Отопление производственных помещений реферат

Обновлено: 04.07.2024

В системах централизованного теплоснабжения для отопления, вентиляции и горячего водоснабжения жилых, общественных и производственных зданий в качестве теплоносителя следует, как правило, принимать воду.

Следует также проверять возможность применения воды как теплоносителя для технологических процессов.

Применение для предприятий в качестве единого теплоносителя пара для технологических процессов, отопления, вентиляции и горячего водоснабжения допускается при технико-экономическом обосновании.

Максимальная расчетная температура сетевой воды на выходе из источника теплоты, в тепловых сетях и приемниках теплоты устанавливается на основе технико-экономических расчетов.

При наличии в закрытых системах теплоснабжения нагрузки горячего водоснабжения минимальная температура сетевой воды на выходе из источника теплоты и в тепловых сетях должна обеспечивать возможность подогрева воды, поступающей на горячее водоснабжение до нормируемого уровня.

Температура сетевой воды, возвращаемой на тепловые электростанции с комбинированной выработкой теплоты и электроэнергии, определяется технико-экономическим расчетом. Температура сетевой воды, возвращаемой к котельным, не регламентируется.

При расчете графиков температур сетевой воды в системах централизованного теплоснабжения начало и конец отопительного периода при среднесуточной температуре наружного воздуха принимаются:

- 8 °С в районах с расчетной температурой наружного воздуха для проектирования отопления до минус 30 °С и усредненной расчетной температурой внутреннего воздуха отапливаемых зданий 18 °С;

- 10 °С в районах с расчетной температурой наружного воздуха для проектирования отопления ниже минус 30 °С и усредненной расчетной температурой внутреннего воздуха отапливаемых зданий 20 °С.

Усредненная расчетная температура внутреннего воздуха отапливаемых производственных зданий 16 °С.

При отсутствии у приемников теплоты в системах отопления и вентиляции автоматических индивидуальных устройств регулирования температуры внутри помещений следует применять в тепловых сетях регулирование температуры теплоносителя:

- центральное качественное по нагрузке отопления, по совместной нагрузке отопления, вентиляции и горячего водоснабжения - путем изменения на источнике теплоты температуры теплоносителя в зависимости от температуры наружного воздуха;

- центральное качественно-количественное по совместной нагрузке отопления, вентиляции и горячего водоснабжения - путем регулирования на источнике теплоты как температуры, так и расхода сетевой воды.

Центральное качественно-количественное регулирование на источнике теплоты может быть дополнено групповым количественным регулированием на тепловых пунктах преимущественно в переходный период отопительного сезона, начиная от точки излома температурного графика с учетом схем присоединения отопительных, вентиляционных установок и горячего водоснабжения, колебаний давления в системе теплоснабжения, наличия и мест размещения баков-аккумуляторов, теплоаккумулирующей способности зданий и сооружений.

При центральном качественно-количественном регулировании отпуска теплоты для подогрева воды в системах горячего водоснабжения потребителей температура воды в подающем трубопроводе должна быть:

- для закрытых систем теплоснабжения - не менее 70 °С;

- для открытых систем теплоснабжения - не менее 60 °С.

При центральном качественно-количественном регулировании по совместной нагрузке отопления, вентиляции и горячего водоснабжения точка излома графика температур воды в подающем и обратном трубопроводах должна приниматься при температуре наружного воздуха, соответствующей точке излома графика регулирования по нагрузке отопления.

В системах теплоснабжения, при наличии у потребителя теплоты в системах отопления и вентиляции индивидуальных устройств регулирования температуры воздуха внутри помещений количеством протекающей через приемники сетевой воды, следует применять центральное качественно-количественное регулирование, дополненное групповым количественным регулированием на тепловых пунктах с целью уменьшения колебаний гидравлических и тепловых режимов в конкретных квартальных (микрорайонных) системах в пределах, обеспечивающих качество и устойчивость теплоснабжения.

Для раздельных водяных тепловых сетей от одного источника теплоты к предприятиям и жилым районам допускается предусматривать разные графики температур теплоносителя.

В зданиях общественного и производственного назначения, для которых возможно снижение температуры воздуха в ночное и нерабочее время, следует предусматривать регулирование температуры или расхода теплоносителя в тепловых пунктах.

В жилых и общественных зданиях при отсутствии у отопительных приборов терморегулирующих клапанов следует предусматривать автоматическое регулирование по температурному графику для поддержания средней по зданию температуры внутреннего воздуха.

Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания и т.д.).

Потребление тепловой и электрической энергии происходит неравномерно в течение суток, недели, года. Это связано с особенностью работы промышленных, комму­нально-бытовых и сельскохозяйственных потребителей, электротранспорта.

Характер изменения потребления энергии удобно представлять в виде графиков тепловой и электрической нагрузок. Различают хронологические (календарные) графики и графики продолжительности нагрузки (рисунок 1).

Первый, с характерными максимумами и минимумами, отражает последовательность изменения нагрузки во време­ни. Второй показывает продолжительность времени, в тече­ние которого имеются те или иные нагрузки. Например, минимальная нагрузка имеет место в течение всех 24 ч суток. Кроме суточных строят также недельные, месячные и годовые графики максимумов нагрузок.


Рисунок 1. Суточные хронологический график (а) и график продолжительности, (б) нагрузки

В зависимости от решаемых задач графики нагрузок могут характеризовать потребление энергии в энергети­ческой системе в целом, отдельными потребителями в системе, отдельно на промышленном предприятии.

Изменение нагрузок может носить статический и динамический характер.

Статические нагрузки являются повторяющимися при неизменных составах потребителей и режимах потребления энергии.

Динамические нагрузки определяются изменением состава потребителей и режима потребляемой ими энергии.

Энергоустановки должны бесперебойно обеспечивать потребителей необходимым количеством энергии в соответствии с графиками нагрузки. Избыток электрической энергии можно передавать в сеть, в то время как теплоты должно производиться столько, сколько требуется потребителю. Иначе будут иметь место ее непроизводительные потери.

Наличие графиков нагрузки позволяет планировать оптимальную работу энергоустановок, которые имеют максимальный КПД на номинальном режиме. Это такой режим, который обеспечивает максимальную выработку энергии при минимальном потреблении первичной энергии в виде топлива.

Для того чтобы работа энергоустановок была эффективной, их разделяют по продолжительности работы на базовые, пиковые и полупиковые.

Базовые энергоустановки работают 6000-7000 ч в году, то есть практически постоянно. Они обеспечивают при работе на номинальном режиме покрытие части графика нагрузки с минимальным потреблением энергии Pmin .

Пиковые энергоустановки работают периодически до 2000 ч в год и запускаются для покрытия нагрузки в зоне между максимальной Рmaх и средней Рср нагрузками.

Полупиковые энергоустановки покрывают часть графика в области между Рср и Pmin .

Комплексное применение базовых и пиковых энергоустановок, в том числе и в блочном исполнении, позволяет наиболее эффективно использовать первичную энергию топлива, так как они работают в оптимальном режиме покрытия нагрузок с максимальным КПД.

Расчетный анализ содержания тепловой энергии в приходной и расходной частях энергетического баланса может быть выполнен на основе следующих соотношений:

- содержание химической энергии, теплота фазовых превращений, Ткал,

где М - расход материального потока за рассматриваемый промежуток времени (час, год), кг или м 3 ;

r - удельная химическая энергия, энергия фазовых превращений, ккал/кг или ккал/м3;

- теплосодержание материальных потоков, Гкал,

где с - массовая или объемная удельная теплоемкость материального потока М, ккал Дкгград) или ккал/(м3·град);

Т - температура потока, °С;

- расход теплоты на отопление, Гкал,

где q0 - объемная отопительная характеристика объекта, ккал/(м2·ч·трад);

V- внешний объем объекта, м 3 ;

Твн , Toc - температуры внутри и вне объекта, °С;

t - рассматриваемый промежуток времени, ч;

- расход тепла на вентиляцию, Гкал,

т - кратность воздухообмена, 1/ч;

св - объемная удельная теплоемкость воздуха, ккал/(м 3 ·град);

Vb - вентилируемый объем, м 3 ;

- потери теплоты с дымовыми газам, Гкал,

где Vдг - выход дымовых газов на 1 м 3 газообразного или на 1 кг твердого топлива, м3 /м3 или м3 /кг;

сдг - объемная удельная теплоемкость дымовых газов, ккал/(м 3 ·град);

Тдг - температура дымовых газов;

- тепловой эквивалент электрической энергии, Гкал,

Q = W × 0,86 × 10 -6 ,

где W - подведенная (потребленная) за рассматриваемый промежуток времени (час, год) электрическая энергия, кВт.


Рисунок 2. Измерительная система теплосчетчика "Квант":

ИР - электромагнитный расходомер, АВП - автоматический вычислительный прибор, М - магнит, Э - электроды, ИБ - измерительный блок,

RK1, RK2 - тёрморезисторы

Подающий трубопровод расположен между полюсами электромагнита М, под действием которого ионы жидко­сти отдают заряды измерительным электродам Э, создавая ток, пропорциональный расходу V. Измерительный блок (ИБ) трансформирует сигнал о расходе и передает на АВП, куда также поступают сигналы от терморезисторов RK 1 и RK 2. АВП производит счетные операции с выходом на регистрирующий прибор (РП) и АСУ.


Рисунок 3. Комплект приборов теплосчетчика НПТО "Термо":

РОСТ-1 - электромагнитный расходомер, ЭП-8006 - измерительный преобразователь, КТСПР - термометры сопротивления КТСПР для измерения разности температур

Теплосчетчик отличается высокой точностью измерения, отсутствием требований к прямолинейности участков трубопровода, отсутствием подвижных элементов в потоке. Комплект имеет цифровой шестиразрядный счет­чик количества теплоты в гигаджоулях, цифровую индикацию расхода теплоносителя, аналоговые выходные сигналы постоянного тока, частотный выходной сигнал, тем­пературный датчик для передачи данных в систему учета энергии ИЙСЭ.

На рисунке 4 показан комплект приборов теплосчетчиков ТЭМ-05М. В состав комплекта входят: измерительно-вычислительный блок (ИВБ); первичный преобразователь расхода электромагнитного типа (ППР); термопреобразователь сопротивления платиновый (ТСП); расходомер-счетчик РМС-05.05.


Рисунок 4. Схема установки ТЭМ-05МЗ

Теплосчетчики ТЭМ-05М предназначены для измерения, регистрации и коммерческого учета тепловых пара­метров в системах горячего водоснабжения, а также в закрытых и открытых системах теплоснабжения. Они применяются для работы на жилых, общественных и производственных зданиях самого широкого спектра: от офисов и коттеджей до промышленных предприятий, а также могут использоваться для автоматизированных систем учета, контроля и регулирования тепловой энергии.

Теплосчетчики имеют отличительные особенности и преимущества: отсутствие гидравлического сопротивления жидкости; возможность выбора типовой схемы установки; возможность выбора диапазона измерения расхода по месту монтажа самим потребителем; возможность объединения приборов в системы автоматизированного контроля и управления благодаря наличию у теплосчетчиков архива статистических данных о параметрах систем теплоснабжения и горячего водоснабжения, стандартных последовательных интерфейсов RS 232С, RS 485, адаптеров перено­са данных (АПД-01П, АПД-01С) и сервисного программного обеспечения.

Теплосчетчики ТЭМ-05М осуществляют автоматиче­ское измерение: расхода теплоносителя в трубопроводах систем теплоснабжения и горячего водоснабжения; температуры теплоносителя в трубопроводах систем теплоснабжения или горячего водоснабжения и в трубопроводах холодного водоснабжения; избыточного давления теплоно­сителя в трубопроводах (при наличии датчиков давления с токовым выходом); времени наработки при поданном напряжении питания; времени работы в зоне ошибок и вычисление: разности температуры теплоносителя в прямом и обратном трубопроводах (трубопроводе холодного водоснабжения); потребляемой тепловой мощности; объема теплоносителя, прошедшего по трубопроводам; потребленное количество теплоты.

В испарительном распределителе тепла тепло радиатора действует на специальную жидкость в измерительной ампуле, которая испаряется в зависимости от температуры и продолжительности действия тепла от радиатора. Чем горячее радиатор и чем дольше его тепло действует на ампулу, тем больше испаряется жидкости. Количество испарившейся жидкости показывает, сколько тепла использует данный радиатор.

Чтобы компенсировать дополнительное уменьшение жидкости, которое воз­никает, например, летом, когда на радиатор светит солнце, ампулы содержат определенный переизбыток жидкости, представляющий собой излишек для так холодного испарения.

Электронный распределитель тепла с помощью датчика регистрирует температуру радиатора аккуратнее, быстрее и точнее, чем жидкостной.

Микросхема внутри распределителя моментально под­считывает, принимая во внимание малейшие температурные различия, величины, образовавшиеся из разницы между температурой датчика и закодированной темпера­турой помещения 20 °С (системах одним датчиком). Она переводит данные в цифровые величины для считывания.

Распределитель с двумя датчиками, помимо температуры радиатора, измеряет также температуру окружающей среды и из этих данных рассчитывает количество отданно­го радиатором тепла.

Показания распределителя считываются с жидкокристаллического дисплея прибора.

Радиаторный термостат позволяет регулировать количество тепла, отдаваемого радиатором, но, в отличие от обычного вентиля, он автоматически поддерживает желаемую температуру, создавая комфортную тепловую об­становку и экономя тепло.

Термостат состоит из двух основных частей - клапана и термостатической головки. Клапан увеличивает или уменьшает подачу горячей воды в радиатор под воз­действием поршня, положение которого регулируется термостатической головкой. Внутри нее расположен так называемый сильфон, заполненный специальным газом, изме­няющим свой объем в зависимости от температуры воздуха около термостатической головки.

Выбор желаемой температуры производится поворотом головки в определенную позицию.

Термостаты позволяют задать оптимальный тепловой режим в помещениях, например, в детской - теплее, а в комнатах, которые долгое время не используются, можно установить минимальную температуру, не расходуя лишнее тепло. Уезжая на длительное время, также можно уменьшить температуру во всех помещениях, причем термостат не позволит температуре опустится до того значения, ко­гда из-за сконденсировавшейся влаги могут быть повреждены мебель и оборудование.

Список использованных источников

1. Гительман Л.Д, Ратников Б.Е. Энергетический бизнес. – М.: Дело, 2006. – 600 с.

2. Кравченя Э. М. и др. Охрана труда и основы энергосбережения: Учеб. пособие. – Мн.: ТетраСистемс, 2004. – 288 с.

3. Основы энергосбережения: Учеб. пособие / М. В. Самойлов, В. В. Паневчик, А. Н. Ковалев. 2-е изд., стереотип. – Мн.: БГЭУ, 2002. – 198 с.

4. Стандартизация энергопотребления - основа энергосбережения / П. П. Безруков, Е. В. Пашков, Ю. А. Церерин, М. Б. Плущевский //Стандарты и качество, 1993.

Название работы: Вентиляция, отопление и кондиционирование воздуха в производственных помещениях

Предметная область: Безопасность труда и охрана жизнедеятельности

Описание: Классификация систем кондиционирования. Вот некоторые задачи которые послужат для достижения этой цели: Выяснить значение кондиционирования воздуха. Классифицировать системы кондиционирования воздуха.

Дата добавления: 2015-03-10

Размер файла: 68.08 KB

Работу скачали: 236 чел.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Реферат по теме :

Выполнил : ст. 31 гр., зем.

факультета Горбулин Роман

1.1 Общие сведения и назначения…………………………………. 4

1.2 Общие требования и показатели микроклимата……………. 4

1.3 Классификация систем вентиляции……………………………. 5

2.1 Виды и их классификация ……………………………………. 7

  1. Кондиционирование воздуха
  2. Классификация систем кондиционирования………………….. 10

Список используемой литературы………………………………………. 15

Здоровье, работоспособность, да и просто самочувствие человека в значительной степени определяются условиями микроклимата и воздушной среды в жилых и производственных помещениях, где он проводит большую часть своего времени.

Системы кондиционирования и вентиляции влияют на комфорт в нашей жизни, поэтому этот вопрос очень актуален, что и послужило причиной написания данной работы, целью которой будет являться исследование этих систем.

Вот некоторые задачи которые послужат для достижения этой цели:

  1. Выяснить значение кондиционирования воздуха.
  2. Классифицировать системы отопления и вентиляции.
  3. Классифицировать системы кондиционирования воздуха.

1.1 Общие сведения и назначение

Для жизнедеятельности человека огромное значение имеет качество воздуха. От него зависит самочувствие, работоспособность и здоровье человека. Поэтому в помещениях необходимо создавать такие условия , которые бы соответствовали физиологическим потребностям организма и способствовали бы сохранению структурной и функциональной целостности на протяжении длительного периода.

Н аличие воздуха является необходимым условием жизни человека . Важнейшей жизнеобеспечивающей функцией организма человека является дыхание , для которого требуется определенный химический состав воздуха .

Из-за незначительных перемен в состав е воздуха по определенным компонентам может пр ивести, к различным заболеваниям или гибели организма . Вот для дыхания человека необходимо содержание кислорода в пределах 19-21 % ( по объему ). Если содержание кислорода снижается то в первую это сказывается на работе сердечно - сосудистой и центральной нервной системы , также приводит к повышенной утомляемости , ослаблению функции внимания , повышению числа допускаемых ошибок .

1.2 Общие требования

Воздушная среда закрытого помещения должна удовлетворять ряду

требований, которые предъявляются, во-первых, людьми, находящимися в данном помещении, и, во-вторых, размещенным в помещении оборудованием или хранящимся имуществом.

Основное требование - высокие эксплуатацион ны е характеристики , то есть эффективность выполнения о сновных функций , а также надежность функциониро ва ния , наладки и регулирования системы , удобств а в ее об служивани и и ремонт е.

Также важнейшим требованием к вентиляционным системам

является то , что они не должны мешать нормальному протеканию производственного процесса . Н апример , вентиляционные каналы или сооружения ни каким образом не должны препятс твовать на пути перемещения рабочего оборудования . Вентиляционные элемен ты системы не должны затруднять монтаж , ремонт эксплуатацию технологического оборуд ования.

С истемы вентиляции должн ы быть компактными , чтобы площадь для размещения соответствующего оборудования была минимальной , а также по возможности конструкции вентиляционных сооружений должны сочетаться с архитектурными решениями и отвечать требованиям

И немаловажным требованием является экономичность , то есть максимально возможн о экономи ть энер гию при обеспечении высоких технических показателей .

1.3 Классификация систем вентиляции

Системы вентиляции делят по следующим признакам : по способу перемещения воздуха , направлению его потока , зоне действия и времени работы . Вообще различают естественную и механическую ( искусственную ) вентиляцию . При естественной вентиляции движение воздуха происходит при разности температур и , следовательно , плотностей наружного и внутреннего воздуха , а также под воздействием давления или разряжения , создаваемого ветром . При механической вентиляции перемещение воздуха осуществляется с помощью вентиляторов .

Естественная вентиляция производственных помещений может быть неорганизованной и организованной ( аэрация ). При неорганизованной вентиляции воздух поступает в помещение и удаляется из него через не плотн ые наружны е ограждени я, а также через окна , форточки и другие проемы . Организованная ( под д ающаяся регулированию ) вентиляция осуществляется при наличии в помещении световых фонарей с открывающимися створками , через которые происходит вытяжка воздуха , и окон в боковых стенах , работающих на приток . Изменяя степень открытия створок в окнах и фонарях , регулируют объем подачи и удаления воздуха . Устройство аэрации особенно целесообразно в больших производственных помещениях и горячих цехах .

Механическая вентиляция в зависимости от направления потока воздуха бывает приточной и вытяжной . Приточная вентиляция предназначена для пода чи чистого воздуха на рабочие места и участки , вытяжная для удаления загрязненного воздуха . По зоне действия механическую вентиляцию подразделяют на общеобменную , местную и смешанную . При общеобменной вентиляции происходит обмен воздуха во всем помещении . Ее применяют в случаях , когда в ыд еления вредных веществ и незначительны и они равномерно распределены по всему объему помещения .

Местная вытяжная вентиляция предназначена для локализации и удаления вредностей непосредственно в местах их образования . Вытяжные устройства при этом могут быть закрытого и открытого типов . Местная приточная вентиляция обеспечивает заданные параметры воздушной среды в определенной части помещения , где человек находится наиболее продолжительное время ( основная рабочая площадка ). Разновидностями этой вентиляции являются воздушные души , оазисы , завесы . Воздушный душ представляет собой струю воздуха , подогреваемую зимой и охлаждаемую при необходимости летом , которая направляется на человека . Воздушные оазисы устраивают в виде площадок , отделенных от основного помещения перегородками высотой около 2 м .

Их использую т для того , чтобы предотвратить проникновение загрязненного или холодного воздуха из соседних помещений и в проемы между отапливаемыми и неотапливаемыми

По времени действия различают вентиляцию рабочую ( постоянно действующую ) и аварийную . Аварийная вентиляция предназначена для быстрого удаления из помещений значительных объемов воздуха с большим

содержанием вредных и взрывоопасных веществ , поступивших в помещение при нарушении технологического процесса или аварии . Она , как правило , проектируется вытяжной и должна обеспечивать не менее чем восьмикратный воздухообмен . Кратность воздухообмена , равная отношению часового проходящего через помещение воздуха объему помещения , показывает , сколько раз в течение часа полностью заменяется воздух в помещении , то есть характеризует интенсивность вентиляции . Естественная

вентиляция может обеспечивать 20- кратный воздухообмен ,

механическа я 10- кратный.

2.1 Виды и их классификация

• по конструкции различают кирпичные , из радиаторов ,

гладкотрубные , ребристые ( пластинчатые ), спирально - навивные ;

• по виду теплоносителя - огневые , водяные , пар о вые , электрические ;

• по типоразмерам - малой , средней и большой моделей ;

• по движению теплоносителя - одноходовые и многоходовые .

Огневые калориферы устраиваются из кирпича . Воздух в них нагревается внешней поверхностью кирпичных колодцев , обогреваемых изнутри отходящими дымовыми газами . Достоинством является почти полное отсутствие металла , незначительное гидравлическое сопротивление проходу воздуха ( преимущества для применения воздухонагревателя в приточных системах вентиляции воздушном отоплении с естественным побуждением ).А их н едостатки сложны в эксплуатации (при необходимост и очистки от сажи колодцев - газоходов ), пожароопасные. В настоящее время огневые калориферы практически ни где не применяются

Калориферы из радиаторов . Воздух нагревается во время контакта с внешней поверхностью радиаторов , обогреваемых водой или паром . Достоинство калорифера из радиаторов - небольшое гидравлическое сопротивление проходу нагреваемого воздуха – позволяет применять его в приточных системах с естественным побуждением . Недостаток - металлоемкость , большие габариты .

Калориферы гладкотрубные . Состоят из гладких стальных труб , ввариваемых в коллектор в виде коробок . Применяются при необходимости нагрева относительно небольшого количества воздуха .

Калориферы пластинчатые . Состоят из стальных труб диаметром 15 мм , укрепляемых в две металлические коробки . Пластины калориферов в ып олнены из листовой стали толщиной 0,5 мм , крепятся к трубам

на расстоянии 5 мм дру г от друга . Кроме пластинчатых нашли п рименение о ребренные калориферы , в которых вместо п ластин на трубы

навивается стальная гофрированная лента .

Преимущества таких калориферов в их ком п актности ( по сравнению с

калориферами из радиаторов ), высокой те п ловой отдаче ( количество отдаваемой те п лоты , отнесенное к 1 кг металла п ри разности температур теплоносителя и нагреваемого воздуха в 1 °С ). Недостаток в большо м гидравлическо м со п ротивлени и движени я воздуха через калорифер ,

вследствие чего они , как правило , п рименяются в системах механической п риточной вентиляции . Получили п рименение п ластинчатые калориферы

большой и средней моделей , имеющих соответственно

по на п равлению движения воздуха четыре и три ряда

трубок : одноходовые ти п а и многоходовые . Многоходовые калориферы

п ри ис п ользовании пара в качестве те п лоносителя не п рименяются .

Рисунок 1. Схемы калориферов по движению теплоносителя а) одноходовые б) многоходовые

Электрические калориферы п рименяют ся относительно

редко , как п равило , для нагревания небольшого количества воздуха . Электрокалорифер состоит из кожуха и нагревательных элементов . Нагревательные элементы : трубки с накатным алюминиевым оребрением

для увеличения п оверхности нагрева . Трубки установлены внутри кожуха в несколько рядов и разделены на самостоятельные секции , с п омощью которых можно регулировать те п лоотдачу калорифера .

3.1Классификация систем кондиционирования.

Кондиционирование воздуха — это создание и регулирование в помещениях всех или отдельных параметров (температуры, влажности, чистоты, скорости движения воздуха) с целью обеспечить оптимальные метеорологические условия, для благоприятного самочувствия людей и ведения технологического процесса.

Кондиционирование воздуха осуществляется комплексом технических средств, называемым системой кондиционирования воздуха (СКВ). В состав СКВ входят технические средства забора воздуха, подготовки, т. е. придания необходимых кондиций (фильтры, теплообменники, увлажнители или осушители воздуха), перемещения (вентиляторы) и его распределения, а также средства теплоснабжения, автоматики, дистанционного управления и контроля. СКВ больших общественных, административных и производственных зданий обслуживаются, как правило, комплексными автоматизированными системами управления.

Автоматизированная система кондиционирования поддерживает заданное состояние воздуха в помещении независимо от колебаний атмосферных условий.

Прежде чем перейти к классификации систем кондиционирования, следует отметить, что общепринятой классификации СКВ до сих пор не существует и связано это с многовариантностью принципиальных схем, зависящих не только от технических возможностей самих систем, но и от объектов применения (кондиционируемых помещений).

Современные системы кондиционирования могут быть классифицированы по следующим признакам:

• по основному назначению : комфортные и технологические;

• по принципу расположения кондиционера по отношению к обслуживаемому помещению: центральные и местные;

• по наличию собственного источника тепла и холода: автономные и неавтономные;

• по принципу действия: прямоточные, рециркуляционные и комбинированные;

• по способу регулирования выходных параметров кондиционированного воздуха: с качественным (однотрубным) и количественным (двухтрубным) регулированием;

• по степени обеспечения метеорологических условий в обслуживаемом помещении: первого, второго и третьего класса;

• по количеству обслуживаемых помещений: однозональные и многозональные;

• по давлению, развиваемому вентиляторами кондиционеров: низкого, среднего и высокого давления.

Помимо приведенных классификаций также существуют системы кондиционирования, обслуживающие специальные технологические процессы, они включают системы с изменяющимися во времени (по определенной программе) метеорологическими параметрами.

Комфортные СКВ предназначены для создания и автоматического поддержания температуры, относительной влажности, чистоты и скорости движения воздуха.

Технологические СКВ предназначены для обеспечения параметров воздуха, в большей степени отвечающих требованиям производства. Технологическое кондиционирование в помещениях, осуществляется с учетом санитарно-гигиенических требований к состоянию воздушной среды.

Центральные СКВ снабжаются извне холодом (доставляемым холодной водой или хладагентом), теплом (доставляемым горячей водой, паром или электричеством) и электрической энергией для привода электродвигателей вентиляторов, насосов и пр.

Такие системы расположены вне обслуживаемых помещений и кондиционируют одно большое помещение. Иногда несколько центральных кондиционеров обслуживают одно помещение, больших размеров (производственный цех, театральный зал, закрытый стадион или каток).

Преимущества центральных СКВ:

1) Возможность эффективного поддержания заданной температуры и относительной влажности воздуха в помещениях;

2) Сосредоточенность оборудования, требующего систематического обслуживания и ремонта.

3) Возможности обеспечения эффективного шумогашения и виброгашения. С помощью центральных СКВ при надлежащей акустической обработке воздуховодов, устройстве глушителей шума и гасителей вибрации можно достигнуть наиболее низких уровней шума в помещениях и обслуживать такие помещения, как радио- и телевизионные студии и т. п.

Местные СКВ разрабатывают на базе автономных и неавтономных кондиционеров, которые устанавливают непосредственно в обслуживаемых помещениях. Достоинством местных СКВ является простота установки и монтажа.

Автономные СКВ снабжаются извне только электрической энергией, например шкафные кондиционеры и т. п.

Такие кондиционеры имеют встроенные компрессионные холодильные машины, работающие, как правило, на фреоне-22.

Неавтономные СКВ делятся на:

• воздушные, при которых в помещение подается только воздух.

• водовоздушные, при использовании которых в кондиционируемые помещения подается воздух и вода, несущие тепло или холод, либо то и другое вместе

Однозональные центральные СКВ используются для обслуживания больших помещений с относительно равномерным распределением тепла, влаговыделений, например, больших залов кинотеатров, аудиторий и т. д.

Многозональные центральные СКВ применяются для обслуживания также больших помещений, в которых оборудование размещено неравномерно, для обслуживания ряда сравнительно небольших помещений. Такие системы более экономичны, чем отдельные системы для каждой зоны или каждого помещения.

Прямоточные СКВ полностью работают на наружном воздухе, который обрабатывается в кондиционере, а затем подается в помещение.

Рециркуляционные СКВ работают без притока или с частичной подачей (до 40%) свежего наружного воздуха или на рециркуляционном воздухе (от 60 до 100%), который забирается из помещения и после его обработки в кондиционере вновь подается в это же помещение.

Индустрия климата стремительно движется вперед, и год от года в мире вырастает число людей, активно использующих кондиционеры , системы вентиляции и отопления. Общество всегда стремится создать вокруг себя комфортные условия: удобное кресло, хорошее освещение, благоприятный микроклимат и т.п.

Особенно это важно для производственных помещений где люди проводят 50 % своей жизни , а то и больше. Поэтому нужно знать виды и классификацию систем отопления вентиляции и кондиционирования воздуха, для более лучшего, экономичного и подходящего для того или иного производства выбора этих систем.

Читайте также: