приведем описание шкал основных типов.
1. Абсолютная шкала. Допустимое преобразование для шкал данного типа представляет собой тождество, т.е. если на одном языке в протоколе записано "у", а на другом языке "х", то между ними должно выполняться простое соотношение : у = х. Этот тип шкалы удобен для записи количества элементов в некотором конечном множестве. Если, пересчитав количество яблок, один запишет в протоколе "6", а другой запишет "VI", то нам достаточно знать, что "6" и "VI" означают одно и то же, т.е., что между этими записями существует тождественное отношение: 6 = VI.
2. Шкала отношений. Между разными протоколами, фиксирующими один и тот же эмпирический факт на разных языках, при этом типе шкалы должно выполняться соотношение: у = а*х, где а - любое положительное число. Один и тот же эмпирический смысл имеют протоколы "16 кг.", "16000 г.", "0, 016 т." и т.д. От любой записи можно перейти к любой другой, подобрав соответствующий множитель "a". Этот тип шкалы удобен для измерения весов, длин и т.д. Если нам не известно в каких именно единицах записаны веса тел в разных протоколах, то мы можем полагаться только на отношение весов двух тел: например, тело с весом 10 единиц в два раза тяжелее тела с весом 5 единиц вне зависимости от того, что было взято за единицу - тонна или грамм. Инвариантность отношений отражена в названии шкалы данного типа. Если же в протоколе указана единица веса, то такой протокол отражает свойства тел в абсолютной шкале.
3. Шкала интервалов. Здесь между протоколами y и x допустимы линейные преобразования: y = a*x + b, где а - любое положительное число, а b может быть как положительным, так и отрицательным. Это значит, что в разных протоколах может использоваться разный масштаб единиц (a) и разные начала отсчета (b). Примером шкал этого типа могут быть шкалы для измерения температуры. Если в протоколе указаны градусы, но не говорится в какой шкале (Цельсия, Кельвина и т.д.), то во избежание недоразумений при описании закономерностей можно использовать только отношения интервалов, так как при любых значениях a и b сохраняется равенство:
(y1-y2):(y3-y4) = [(a*x1+b)-(a*x2+b)] : [(a*x3+b)-(a*x4+b)].
Если записи в протоколе сопровождаются информацией о том, какие именно градусы имеются в виду (например, "18 град.С"), то мы имеем дело с протоколом в абсолютной шкале.
4. Шкала порядка. Допустимыми преобразованиями для данного типа шкалы являются все монотонные преобразования, т.е. такие, которые не нарушают порядок следования значений измеряемых величин. Такие протоколы появляются, например, в результате сравнения тел по твердости. Записи "1; 2; 3" и "5,3; 12,5; 109,2" содержат одинаковую информацию о том, что первое тело самое твердое, второе менее твердое, а третье - самое мягкое. И никакой информации о том, во сколько раз одно тверже другого, на сколько единиц оно тверже и т.д. в этих записях нет и полагаться на конкретные значения чисел, на их отношения или разности нельзя.
Разновидностью шкалы порядка является шкала рангов, где используются только числа, идущие подряд от 1 вверх по возрастанию. Если среди m измеряемых объектов одинаковых нет, то ранговое место каждого объекта в протоколе будет указано одним из целых чисел от 1 до m. При одинаковом значении измеряемого свойства у k объектов, занимающих порядковые места с t-го по (t+k)-тое, их ранги будут обозначены одинаковым числом, равным их "среднему" рангу x, где x = (1:k) S(i+t-1), i=1--k.
Такая разновидность шкалы порядка называется "нормированной шкалой рангов".
К типу шкал порядка относится и широко используемая шкала баллов. При этом используются целые числа в ограниченном диапозоне их значений: от 1 до 5 в системе образования, от 0 до 6 или до 10 в спорте и т.д. В любом из этих случаев протокол содержит информацию только о трех эмпирических отношениях: " " и " равно" и "не равно". Следовательно, допустимы любые преобразования, лишь бы в протоколе одинаковые объекты были поименованы одинаковыми символами (числами, буквами, словами), а разные объекты имели бы разные имена. Так фиксируются в протоколах такие характеристики, как собственные имена людей, их национальность, названия населенных пунктов и т.п.
Шкалы первых трех типов содержат более богатую информацию, их показания можно подвергать определенным математическим преобразованиям и потому их часто называют "сильными", "количественными" или "арифметическими". Шкалы порядка и наименований уступают им по информативности и отражают качественные свойства и их обычно называют "слабыми" и "качественными " [2]. Однако, рекомендовать пользоваться только "сильными" шкалами нельзя. Приборы для измерения сильных свойств более дорогие, для измерения многих свойств в сильных шкалах (особенно, в гуманитарных областях) таких приборов еще нет.

Гост

ГОСТ

Шкала измерения

Шкала - это особый способ измерения социального объекта.

Измерение в социологии понимается в двух аспектах:

  • теоретически, в рамках дискуссии о применимости математических методов в социологических исследованиях, их возможностях, границах, характере качественных и количественных методов;
  • эмпирически, как построение шкал.

Виды шкал в социологическом исследовании

Вы можете классифицировать шкалы по объекту измерения. Это либо оценка внешних объектов, либо характеристики внутренних состояний предметных мотивов, установок, знаний, навыков и т. Д. Поэтому шкалы делятся на шкалы оценок и шкалы установок.

Шкалы оценки были первыми, которые были применены в социологической практике. Самым простым типом оценочной шкалы является школьная система баллов. В начале XX века известный статистик К. Пирсон использовал эту шкалу для изучения способностей, после чего шкалы оценки стали широко распространенными. Шкала оценки включает три компонента:

  • тот, кто оценивает;
  • что оценивается;
  • относительно того, что оценивается.

Оценочные шкалы представлены в двух вариантах: графическая (графическая) и описательная (словесная характеристика) шкалы. Впервые шкала оценки использовалась Богардусом для социологических исследований в 1925 году. Затем были разработаны методы построения шкал установок. Этому способствовали Турстон, Ликерт, Гутман.

Готовые работы на аналогичную тему

Поскольку числовые системы различаются по разнообразию операций с числами (когда в одних возможны только самые простые арифметические операции, в других - самые разные по степени сложности), то речь идет о множестве шкал, различающихся по уровню использования. математического аппарата.

Типы шкал, классифицированные по этому критерию, имеют две подгруппы - номинальные шкалы и метрические.

Номинальные шкалы, в свою очередь, делятся на номинальные неупорядоченные, номинальные, частично упорядоченные и порядковые (одной из разновидностей которых является шкала рангов).

Метрические шкалы включают интервальные и абсолютные шкалы.

Частично упорядоченная шкала - это переходный тип шкалы, в котором некоторые элементы упорядочены, а некоторые нет.

Таким образом, измерение в номинальной неупорядоченной шкале представляется в виде классификации объектов в упорядоченном порядке с фиксированными метрическими интервалами (либо со свободной, либо экспериментально установленной контрольной точкой). Измерение в социологии является одной из важных проблем, от которой и зависит результат социологического исследования. А его практическое значение заключается в способности использования математических методов для измерения каких-то определенных социальных характеристик. Начальные сведения в социологии, полученные в процессе сбора эмпирической информации, как правило, являются качественными. А это, в свою очередь, сильно ограничивает возможности использования математических методов

При определении типа шкалы, необходимо измерить ее с учетом характера объекта, цели исследования и возможностей количественного анализа. Абсолютно любой статистический анализ всегда должен основываться на надежном стандарте измерения: теоретически обоснованном и эмпирически доказанном. Эффективное измерение требует баланса между качественным и количественным видом анализа.

Читайте также: