Перспективы развития энергетики реферат

Обновлено: 07.07.2024

Каковы перспективы, ожидающие человечество в будущем?

Каких бы высот ни достигла современная индустриально-технологическая цивилизация к настоящему моменту, и какие бы радужные перспективы автоматизации нашей сумасшедшей жизни в каменных лабиринтах мегаполисов ни рисовали нам компании-производители электронной техники, стоит исчезнуть колоссальному потоку энергии, питающему нашу цивилизацию - и мир остановится.

Поток энергии движет цивилизацию, в стальных жилах гигантского индустриального организма бежит черная кровь - нефть.

События последнего времени указывают нам на серьезные грядущие изменения. Цены на "кровь цивилизации" растут небывало высокими темпами. Это происходит на фоне драматических событий на политической сцене - война в Ираке, международный терроризм, обострение противоречий между Западным миром и остальными странами (которым и принадлежит большая часть нефтяных запасов).

То, что происходит сегодня - это с одной стороны результат вырвавшихся на свободу политико-экономических противоречий второй половины 20 века, с другой стороны - предвестник глубоких структурных изменений.

В настоящее время нефть является основным сырьем для производства топлив для автомобильного, авиационного, морского и частично железнодорожного транспорта. Существенна роль тяжелых фракций нефти (мазутов) для поддержания устойчивой работы угольных теплоэлектростанций, доля которых в производстве электроэнергии доходит в настоящее время до 40%. Кроме того, многие теплоэнергетические установки малого и среднего масштаба, такие как, котельные, различного рода технологические печи и т.д. также работают на продуктах переработки нефти.

По прогнозам при нынешних темпах роста мирового потребления энергии максимум добычи нефти придется на период между 2010 и 2020 годами. При этом значительная доля спроса на энергию все равно не будет удовлетворена. Дальнейшая активность в области нефтедобычи будет смещаться в сторону освоения так называемых oil sands, однако их добыча и переработка в жидкие углеводородные топлива требует значительных капиталовложений, что ни коим образом не будет способствовать снижению цен на топливо.

К 2020 году более 90 % населения Земли будет проживать в мегаполисах. Это приведет к драматическому росту потребления электроэнергии, по некоторым оценкам более чем в 2 раза.

Сегодня мировое потребление энергии опережает скорость ее производства: так, к 2020 году мы будем поглощать около 1500 эДж в год (это в три раза больше, чем в начале XXI века). В таких условиях исчерпаемые энергоресурсы, такие как нефть и газ, могут попросту иссякнуть. Поэтому уже сейчас полным ходом развивается альтернативная энергетика. Задача реструктуризации энергетической отрасли и снижения себестоимости электроэнергии является уже в наши дни более чем актуальной.

Энергетика становится существенным фактором международных отношений, а возобновляемая энергетика и энергоэффективность – аргументами, которые влияют на формирование базы международного сотрудничества. В промышленно развитых странах накоплен значительный опыт государственного регулирования развития возобновляемой энергии, энергоэффективности и ресурсосбережения. Как ожидается, это позволит странам Евросоюза к 2030 г. увеличить валовой национальный продукт на 79% при снижении энергопотребления на 7%. В целом европейские государства будут получать от возобновляемых источников энергии не менее трети потребляемой энергии.

Удельная выработка энергии из возобновляемых источников (без учета большой гидроэнергетики) в России в 2004 г., по данным Международного энергетического агентства, в 5 раз меньше чем в Германии, в 11 раз – чем в Норвегии, в 10 раз – чем в США. Доля возобновляемых источников энергии в производстве электроэнергии в 2002 г. составила около 0,5% от общего производства, или 4,2 млрд. кВт/ч. К 2010 г. при соответствующей государственной поддержке может быть осуществлен ввод в действие около 1000 МВт электрических и 1200 МВт тепловых мощностей на базе возобновляемых источников энергии. Это связано с тем, что наша страна все еще занимает лидирующие места по количеству полезных ископаемых – однако разработка новых способов добычи энергии ведется и у нас. Тема энергосбережения звучит все чаще и чаще.

В данной работе мы попытаемся раскрыть виды альтернативной энергетики и попытаться обозначить перспективы развития энергетики бедующего в России.

Солнце обладает колоссальным запасом энергии. Земля получает лишь небольшую долю солнечной энергии, равную 2·1017 Вт, и ее вполне достаточно для обеспечения большого многообразия форм жизни и биосферных процессов на Земле.

Предполагается, что широкое применение солнечной энергией начнется после воспроизведения природного процесса – фотосинтеза. В лабораторных условиях вне растительной клетки уже осуществлена первая фаза данного процесса – произведено фотохимическое разложение воды на элементы. Образующийся водород – превосходный энергоноситель: из известных нерадиоактивных веществ он обладает самой высокой плотностью энергии – 33 кВт/кг (плотность энергии углерода равна всего 9,1 кВт/кг). В процессе фотосинтеза, в зеленых растениях из энергетически бедных соединений – углекислого газа и воды – образуется более сложный по структуре и богатый энергией крахмал, из которого синтезируются жиры, белки, целлюлоза и другие органические компоненты. Как следует из периодической печати, несколько необычный способ использования солнечной энергии предложили японские ученые. Смесь, состоящую из размолотого магнетита и угольного порошка, они подвергли облучению концентрированным солнечным светом и нагрели ее до 1200° С. В результате химической реакции образовались водород и угарный газ. Из данных газов можно синтезировать, например, метиловый спирт, который может служить превосходным горючим для автомобилей. КПД такого процесса достигает 47,6%.

По опыту эксплуатации и согласно некоторым расчетам Солнце в состоянии обеспечить энергопотребности по меньшей мере всех жилых зданий в стране. Гелиоустановки, располагаясь на крышах и стенах зданий, на шумозащитных ограждениях автодорог, на транспортных и промышленных сооружениях не требуют для размещения дорогостоящей сельскохозяйственной или городской территории.

Необходимость использовать коллекторы огромных размеров, кроме того, влечет за собой значительные материальные затраты. Простейший коллектор солнечного излучения представляет собой зачерненный металлический (как правило, алюминиевый) лист, внутри которого располагаются трубы с циркулирующей в них жидкостью. Нагретая за счет солнечной энергии, поглощенной коллектором, жидкость поступает для непосредственного использования. Согласно расчетам на изготовление коллекторов солнечного излучения идет довольно много алюминия.

Солнечная энергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовления гелиостатов, коллекторов, другой аппаратуры, их перевозки.

Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, проводимые на опытных установках и станциях, помогут решить не только технические, но и экономические проблемы широкого применения гелиоэнергии.

Ветер служит человеку с древних времен. Первобытные люди поднимали паруса над неустойчивым челноком, выдолбленным из бревна. Преобладающие западные ветры несли испанскую армаду к открытиям и победам. Пассаты надували паруса больших клиперов, помогли открыть Индию и Китай и наладить торговлю с Западом. Древние персы заставили ветер размалывать зерно. Наиболее широкое распространение ветряные мельницы (рис. 9.10) получили в Голландии. Некоторым из них уже более 500 лет, и они находятся в рабочем состоянии. Было время, когда вода и ветер служили едва ли не основными источниками энергии. Еще в 1910 г. в России насчитывалось примерно миллион ветряных мельниц и приблизительно столько же водяных. А сегодня всю эту энергетику с легкой руки называют нетрадиционной.

Энергия движущихся воздушных масс огромна. Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земле дуют ветры – от легкого ветерка, несущего желанную прохладу в летний зной, до могучих ураганов, наносящих неисчислимый урон и разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем. Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все ее потребности в электроэнергии! Климатические условия позволяют развивать ветроэнергетику на огромной территории от наших западных границ до берегов Енисея. Особенно богаты энергией ветра северные районы страны вдоль побережья Северного Ледовитого океана.

В наши дни ветроустановки вырабатывают лишь небольшую часть производимой электроэнергии во всем мире. Техника XX в. открыла совершенно новые возможности для электроэнергетики. Созданы высокопроизводительные установки, способные вырабатывать электроэнергию даже при очень слабом ветре. Предлагается множество проектов ветроагрегатов, несравненно более совершенных, чем старые ветряные мельницы. В новых проектах используются самые последние достижения многих отраслей естествознания. К созданию совершенной конструкций ветроколеса – сердца любой ветроэнергетической установки – привлекаются специалисты-самолетостроители, умеющие выбрать наиболее целесообразный профиль лопасти и исследовать его в аэродинамической трубе. Усилиями ученых и инженеров созданы разнообразные конструкции современных ветровых установок.

Каждый источник энергии должен работать там, где дает наибольшую отдачу, максимальную выгоду. На севере у нас огромные труднодоступные территории. Вырабатывать здесь энергию очень сложно, и цена ее более высокая, чем в центре страны. Здесь то и могут найти применение ветроустановки. Скорость ветра на побережье морей и океанов составляет в среднем за год более 6 м/с. При работе ветроустановки мощностью в 1 МВт в течение шести месяцев потребитель энергии может получить около 2,5 млн кВт, что вполне достаточно для обеспечения теплом и светом поселка в 150 жилых домов.

Ветроустановки порождают вибрации и шум, неблаготворно влияющие на живые организмы. Поэтому их строят обычно вдали от населенных пунктов. Металлические лопасти могут создавать помехи для радио- и телепередач. Но все же в целом ветроэнергетику принято считать экологически безопасной.

Содержание

Введение
История развития энергетики
Энергия и энергетика
История развития энергетики как науки
Общая энергетика
История развития вторичной энергетики
Электроэнергетика как самостоятельная отрасль
Развитие энергетики в России
Современные проблемы энергетики
Ситуация в мире
Пути решения
Перспективы развития мировой энергетики
Заключение
Список литературы

Вложенные файлы: 1 файл

реферат Энергетика. история и перспекивы развития.doc

Министерство образования и науки Российской Федерации

Выполнил: ст. гр. БЭЭ-11ц

Проверил: Уланова Р.А.

  1. История развития энергетики
    1. Энергия и энергетика
    2. История развития энергетики как науки
      1. Общая энергетика
      2. История развития вторичной энергетики
      3. Электроэнергетика как самостоятельная отрасль
      1. Ситуация в мире
      2. Пути решения

      Предметом работы является энергетика. Целью данной работы является изучение истории развития энергетики (как науки, так и отрасли народного хозяства).

      Энергетику для предметного рассмотрения выдрала потому, что в современной истории это наиболее актуальная тема для Мира. Актуальность ее затрагивает как экономические процессы, так и политические, научное значение так же велико, великие умы Мира и разных национальностей борются за то, чтоб найти источники энергии с максимальным КПД, возобновляемые и не приносящие вреда окружающей среде.

      Поставленная цель, ставит решение следующих задач: рассмотрения понятия энергии, энергетики; развитие техники; история развития энергетики; ознакомление с видами энергии и энергетики; выявить значение энергетики для современной науки, для мира в целом.

      Энергетика была, остается, и на ближайшую перспективу будет оставаться основой экономического развития стран. Подтверждением этого является четко выраженная мировая тенденция роста энергопотребления, особенно в развивающихся странах.

      Знание истории развития науки и техники, этого важнейшего направления деятельности любого государства, позволяет правильно оценить существующую обстановку в энергетической отрасли, учесть опыт предыдущих поколений и развивать отрасль с учетом этих факторов.

      Развитие энергетики есть мощная сила, которая влияет на жизненный уровень людей, изменяет характер общества, является причиной социальных перемен и направляет общественное развитие.

      Энергия - одно из чаще всего обсуждаемых сегодня понятий; помимо своего основного физического (а в более широком смысле - естественнонаучного) содержания, оно имеет многочисленные экономические, технические, политические и иные аспекты.

      Цивилизации нужна энергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных источников (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получать в реакторах-размножителях плутоний. Практически неисчерпаемы запасы термоядерного топлива - водорода, однако управляемые термоядерные реакции пока не освоены и неизвестно, когда они будут использованы для промышленного получения энергии в чистом виде, т.е. без участия в этом процессе реакторов деления.

      Ключевой проблемой экономики стран является необходимость повышения энергоэффективности.

      Остаются два пути: строгая экономия при расходовании энергоресурсов и использование нетрадиционных возобновляемых источников энергии.

      Задача достижения качественно нового состояния энергетики диктует жесткие требования к выбору мер государственного регулирования и частно-государственного партнерства, взаимной ответственности всех участников процесса, что должно обуславливать своевременную интеграцию достижений (как страны, так и мира в целом) в энергетический комплекс.

      История воспитывает и формирует человека, она великий учитель человека и общества.

      Изучение истории имеет практическое значение, так как его итоговые выводы подводят нас вплотную к практическим потребностям текущего момента.

      Развитие энергетики и техники связано с работами очень многих людей: гениев, изобретателей, любознательных людей, ученых – неравнодушных, мыслящих, трудолюбивых, нравственно богатых людей.

      Проникаясь историческим чувством, опираясь на духовный и нравственный опыт веков, человек исподволь вырабатывает в себе персональную ответственность за все прошедшее и происходящее в мире. В нем укрепляется чувство нравственного долга, которое является ядром истинной личности.

      Материальная жизнь человечества связана с двумя основными началами - веществом и энергией. Поэтому все техническое творчество человека на всех этапах развития общества сводилось, по существу, к видоизменениям и превращениям как вещества, так и энергии.

      1.1 Энергия и энергетика

      Энергия (от греч. energeia — действие, деятельность) - способность тел (существ) совершать работу. Это общая количественная мера движения и взаимодействия всех видов материи. Энергия связывает воедино все явления природы. Энергия в природе не возникает из ничего и не исчезает; она только может переходить из одной формы в другую. В соответствии с различными формами движения материи рассматривают различные формы энергии: тепловую, механическую, кинетическую, электромагнитную, ядерную и др.

      Энергетика, энергетическая наука — наука о закономерностях процессов и явлений, прямо или косвенно связанных с получением, преобразованием, передачей, распределением и использованием различных видов энергии, о совершенствовании методов прогнозирования и эксплуатации энергетических систем, повышении кпд энергетических установок и уменьшении их экологического влияния на природу.

      Энергетические технологии – наука об энергетике, область технических наук, комплекс технологий, используемых в процессе получения, передачи и использования видов энергии и энергетических ресурсов.

      Наука об энергетике изучает законы и методы преобразования потенциальной энергии природных энергетических ресурсов в виды энергии, используемые в деятельности человека, создание новых и совершенствование существующих средств преобразования. В более узком смысле эта наука, основываясь на системном методе исследований, изучает закономерности, объективные тенденции и оптимальные пропорции развития энергетики как единого целого; формирует концепцию оптимального управления энергетикой; изучает комплексные проблемы энергетики, включая её влияние на окружающую среду, проблемы развития научно-технического прогресса в энергетике.

      1.2 История развития энергетики как науки

      Наука в каждый рассматриваемый момент времени представляет собой итог – совокупность знаний о природе, обществе, мышлении, накопленных в ходе общественно-исторической жизни людей.

      В истории человечества наблюдаются четыре стадии познания природы.

      Первая стадия начинается с древнейших времен (Архимед, Фалес Милетский и др.) и заканчивается примерно XV в. В ней формируется синкретическое, то есть недетализированное представление об окружающем мире; но уже в XIII-XIV веках зарождаются идеи и догадки, ставшие началом становления естественных наук.

      Вторая стадия – XV-XVI в.в. – называется аналитической, поскольку в этот период мышление начинает ориентироваться на расчленение понятий и выделение частностей, что привело к возникновению и развитию наук: астрономии, физики, химии, биологии, и других.

      Третья стадия – XVII-XX в.в.; ее называют синтетической. В это время происходит постепенное воссоздание целостной картины природы на основе ранее накопленного опыта.

      Четвертая стадия – конец XX в., начало XXI в. Здесь начинает формироваться интегрально-дифференциальный подход к познанию природы, то есть рассматривается единая наука о природе. Вселенная, Жизнь, Разум – трактуются как единый, но очень многогранный объект естествознания.

      Прогноз дальнейшего – ведущая роль в дальнейшем познании природы принадлежит синтезу знаний, интеграции наук, в центре которых будет находиться человек.

      Энергия, даже будучи еще не определенной, конкретно, предполагает тесную взаимосвязь с веществом. Кинетическая энергия возникает при перемещении вещества в пространстве, потенциальная энергия, это по сути, энергия состояния все того же вещества.

      Над идеей сохранения вещества вероятнее всего начали задумываться натурфилософы Древней Греции во времена легендарного Левкиппа и его гениального ученика Демокрита, в V в до н.э. Гипотеза предполагала, что структурные элементы не могут появляться из ничего и исчезать в никуда.

      Демокрит говорил: « Начало Вселенной – атомы и пустота, все же остальное существует лишь в мнении. Миров бесчисленное множество, и они имеют начало, и конец во времени. И ничего не возникает из небытия, и не разрешается не бытиё. И атомы бесчисленны по величине и по множеству, носятся же они во Вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля. Дело в том, что последнее суть соединения некоторых атомов. Атомы же не поддаются никакому воздействию, неизменяемы и неизменяемы в следствии твердости.

      За тем, люди надолго позабыли гениальных греков, но в своей жизнедеятельности постоянно использовании свойства энергии в преобразовании из одного вида в другой.

      С древнейших времен люди нуждались в силе, в двигателях, которые помогали бы выкорчевывать деревья, приводили бы в действие приспособления для подачи воды на поля, пахали землю, вращали жернова, мелющие зерно и т.п.

      В странах Древнего Востока, в Египте, Индии, Китае для этой цели уже в 3-м тыс. до н.э. использовались животные и рабы. Затем на смену живым двигателям пришло водяное колесо.

      В 3-м тысячелетии до н.э. люди использовали паруса для движения лодок, но только в VII в. н. э. персы изобрели ветряную мельницу с крыльями Началась история ветряных двигателей. Водяные колеса и ветряные мельницы вплоть до XVII века являлись основными типами двигателей.

      В конце XVII – начале XVIII веков в Италии, Франции, Англии, России, Испании и других государствах делались неоднократные попытки создать двигатель, не зависящий от движущейся воды рек и ветра. Идея использования пара для создания двигателя возникла благодаря размышлениям и опытам древних мыслителей (таких как Архимед 287 – 212 гг. до н.э, Герон из Александрии еще в 70-е гг. н.э. изобрел простейшую паровую турбину – эолипил Герона).

      Первые существенные достижения в фундаментальных науках после мудрой и просвещенной древности связывают с Эпохой Возрождения, которая подарила миру таких гениев, как Леонардо да Винчи, Исаак Ньютон, Галилео Галилей, Рене Декарт и многих других представителей рода человеческого.


      В настоящее время темпы развития экономики выявляют основные проблемы развития мирового энергетического комплекса. Происходит постепенное завершение эры углеводородов, основные причины этого — дороговизна энергии, превышение темпов роста потребления электроэнергии над темпами ее выработки электроэнергии и постепенное исчерпание природных ресурсов.

      Проблемой и сложностью исследования путей развития мировой энергетики является необходимость учитывать взаимное влияние трендов развития мировой экономики и мировой энергетики, технологических, ресурсных и экологических трендов, а также политических и социокультурных проблем. Особенно важной становится необходимость учитывать взаимное влияние энергетики и экономики. Для решения этой задачи наиболее целесообразным является применение сценарного подхода.

      Наиболее распространенными вариантами развития событий на настоящем этапе являются следующие сценарии: инерционный (углеводородный) сценарий, стагнационный (возобновляемый) сценарий, инновационный (возобновляемо-атомный) сценарий. [1]

      Инерционный сценарий предполагает продолжение постиндустриальной фазы и острый кризис после 2030 г. из-за достижения пределов роста индустриальной фазы. По данному сценарию будет происходить расширение индустриальной энергетики в развивающихся странах одновременно с медленным развитием постиндустриальной энергетики в развитых странах. В результате прогнозируется быстрый рост спроса на ископаемые источники энергии, рост разногласий между компаниями и государствами на этой почве, ухудшение экологической ситуации в целом.

      Стагнационный сценарий предполагает тенденцию к развитию всех существующих альтернатив нефтепродуктам и двигателю внутреннего сгорания, основной предпосылкой чего является приобщение развивающихся стран к существующим технологиям с целью снижения энергоемкости процесса индустриализации. В результате основные изменения в мировой энергетике будут регулятивными. Сложится сложная система, регулирующая мировую энергетику и включающая в себя глобальные и локальные климатические соглашения, климатические налоговые и таможенные тарифы, технологические стандарты.

      Инновационный сценарий предполагает преодоление пределов роста индустриальной фазы и переход к новой фазе к 2030 году. При реализации такого сценария прогнозируется формирование энергетики нового типа в развитых странах и в некоторых лидирующих развивающихся странах. Согласно данному сценарию, в атомной энергетике ожидается прорыв. К 2030 г. атомная энергетика может возрасти вдвое, а к 2050 г. — вчетверо по сравнению с уровнем 2011–2016 годов. В результате основные изменения в мировой энергетике будут технологическими, а регулятивные и геополитические факторы отступят на задний план. Данные изменения приведут к переходу энергетики к новому этапу — постиндустриальному. [1]

      Согласно данным компании ВР, можно сделать вывод о том, что на данном этапе электроэнергия, выработка которой требует использование угля, природного газа или нефти, составляет свыше 80 % всей производимой энергии. Однако по мере исчерпания ресурсов появляются все более конкурентоспособные возобновляемые источники (ветровая, солнечная энергия и др.), и их доля в общем объеме выработки растет с каждым годом. [2]

      Возобновляемые источники обладают несомненными преимуществами перед традиционными источниками энергии, поскольку в теории они способны решить глобальные энергетические проблемы, но на сегодняшний день они являются лишь небольшим дополнением к ископаемым видам топлива. Поэтому, на взгляд исследователя, в глобальной энергетике именно атомная энергетика является чрезвычайно перспективным направлением для развития. Ее развитие может способствовать переходу от традиционной ядерной энергетики к управляемому термоядерному синтезу, и если наука позволит осуществить этот переход, человечество выйдет на новый уровень своего развития.

      Говоря об экономической целесообразности выработки атомной энергии, можно отметить, что далеко не все страны обладают возможностями использовать данный вид энергии, потому что сейчас атомные электростанции чрезвычайно дороги в эксплуатации. Существуют разногласия относительно рентабельности выработки атомной энергии, но ее несомненные преимущества перед другими видами энергии — устойчивость обеспечения базовой выработки, возможность вторичного использования топлива и отсутствие вредных выбросов в атмосферу — говорят о том, что в будущем конкурентоспособность атомной энергетики будет расти наряду с рентабельностью.

      Решение проблемы рентабельности выработки атомной энергии можно найти в опыте Китая — многие построенные и еще строящиеся там атомные электростанции абсолютно идентичны, в отличие, к примеру, от отличающихся друг от друга атомных электростанций США. С экономической точки зрения, решением проблемы рентабельности является повышение эффективности затрат, возникающее при массовом производстве. Китай в последние годы значительно увеличивает долю затрат на НИОКР в ВВП страны, находясь по уровню затрат на НИОКР в процентном выражении наравне с развитыми странами, а в денежном превосходя большинство из них (рис. 1). Значительную часть расходов составляют расходы разработок энергетического сектора. [3]


      Другие страны Азии также наращивают объемы выработки атомной энергии, в то время многие европейские страны и Япония стремятся к отказу от атомной энергетики в связи с экологическими угрозами, проблема которых особенно остро встала после аварии японского ядерного реактора на АЭС в 2011 году. Однако автор склонен согласиться с мнением ученых-физиков, в соответствии с которым при должном соблюдении техники безопасности польза от деятельности атомных станций для человечества значительна, в то время как риски возникновения чрезвычайных ситуаций минимальны при существующем подходе к обеспечению безопасности на атомных станциях.

      Возвращаясь к трем наиболее перспективным сценариям развития мировой энергетики, следует отметить, что при реализации возобновляемого и возобновляемо-атомного сценариев Россия окажется в проигрышном положении из-за не учитывающей возникающие вызовы современной государственной энергетической политики. Необходима корректировка энергетической политики в соответствии с перспективой создания энергетики постиндустриального типа. Данные меры помогут избежать глубокого технологического отставания страны в будущем, поскольку запас исчерпаемых источников энергии ограничен и в мире в любом случае будут происходить изменения структуры энергобаланса.

      Для решения проблем энергетического комплекса как в России, так и в мире необходимо проведение исследований, направленных на поиск альтернативы углеводородам. Перспективы развития мировой энергетики во многом зависят от финансирования научных исследований. В будущем на смену эре углеводородов должны прийти инновационные технологии, с которыми связываются основные перспективы энергетики (биотопливо, ветроэнергетика, геотермальная энергетика, гелиоэнергетика, термоядерная энергетика, водородная энергетика, приливная энергетика), и доля затрат на их разработку должна повышаться в общей доле затрат на НИОКР.

      Подводя итоги, следует сказать, что при современном уровне развития науки наиболее предпочтительным будущим мировой энергетики является реализация инновационного сценария, при котором происходит развитие атомной энергетики, но в долгосрочной перспективе необходимо повышать расходы на НИОКР для поиска и разработки новых источников энергии.

      Основные термины (генерируются автоматически): мировая энергетика, атомная энергетика, атомная энергия, доля затрат, инновационный сценарий, ВВП страны, индустриальная фаза, индустриальная энергетика, Россия, энергетическая революция.

      В развитии цивилизации и научно-технического прогресса все возрастающую роль играет энергетика. При этом быстро развивающееся энергетическое хозяйство сложно и многогранно, а основными видами топлива остаются такие невозобновляемые источники, как уголь, сланцы, газ и нефтепродукты. До недавнего времени считали, что этих запасов хватит на долгие годы. Лишь в последние десятилетия выяснилось, что запасы этих ресурсов ограничены. Известно, что однажды использованная энергия не может быть применена повторно, и в любой замкнутой системе, к какой относится и наша планета, энтропия непрерывно возрастает и даже с помощью механизма цен, к которому, как правило, прибегает человечество, нехватку невозможно превратить в изобилие.

      Мировое сообщество живет в настоящее время в эпоху прогрессирующего энергетического кризиса. Вместе с тем в результате интенсивного использования невозобновляемых источников энергии для отопления, транспортных средств, строительно-дорожных машин, сельскохозяйственных агрегатов и различных бытовых устройств, образуется огромное количество оксидов углерода, серы и азота. Все это способствует повышению температуры земной и водной поверхности, вызывает загрязнение окружающей среды, выпадение кислотных дождей, а также стимулирует интенсивное таяние льдов, повышение уровня океанов, затопление огромных территорий суши, зарождение циклонов и ураганов, охватывающих целые континенты. Эти явления ведут к широкомасштабному разрушению сельскохозяйственных угодий, исчезновению лесов и животного мира, повышенному размножению вредных насекомых, возрастанию частоты засух, лесных пожаров, проливных дождей, наводнений и т.п.

      Поэтому актуальна разработка альтернативных решений использования энергии на основе нетрадиционных подходов, а также с использованием возобновляемых источников. Исследования в области использования возобновляемых источников энергии связаны с созданием и практическим применением гелио- и ветроустановок, гидроэлектростанций и различного рода преобразователей. Вырабатываемые при этом энергоресурсы, кроме использования по прямому назначению, могут также накапливаться различными аккумулирующими системами.

      Среди перечисленных видов возобновляемых источников прежде всего необходимо остановиться на энергии солнечного излучения, поток которой составляет примерно 3,8 10 26 Вт и представлен всем спектром электромагнитных волн. При этом энергетическая освещенность земной атмосферы достигает примерно 1,4 кВт/м 2 , а непосредственно поверхности нашей планеты - около 1 Вт/м2. За двое суток Солнце посылает нам столько тепла и света, сколько способны дать при сжигании все земные запасы угля, нефти, газа и сланцев. Однако пока не создано достаточно экономичного способа преобразования солнечной энергии в электрическую, хотя уже и имеются разработки, приемлемые для практической реализации. Например, солнечные батареи, питающие электроэнергией космические объекты. Коэффициент полезного действия таких систем, работающих по схеме фотоэлектрического преобразования, уже превышает 20? и может быть заметно увеличен в случае использования вместо химически чистых полупроводников типа кремния, арсенида галлия и сульфида кремния, менее дорогостоящих, но более эффективных материалов. Одним из них может быть соединение сурьмы с алюминием. Можно ожидать заметного повышения коэффициента полезного действия также и от солнечных батарей, созданных на основе сплавов сурьмы с индием. Они могут быть перспективными при освоении области инфракрасного излучения, которое составляет около половины от всей лучистой энергии Солнца.

      Наряду с солнечным излучением, перспективно использование и энергии ветра. Согласно данным, последняя классифицируется как "солнечная", поскольку возникает в результате нагрева атмосферного воздуха солнечными лучами. Ветровая энергия давно используется в мореплавании, а также для приведения в движение мельничных колёс. С недавних пор она находит применение и для выработки электроэнергии.

      Ветровые установки, как правило, сооружаются на принципе использования воздушных потоков, к тому же они громоздки, сложны и даже при диаметре колеса 150 м улавливается не более половины энергии ветра и в узком диапазоне скоростей. К тому же стоимость выработанной ими электроэнергии заметно превышает стоимость энергоресурсов, получаемых по другим технологиям. Кроме того, одной из самых сложных проблем, препятствующих более широкому распространению ветроэнергетических установок, является непостоянство действия ветра и часто меняющаяся его скорость. В этом направлении следует обратить внимание на совершенствование ветровых установок для конвенционных электростанций и способов аккумулирования электроэнергии.

      К исключительно ценным возобновляемым источникам энергии относится биогумус, состоящий из птичьего помета, навоза животных, отходов жизнедеятельности человека и разлагающейся растительности. Уже накоплен опыт переработки перечисленных отходов, в результате чего получаются экологически чистые энергетические ресурсы в виде биогаза (70% CH 4 и 30% СО 2 ) с теплотой горения 5500-6000 ккал/м 3 . При этом одновременно осуществляется обеззараживание как вредных для природной среды патогенных микроорганизмов, так и выработка высококачественных удобрений и кормовых добавок в виде различных модификаций витаминов группы В. Причем после биообработки органических удобрений заметно сокращается или вовсе исключается применение ядохимикатов для борьбы с сорняками. Производство биогаза, высококачественных удобрений и кормовых добавок способствует улучшению экологической обстановки в местах образования и переработки биогумуса.

      Еще один вид возобновляемых источников энергии - это энергия падающей воды. Преобразование потенциальной энергии падающей воды в механическую энергию вращения с целью приведения в действие мельничных колес и других механизмов, известен давно. Физические принципы преобразования энергии падающей воды в электрическую заключаются в том, что упомянутая среда под напором, создаваемым плотиной гидроэлектростанций, направляется в водовод, который заканчивается турбиной. Благодаря этому турбина воздействует на вал, связанный с ротором генератора, вращающимся в магнитном поле статора. Здесь все зависит от потенциальной энергии падающей воды и коэффициента полезного действия ее преобразования в электрическую.

      Мощность гидроэлектростанций определяется как количеством воды, так и перепадом между водной поверхностью водохранилища и уровнем размещения гидроагрегата. Для получения одинаковой мощности на высоконапорной гидроэлектростанции требуется меньший расход воды. Причем от напора воды зависят габариты турбины, что в целом способствует удешевлению стоимости гидросооружения.

      Следует отметить, что строительство крупных гидросооружений может оказать негативное влияние на природную среду. Так, возведение высоких плотин и создание огромных водохранилищ ведет к истреблению уникальной флоры и фауны, затоплению больших площадей сельскохозяйственных угодий, сокращению стока рек и т.п. При этом с водой выносится значительное количество наносов, которые, оседая в водохранилищах, со временем снижают их мощность. Кроме того, строительство крупных гидроэлектростанций создает значительное давление на малый участок земной поверхности, что вызывает большие перенапряжения в подстилающих грунтах и создает благоприятные условия для инициирования землетрясений, особенно в сейсмоопасных зонах. Естественно, что в таких местах предпочтение следует отдавать строительству микро- и малых гидроэлектростанций.

      В Центральноазиатском регионе возможности возведения малых гидроэлектростанций, не требующих больших инвестиций, давно привлекают к себе пристальное внимание. Исследовательские работы здесь ведутся по ряду направлений, во-первых, производится перевооружение и реконструкция действующих объектов; во-вторых, осуществляется восстановление законсервированных и части списанных станций; в-третьих, сооружаются малые гидроэлектростанции при ирригационных водохранилищах; в-четвертых, строятся новые их модификации на реках и, прежде всего, в районах децентрализованного электроснабжения. Кроме того, в связи с переходом на рыночные отношения и прогрессирующим развитием автономных фермерских хозяйств появилась необходимость в создании проектов по возведению микрогидроэлектростанций различной мощности. При этом следует иметь в виду тот факт, что горные реки характеризуются большим количеством наносов, интенсивными ледовыми явлениями и значительной деформацией русел. Все это существенно затрудняет нормальную эксплуатацию гидросооружений.

      Кроме описанных, к важным направлениям производства энергоресурсов на основе водной и воздушной сред относится получение кислорода, водорода и его перекиси (пероксида). Кислород и водород используется в устройствах по сварке, пайке, резке и других видах обработки материалов. В то же время, как показывает опыт, водород является идеальным энергетическим ресурсом, например, при электролизе воды. Сам по себе способ весьма прост. При прохождении постоянного электрического тока через элемент, состоящий из катода и анода, помещенных в водный электролит, на катоде выделяется водород, а на аноде - кислород. Как правило, устройства для получения кислорода и водорода состоят из электролизеров, разделительных колонок, работающих за счет разности плотностей газожидкостных смесей, холодильников, регуляторов давления газов, циркуляционного и подпитывающего насосов. Может быть и другой вариант устройства для получения кислорода и водорода, который состоит из электролизера, вертикально размещенных разделительных колонок упомянутых газов, их промывателей и регуляторов давления с массивными поплавками.

      Также в последнее время ведутся разработки других способов получения водорода, в том числе биологическим, биохимическим и синтетическим методам. В первом из них для разложения воды на водород и кислород используют микроорганизмы. Количество получаемого водорода по этому способу пока незначительно, но в перспективе можно ожидать появления разработки более эффективных его модификаций. Биохимический метод предлагает при разложении водной среды в реакторе использовать ферменты, однако и в этом случае водород тоже производится в малых количествах. Основу синтетического метода составляет фотолиз при полном отсутствии биологических компонентов. Нужно отметить, что хотя некоторые из перечисленных методов в настоящее время и недостаточно производительны, следует продолжать работы по повышению их эффективности.

      Учитывая, что водород служит идеальным энергоносителем, необходимо найти более надежные способы его аккумулирования и последующего хранения. Согласно литературным данным, он может находиться в газообразной или жидкой формах, а также в качестве составной части какого-либо химического соединения. Однако следует иметь в виду, что аккумулирование водорода в виде сжатого газа имеет ограничения из-за низких соотношений между его количеством и массой баллонов, в которых он содержится. Что же касается хранения водорода в жидкой форме, то здесь также имеются сложности, поскольку он сжижается при температуре -252,87°С при расходе значительной энергии. При этом его криогенное хранение представляет сложную проблему и требует многогранных исследований. Наиболее приемлемым вариантом компактного и безопасного хранения водорода является его содержание в составе особого класса компаудов-металлических гидридов. Последнее достигается тем, что водород под давлением принудительно вступает во взаимодействие с очищенной поверхностью какого-либо металла и, находясь в атомарной форме, растворяется в его межкристаллитном пространстве. При очень высоких давлениях отношение количества атомов водорода к атомам металла больше единицы, а часто может превышать и двойку. В этом случае образуются химические соединения - гидриды. В принципе они могут создаваться при взаимодействии с любым чистым элементом и с большой частью двойных сплавов.

      Таким образом, источником аккумулирования энергии, пригодным для использования при работе всех видов техники, в том числе и любых транспортных средств, может быть водород, который по сравнению с другими видами горючего, наиболее дешевый и экологически чистый. В случае перевода двигателей внутреннего сгорания в современных машинах на такое водородное горючее необходимо лишь незначительно изменить конструкцию карбюратора и отрегулировать угол опережения зажигания для приведения его в соответствие с необходимым количеством воздуха и скоростью распространения фронта пламени. В процессе эксплуатации таких двигателей внутреннего сгорания выхлопными продуктами являются водяной пар и небольшое количество азота. Причем его выделение можно регулировать при помощи реакторов каталитической конверсии нашей разработки. Кроме того, при использовании водорода в качестве горючего для транспортных средств отсутствуют несгоревшие углеводороды, соединения свинца и окиси углерода, которые существенно загрязняют окружающую среду.

      В результате, можно сделать вывод, что нетрадиционные подходы к выработке энергоресурсов с использованием возобновляемых источников, которые состоят из энергии солнечных лучей, ветровой энергии, биогумуса, являются как никогда актуальными.

      Свиденко В.Н. К вопросу рационального использования природных ресурсов и энергосбережения // Материалы международн. научно-практич. конф. "Проблемы строительства и архитектуры на пороге XXI века". - Бишкек: КГ УСТА, 2000. - С 21-35.

      Мак-Вейг Д. Применение солнечной энергии / Пер. с англ. - М.: Энергоатомиздат, 1981. - 205 с.

      Шефтер Я.И. Использование энергии ветра. - М.: Энергоатомиздат, 1983. - 207 с.

      Читайте также: