Основные законы движения жидкости реферат

Обновлено: 05.07.2024

Поскольку форма части 1-2 с течением времени не меняется, жидкость несжимаема и в ней невозможно обра­зование пустот, объем втекающей жидкости Q 1 должен равняться объему вытекающей жидкости Q 2 . Поэтому можно написать

v 1 ω 1 = v 2 ω 2 (1)

Это уравнение называется уравнением нераз­рывности. Из уравнения (1) легко находим

v 1 / v 2 = ω 2 /ω 1 (2)

т. е. средние скорости обратно пропорциональны площа­дям соответствующих живых сечений.

2. Уравнение Даниила Бернулли для частицы жидкости

Пусть частица жидкости (рис. 2) движется от точки 1 в сечении А-А до точки 2 в сечении В - В. Подсчитаем удельную энергию, которой обладает частица в точках 1 и 2. Обозначим u 1 , p 1 скорость частицы и давление в точке

1 с координатой z l а u 2 , р 2 — скорость частицы и давление в точке 2 с координатой z 2 . При этих обозначениях для частицы в сечении А-А:

z 1 - удельная энергия положения; p 1 /ρg - удельная энергия давления;

u 2 1 /2g - удельная кинетическая энергия.

Для частицы в сечении В-В:

z 2 - удельная энергия положения; p 2 /ρg - удельная энергия давления;

u 2 2 /2g -удельная кинетическая энергия.

Полная удельная энергия частицы в сечении А-А, очевидно, равна

z 1 + p 1 /ρg + u 2 1 /2g (3)

а в сечении В - В

z 2 + p 2 /ρg + u 2 2 /2g (4)

Для частицы идеальной жидкости полная удельная энергия остаётся постоянной величиной. Для частицы реальной жидкости трехчлен (3) больше трехчлена (4), так как на пути 1-2 часть энергии израсходуется на преодоление различных сопротивлений. Эта часть удельной энергии называется потерей напора и обозначается буквой h 1-2 . Тогда на основании закона о сохранении энергии можно написать

z 1 + p 1 /ρg + u 2 1 /2g= z 2 + p 2 /ρg + u 2 2 /2g+ h 1-2 (5)

Уравнение (5) называется уравнением Да­ниила Бернулли для частицы жид­кости. Все члены этого уравнения имеют размерность длины, и поэтому его можно изобразить графически (рис 2). Откладывая в каждой точке отрезка 1 o -2 o оси А последовательно координаты частицы жидкости z , высо­ты p / ρg и скоростные высоты u 2 /2g , получим линии 1-2 , 1'-2' и 1''-2'' . Линия 1-2 - это траектория движения частицы жидкости, линия 1'-2' , называемая пьезо­метрической линией, показывает изменение удельной потенциальной энергии z + p / ρg , а линия 1''-2'' - изменение полной удельной энергии частицы и носит название линии энергии. Все эти линии в общем
случае будут кривыми, причем линия энергии может только
опускаться, так как энергия в направлении движения
уменьшается.

Проведя горизонтальную прямую 1''-2''', получим для сечения В-В отрезок 2"-2'" , который равен потере напора h 1-2 на пути 1-2 , а вертикальные отрезки между прямой 1"-2'" и линией энергии 1''-2'' представляют со­бой потери напора на участке от сечения А-А до рас­сматриваемого сечения.

В заключение отметим, что величины z + p / ρg и u 2 /2g можно измерить, поставив пьезометр П и изогнутую труб­ку П' (рис.2). В пьезометре П жидкость поднимается до пьезомет­рической линии, а в трубке П' - до линии энергии. Разность уровней в П и П' даст величину u 2 /2g .

3. Уравнение Даниила Бернулли для потока

Уравнение Даниила Бернулли легко распространить и на поток жидкости (рис. 3) при условии, что в живых сечениях, для которых применено это уравнение, движение плавноизменяющееся.

Рассмотрим напорный поток 1-2 (рис. 3). Пусть жидкость движется от живого сечения 1 до живого сече­ния 2, а площади этих живых сечений равны ω 1 и ω 2 . Подсчитаем полную удельную энергию потока для сечения 1.

Удельная потенциальная энергия жидкости во всех точках сечения 1-2 величина постоянная и равна верти­кальному расстоянию от плоскости сравнения X (рис. 3) до свободной поверхности (до уровня) жидкости в пьезо­метре. Удельную потенциальную энергию жидкости для сечения 1 обозначим z 1 + p 1 /ρg .

Удельная кинетическая энергия жидкости, протекаю­щей через живое сечение, может быть выражена через среднюю скорость при условии введения некоторого коэф­фициента. Этот коэффициент в гидравлике обозначается а и называется коэффициентом Кориолиса. Следовательно, удельная кинетическая энергия для сечения равна α 1 v 2 1 /2g.

Таким образом, полная удельная энергия для сече­ния 1 составляет

z 1 + p 1 /ρg+ α 1 v 2 1 /2g (6)

Совершенно аналогично для сечения 2 полная удельная энергия равна

z 2 + p 2 /ρg+ α 2 v 2 2 /2g (7)

Для потока идеальной жидкости полная удельная энергия потока остаётся неизменной. Для реальной жидкости трехчлен (6) больше трехчлена (7), так как на пути от сечения 1 до сечения 2 часть энергии израсходуется на преодоление различных сопротивлений. Обозначая поте­рянную удельную энергию (потерю напора) буквой h 1-2 можем написать

z 1 + p 1 /ρg+ α 1 v 2 1 /2g= z 2 + p 2 /ρg+ α 2 v 2 2 /2g+ h 1-2 (8)

Уравнение (8) называется уравнением Да­ниила Бернулли для потока. Коэффициент Кориолиса α, представляющий собой отношение действительной кинетической энергии к кинетической энергии, вы­численной при условии движения всех частиц в сечении с одной и той же скоростью. Опыты показывают, что α обычно изменяется в пределах от 1,03 до 1,1.

Поскольку коэффициент α близок к единице, то очень часто полагают α = 1, и тогда уравнение Бернулли для потока принимает вид

z 1 + p 1 /ρg+ v 2 1 /2g= z 2 + p 2 /ρg+ v 2 2 /2g+ h 1-2 (9)

Следует отметить, что удельная потенциальная энергия z + p / ρg равна расстоянию от плоскости сравнения X до уровня жидкости в пьезометре только в том случае, когда давление в сечении изменяется по гидростатическому закону. Если же давление в сечении изменяется не по гидростатическому закону, то удельная потенциальная энергия не равна расстоянию от плоскости сравнения до уровня жидкости в пьезометре. Так, например, если давле­ние по всему живому сечению равно барометрическому (для всех точек живого сечения манометрическое давле­ние р = 0), то в этом случае удельная потенциальная энергия равна удельной энергии положения, т. е. расстоя­нию от плоскости сравнения до центра тяжести потока. Для потока (рис. 3), так же как и для частицы, линия, показывающая изменение удельной потенциальной энер­гии z + p / ρg называется пьезометрической линией, а ли­ния, показывающая изменение полной удельной энер­гии, - линией энергии.

4. Уклоны гидравлический и пьезометрический

Падение линии энергии на единицу длины потока на­зывается гидравлическим уклоном и обо­значается i . Падение пьезометрической линии на единицу длины потока называется пьезометрическим укло­ном. Обозначим пьезометрический уклон i п . В частном случае, при равномерном движении (рис.4), каждый участок потока находится в одинаковых условиях, и поэтому линия энергии и пьезометрическая линия прямые. Кроме того, при равномерном движении скорость потока во всех живых сечениях постоянна, поэтому линия энергии будет параллельна пьезометрической линии и пойдет выше ее на v 2 /2g .

По определению гидравлический уклон при длине по­тока L выразится формулой

i= h 1-2 /L=[ (z 1 + p 1 /ρg+ v 2 1 /2g)- (z 2 + p 2 /ρg+ v 2 2 /2g)]/L (10)

По определению пьезометрический уклон:

i п = [ (z 1 + p 1 /ρg)- (z 2 + p 2 /ρg)]/L

Кроме того, так как при равномерном движении пьезо­метрическая линия и линия энергии параллельны, то

Похожие страницы:

Основные концепции и законы физики

. 2003 План 1.Введение…………………………………………………………………..…..1 2.Основные представители физики………………. ……………….…..1 3.Основные физические законы и концепции…………….………. 5 4. . Бернулли, Эйлер, Даламбер закладывают основы гидродинамики (физической механики) жидкостей. Б. .

Гидравлика (3)

. , то и тогда уравнения движения, выражающие основные законы механики, оказываются настолько сложными, что . гидродинамики и является определение основных элементов движения жидкости р и u, установление взаимосвязи между ними и законов изменения .

Лекция по Гидрогеологии

. проблемами водоснабжения города Дижона, установил основной закон фильтрации в пористом грунте, известном сейчас . как линейный закон фильтрации, или закон Дарси, являющийся базовым в подземной гидродинамике. Наряду с гидродинамикой ведется .

Котельные установки и парогенераторы (1)

. получены из основных законов физики - закона сохранения массы, закона сохранения количества движения и закона сохранения . в последующих главах. 9.Гидродинамика водного теплоносителя в паровых котлах 9.1.Гидродинамика водного теплоносителя в поверхностях .

Общая энергетика. Энергетические ресурсы земли и их использование

Для расчета движения воды в трубопроводе нужно знать не так уж и много. Для этого не надо глубоко изучать физику, но всё же некоторое основные понятия изучить придется.

В этой статье я приведу самые основные формулы, которые вам пригодятся не только для расчетов, но и для общего понимания, что может влиять в вашем водопроводе на его течение. Иногда общее понимание процессов поможет вам избежать ошибок при монтаже системы.

Например, не все знают, что в части водопровода с трубами меньшего диаметра давление на стенки меньше, чем на участке с трубами большего диаметра. Почему возникает кавитация и вообще, что это такое. А это надо знать.

Статья будет обновляться и дополняться.


Уравнение неразрывности

Для жидкости, текущей в трубе, этот закон используют в такой форме (называемой уравнением неразрывности):

Где v - скорость жидкости S - площадь сечения трубы, по которой течёт жидкость. Сформулировать этот закон можно и так:

Сколько вливается жидкости в ёмкость, в данном случае в трубу, столько должно и выливаться, если условия течения не изменяются.

Скорость в узких участках трубы должна быть выше, чем в широких.

Уравнение Бернулли стационарного движения

Одно из важнейших уравнений гидромеханики было получено в 1738 г. швейцарским учёным Даниилом Бернулли (1700 - 1782). Ему впервые удалось описать движение идеальной жидкости, выраженной в формуле Бернулли.

Идеальная жидкость - жидкость, в которой отсутствуют силы трения между элементами идеальной жидкости, а также между идеальной жидкостью и стенками сосуда.

Уравнение стационарного движения, носящее его имя, имеет вид:

P + ρ⋅v² + ρ⋅g⋅h = const
2

где P - давление жидкости, ρ − её плотность, v - скорость движения, g - ускорение свободного падения, h - высота, на которой находится элемент жидкости.

Смысл уравнения Бернулли в том, что внутри системы заполненной жидкостью (участка трубопровода) общая энергия каждой точками всегда неизменна.

В уравнении Бернулли есть три слагаемых:

  • ρ⋅v 2 /2 - динамическое давление - кинетическая энергия единицы объёма движущей жидкости;
  • ρ⋅g⋅h - весовое давление - потенциальная энергия единицы объёма жидкости;
  • P - статическое давление, по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии ("энергии давления").

Это уравнение объясняет почему в узких участках трубы растёт скорость потока и падает давление на стенки трубы. Максимальное давление в трубах устанавливается именно в месте, где труба имеет наибольшее сечение. Узкие части трубы в этом отношении безопасны, но в них давление может упасть настолько, что жидкость закипит, что может привести к кавитации и разрушению материала трубы.

Явление кавитации

Кавитация (от латинского cavitas - "углубление", "полость") - процесс образования полостей (пузырьков) в движущейся жидкости вследствие понижения давления.

Явление кавитации также объясняется уравнением Бернулли. Если скорость течения жидкости значительно возрастает, то давление сильно понизится - настолько, что жидкость закипит. Такую скорость можно получить, если пропускать жидкость через очень узкий участок трубы или при быстром обращении лопатки в водяном насосе.

Пузырьки по ходу движения жидкости попадают в области жидкости с нормальным давлением и там схлопываются. Это схлопывание сопровождается гидродинамическими эффектами, способными привести к разрушению трубы или стенок насоса.

Гидродинамика Эйлера и Навье-Стокса

Уравнение Бернулли позволяет объяснить очень много интересных гидродинамических явлений, но гораздо больше явлений, происходящих в движущихся жидкостях и газах, с его помощью объяснить нельзя, потому что этот закон для идеальной жидкости, т.е для жидкости, которая не обладает внутренним трением, а значит не создает гидравлическое сопротивление..

Реальная жидкость отличается от идеальной и обладает внутренним трением, или по другому называют вязкостью. Два соприкасающиеся элемента жидкости, двигающиеся в одном и том же направлении, но с разными скоростями, воздействуют друг на друга. Сила взаимодействия ускоряет медленно движущийся элемент жидкости и замедляет более быстрый.

Закон вязкого трения Ньютона

Ньютон предположил, что величина этой силы (называемой силой внутреннего трения) пропорциональна разности скоростей элементов жидкости. Следовательно, сила внутреннего трения F пропорциональна изменению скорости жидкости v в направлении, перпендикулярном движению, и зависит от площади S соприкосновения элементов жидкости:

F =
η⋅S⋅ dv
dy

η − коэффициент динамической вязкости.

Жидкости, в которых внутреннее трение подобным образом зависит от изменения скорости, называются ньютоновскими, или жидкостями с линейной вязкостью.

Величину коэффициента динамической вязкости (и справедливость данного закона) Ньютон определил с помощью несложного опыта: он передвигал по поверхности жидкости пластинку с той или иной скоростью. Для того чтобы поддерживать эту скорость постоянной, требовалась сила, которая при небольшой глубине жидкости оказалась прямо пропорциональна площади S и скорости пластинки v и обратно пропорциональна глубине жидкости h:

И хотя при увеличении глубины жидкости h сила вязкого трения пластинки не становится исчезающе малой, эта формула довольно точно описывает взаимодействие между соприкасающимися элементами жидкости.

Чем больше разность скоростей, тем больше сила, с которой они воздействуют друг на друга, заставляя притормаживать слишком быстро движущиеся элементы и разгоняя слишком медленные.

В результате относительное движение в жидкости прекращается (но иногда это может произойти не очень скоро).

Уравнение Навье - Стокса для вязких жидкостей

В более строгой формулировке линейная зависимость вязкого трения от изменения скорости движения жидкости называется уравнением Навье - Стокса. Оно учитывает сжимаемость жидкостей и газов и, в отличие от закона Ньютона, справедливо не только вблизи поверхности твёрдого тела, но и в каждой точке жидкости (у поверхности твёрдого тела в случае несжимаемой жидкости уравнение Навье - Стокса и закон Ньютона совпадают).


Любые газы, для которых выполняется условие сплошной среды, подчиняются и уравнению Навье - Стокса, т.е. являются ньютоновскими жидкостями.

Вязкость жидкости и газа обычно существенна при относительно малых скоростях, потому иногда говорят, что гидродинамика Эйлера - это частный (предельный) случай больших скоростей гидродинамики Навье - Стокса.

При малых скоростях в соответствии с законом вязкого трения Ньютона сила сопротивления тела пропорциональна скорости. При больших скоростях, когда вязкость перестаёт играть существенную роль, сопротивление тела пропорционально квадрату скорости (что впервые обнаружил и обосновал Ньютон).

Критерий Рейнольдса

Такую зависимость вывел английский физик и инженер Осборн Рейнольдс (1842 - 1912).

Критерий, который помогает ответить на вопрос, есть ли необходимость учитывать вязкость, является число Рейнольдса Re. Оно равно отношению энергии движения элемента текущей жидкости к работе сил внутреннего трения.

Рассмотрим кубический элемент жидкости с длиной ребра n. Кинетическая энергия элемента равна:

Eкин =
ρ⋅n³⋅
2

Согласно закону Ньютона, сила трения, действующая на элемент жидкости, определяется так:

F = η⋅v⋅n² = η⋅v⋅n
n

Работа этой силы при перемещении элемента жидкости на расстояние n составляет

а отношение кинетической энергии элемента жидкости к работе силы трения равно

Eкин = ρ⋅n³⋅v²
A 2⋅ η⋅v⋅n²

Сокращаем и получаем:

Re - называется числом Рейнольдса.

Таким образом, Re - это безразмерная величина, которая характеризует относительную роль сил вязкости.

Например, если размеры тела, с которым соприкасаются жидкость или газ, очень малы, то даже при небольшой вязкости Re будет незначительно и силы трения играют преобладающую роль. Наоборот, если размеры тела и скорость велики, то Re >> 1 и даже большая вязкость почти не будет влиять на характер движения.

Однако не всегда большие числа Рейнольдса означают, что вязкость не играет никакой роли. Так, при достижении очень большого (несколько десятков или сотен тысяч) значения числа Re плавное ламинарное (от латинского lamina - "пластинка") течение превращается в турбулентное (от латинского turbulentus - "бурный", "беспорядочный"), сопровождающееся хаотическими, нестационарными движениями жидкости. Этот эффект можно наблюдать, если постепенно открывать водопроводный кран: тонкая струйка течёт обычно плавно, но с увеличением скорости воды плавность течения нарушается. В струе, вытекающей под большим напором, частицы жидкости перемещаются беспорядочно, колеблясь, всё движение сопровождается сильным перемешиванием.

Появление турбулентности весьма существенно увеличивает лобовое сопротивление. В трубопроводе скорость турбулентного потока меньше скорости ламинарного потока при одинаковых перепадах давления. Но не всегда турбулентность плоха. В силу того что перемешивание при турбулентности очень значительно, теплообмен - охлаждение или нагревание агрегатов - происходит существенно интенсивнее; быстрее идёт распространение химических реакций.


Формула Бернулли закон по которому течет жидкость на любом отрезке трубы, что значительно помогает при проектировании трубопроводов, особенно с естественной циркуляцией.

Все материалы, представленные на сайте, носят исключительно справочный и ознакомительный характер и не могут считаться прямой инструкцией к применению. Каждая ситуация является индивидуальной и требует своих расчетов, после которых нужно выбирать нужные технологии.

Не принимайте необдуманных решений. Имейте ввиду, что то что сработало у других, в ваших условиях может не сработать.

Администрация сайта и авторы статей не несут ответственности за любые убытки и последствия, которые могут возникнуть при использовании материалов сайта.

связанные с механическим движением жидкости в различных природных и техногенных условиях. Поскольку жидкость (и газ) рассматриваются как непрерывные и неделимые физические тела, то гидравлику часто рассматривают как один из разделов механики так называемых сплошных сред, к каковым принято относить и особое физическое тело -жидкость. По этой причине гидравлику часто называют механикой жидкости или гидро­механикой; предметом её исследований являются основные законы равновесия и движе­ния жидкостей и газов. Как в классической механике в гидравлике можно выделить обще­принятые составные части: гидростатику, изучающую законы равновесия жидкости; ки­нематику, описывающую основные элементы движущейся жидкости и гидродинамику, изучающую основные законы движения жидкости и раскрывающую причины её движе­ния.

Гидравлику можно назвать базовой теоретической дисциплиной для обширного кру­га прикладных наук, с помощью которых исследуются процессы, сопровождающие рабо­ту гидравлических машин, гидроприводов. С помощью основных уравнений гидравлики и разработанных ею методов исследования, решаются важные практические задачи, связан­ные с транспортом жидкостей и газов по трубопроводам, а также с транспортом твёрдых тел по трубам и другим руслам. Гидравлика также решает важнейшие практические зада­чи, связанные с равновесием твёрдых тел в жидкостях и газах, т.е. изучает вопросы плава­ния тел.

Широкое использование в практической деятельности человека различных гидрав­лических машин и механизмов ставят гидравлику в число важнейших дисциплин, обеспе­чивающих научно-технический прогресс.

Большой практический интерес к изучению механики жидкости вызван рядом объек­тивных факторов. В - первых, наличие в природе значительных запасов жидкостей, кото­рые легко доступны человеку. Во- вторых, жидкие тела обладают рядом полезных свойств, делающих их удобными рабочими агентами в практической деятельности чело­века. Немаловажным следует считать и тот фактор, что большинство жизненно важных химических реакций обмена протекают в жидкой фазе (чаще всего в водных растворах).

По этим причинам особый интерес человек проявил к жидкостям на самой ранней стадии своего развития. Вода и воздух (иначе жидкость и газ) были отнесены к числу ос­новных стихий природы уже первобытным человеком. История свидетельствует об ус­пешном решении ряда практических задач с использованием жидкостей уже на самих ранних стадиях развития человека. Первым же научным трудом по гидравлике следует

Развитию гидромеханики (гидравлики) как самостоятельной науки в значительной степени способствовали труды русских учёных Даниила Бернулли (1700 - 1782), Леонарда Эйлера (1707 - 1783), М.В. Ломоносова (1711 - 1765). Работы этих великих русских учё­ных обеспечили настоящий прорыв в области изучения жидких тел: ими впервые были опубликованы дифференциальные уравнения равновесия и движения жидкости Эйлера, закон сохранения энергии Ломоносова, уравнение запаса удельной энергии в идеальной жидкости Бернулли.

Развитию гидравлики как прикладной науки и сближению методов изучения теоре­тических и практических вопросов используемых гидравликой и гидромеханикой способ­ствовали работы французских учёных Дарси, Буссинэ и др., а также работы Н.Е. Жуков­ского. Благодаря трудам этих учёных, а также более поздним работам Шези, Вейсбаха, Прандля удалось объединить теоретические исследования гидромеханики с практически­ми и экспериментальными работами, выполненными в гидравлике. Работы Базена, Пуа-зейля, Рейнольдса, Фруда, Стокса и др. развили учение о динамике реальной (вязкой жид­кости). Дифференциальное уравнение Навье - Стокса позволило описать движение реаль­ной жидкости как функцию параметров этой жидкости в зависимости от внешних усло­вий. Дальнейшие работы в области теоретической и прикладной гидромеханики были на­правлены на развитие методов решения практических задач, развитие новых методов ис­следования, новых направлений: теория фильтрации, газо- и аэродинамика и др.

При решении практических вопросов гидравлика оперирует всеми известными мето­дами исследований: методом анализа бесконечно малых величин, методом средних вели­чин, методом анализа размерностей, методом аналогий, экспериментальным методом.

Метод анализа бесконечно малых величин - наиболее удобный из всех методов для количественного описания процессов равновесия и движения жидкостей и газов. Этот ме­тод наиболее эффективен в тех случаях, когда приходится рассматривать движение объек­тов на атомно-молекулярном уровне, т.е. в тех случаях, когда для вывода уравнений дви­жения приходится рассматривать жидкость (или газ) с молекулярно-кинетической теории строения вещества. Основной недостаток метода - довольно высокий уровень абстракции, что требует от читателя обширных знаний в области теоретической физики и умение пользоваться различными методами математического анализа, включая векторный анализ.

Метод анализа размерностей может рассматриваться в качестве одного из дополни­тельных методов исследований и предполагает всестороннее знания изучаемых физиче­ских процессов.

Методом аналогий - используется в тех случаях, кода имеются в наличии детально изученные процессы, относящиеся к тому же типу взаимодействия вещества, что и изу­чаемый процесс.

Экспериментальный метод является основным методом изучения, если другие мето­ды по каким- либо причинам не могут быть применены. Этот метод также часто использу­ется как критерий для подтверждения правильности результатов полученных другими ме­тодами.

В конечном счёте, метод изучения движения жидкости, а также уровень изучения (макро или микро) выбирается из условий практической постановки задач и соотношения характерных размеров. Основным мерилом для этих характерных размеров может быть длина свободного пробега молекул. Так для изучения движения жидкости на макро уров­не необходимо, чтобы характерные размеры: L (некоторая длина) и d (ширина) по отно­шению к длине свободного пробега молекул А, находились в соответствии:


1. Общие сведения о жидкости 1.1. Жидкость как физическое тело

Чтобы представить и правильно понять характер поведения жидкости в различных условиях необходимо обратиться к некоторым представлениям классической физики о жидкости как физическом теле. Не ставя перед собой цель детального и всестороннего описания жидких тел, что подробно рассматривается в классическом курсе физики, на­помним лишь некоторые положения, которые могут пригодиться при изучении гидравли­ки как самостоятельной дисциплины.

Так, согласно молекулярно-кинетической теории строения вещества все физические тела в природе (независимо от их размеров) находятся в постоянном взаимодействии ме­жду собой. Степень (интенсивность) взаимодействия зависит от масс этих тел и от рас­стояния между телами. Количественной мерой взаимодействия тел является сила, которая пропорциональна массе тел и всегда будет убывать при увеличении расстояния между те­лами. В зависимости от размеров тел (элементарные частицы, атомы и молекулы, макро­тела) характер взаимодействия будет различным. Согласно классическим представлениям физики можно выделить четыре вида взаимодействия тел. Каждый вид взаимодействия обусловлен наличием своего переносчика взаимодействия. Два вида взаимодействия от­носятся к типу дальнодействующих и повседневно наблюдаются человеком: гравитацион­ное и электромагнитное. При электромагнитном взаимодействии происходит процесс из­лучения и поглощения фотонов. Именно этот процесс порождает электромагнитные силы, под действием которых протекают практически все процессы в природе, которые мы на­блюдаем. Характерной особенностью этого (электромагнитного) взаимодействия является то, что его проявление зависит от многих внешних условий, которые приводят к различ­ным наблюдаемым результатам. Так имея одну и туже природу взаимодействия (электро­магнитную) мы изучаем, на первый взгляд, совершенно разные физические процессы: движение жидкости, трение, упругость, передачу тепла, движение зарядов в электриче­ском поле и т.д. И, как следствие, дифференциальные уравнения, описывающие эти про­цессы, одинаковые.

Согласно молекулярно-кинетической теории строения вещества молекулы находятся в равновесии и, как материальные объекты постоянно взаимодействуют друг с другом. Такое равновесие нельзя считать абсолютным, т.к. молекулы находятся в состоянии хао­тического движения (колебания) вокруг центра своего равновесия. Расстояния между молекулами вещества будет зависеть от величин сил действующих на молекулы. Независимо от природы действующих сил их можно сгруппировать на силы притяжения и силы отталкивания.

больше длительности времени релаксации t 0 , т.к. в противном случае жидкость не успеет

начать своё движение, и будет испытывать упругое сжатие подобно твёрдому телу. Тогда процесс движения жидкости будет характеризовать свойство текучести присущее практи­чески только жидким телам. Тела с такими свойствами относятся к категории жидких тел.

При этом следует отметить, что чётких и жёстких границ между твёрдыми, жидкими и газообразными телами нет. Имеется большая группа тел занимающих промежуточное положение между твёрдыми телами и жидкостями и между жидкостями и газами. Вообще говорить о состоянии вещества можно только при вполне определённых внешних услови­ях. В качестве стандартных условий приняты условия при температуре 20 °С и атмосфер­ном давлении. Стандартные (нормальные) условия вполне соотносятся с понятием благо­приятных внешних условий для существования человека. Понятие о состоянии вещества необходимо дополнить. Так при увеличении кинетической энергии молекул вещества (на­грев вещества) твёрдые тела могут перейти в жидкое состояние (плавление твёрдого тела) и твёрдые тела приобретут при этом некоторые свойства жидкостей. Подобно этому уве­личение кинетической энергии молекул жидкого вещества может привести жидкость в газообразное состояние (парообразование) и при этом жидкость будет иметь свойства со­ответствующие газам. Аналогичным способом можно превратить расплавленное твёрдое тело в пар, если в большей степени увеличить кинетическую энергию колебательного движения молекул первоначально твёрдого вещества. Уменьшение кинетической энергии молекул (охлаждение вещества) приведёт процесс в обратном направлении. Газ может быть превращён в жидкое, а, затем и в твёрдое состояние

Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонен­тов, которые могут образовывать с жидкостью различные смеси как гомогенные (раство­ры) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основ­ных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам.

Идеальная жидкость - модель природной жидкости, характеризующаяся изотропно­стью всех физических свойств и, кроме того, характеризуется абсолютной несжимаемо­стью, абсолютной текучестью (отсутствие сил внутреннего трения), отсутствием процес­сов теплопроводности и теплопереноса.

Реальная жидкость - модель природной жидкости, характеризующаяся изотропно­стью всех физических свойств, но в отличие от идеальной модели, обладает внутренним трением при движении.

Идеальный газ - модель, характеризующаяся изотропностью всех физических свойств и абсолютной сжимаемостью.

Реальный газ - модель, при которой на сжимаемость газа при условиях близких к нормальным условиям существенно влияют силы взаимодействия между молекулами.

При изучении движения жидкостей и газов теоретическая гидравлика (гидромехани­ка) широко пользуется представлением о жидкости как о сплошной среде. Такое допуще­ние вполне оправдано, если учесть, что размеры пространства занимаемого жидкостью, во много раз превосходят межмолекулярные расстояния (исключением можно считать лишь разряженный газ). При изучении движения жидкостей и газов последние часто рассматри­ваются как жидкости с присущими им некоторыми особыми свойствами. Всвязи с этим принято различать две категории жидкостей: капельные жидкости (практически несжи­маемые тела, или собственно жидкости) и сжимаемые жидкости (газы).

1.2. Основные физические свойства жидкостей

Плотность и удельный вес. К основным физическим свойствам жидкостей следует отнести те её свойства, которые определяют особенности поведения жидкости при её движении. Такими являются свойства, характеризующие концентрацию жидкости в про­странстве, свойства, определяющие процессы деформации жидкости, определяющие ве­личину внутреннего трения в жидкости при её движении, поверхностные эффекты.

Важнейшим физическим свойством жидкости, определяющим её концентрацию в пространстве, является плотность жидкости. Под плотностью жидкости понимается масса единицы объёма жидкости:


где: М - масса жидкости,

W - объём, занимаемый жидкостью.

В международной системе единиц СИ масса вещества измеряется в кг, объём жидко­го тела в м 3 , тогда размерность плотности жидкости в системе единиц СИ - кг/м 3 . В сис­теме единиц СГС плотность жидкости измеряется в г/см 3 .

Величины плотности реальных капельных жидкостей в стандартных условиях изме­няются в системе единиц СИ в широких пределах от 700 кг/м 3 до 1800 кг/м 3 , а плотность ртути достигает 13550 кг/м , плотность чистой воды составляет 998 кг/м 3 . В системе единиц СГС пределы изменения плотности жидкости от 0,7 г/см до 1,8 г/см 3 , плотность чистой воды 0,998 г/см . Величины плотности газов меньше плотности капельных жидко­стей приблизительно на три порядка, т.е. в системе единиц СИ плотности газов при атмо­сферном давлении и температуре О °С изменяются в пределах от 0,09 кг/м 3 до 3,74 кг/м , плотность воздуха составляет 1,293 кг/м 3 .

Плотность капельных жидкостей при стандартных условиях, р кг/м 3

Плотность газов при атмосферном дав­лении и температуре 0 °С, р кг/м 3

Гост

ГОСТ

Гидродинамика – это раздел науки, исследующий законы взаимодействия жидкостей и реальных газов с неподвижными и движущимися поверхностями, что предполагает рассмотрение условий и уравнений равновесия и движение веществ.

Закон Пуазейля. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Закон Пуазейля. Автор24 — интернет-биржа студенческих работ

Жидкость, в которой не появляются силы внутреннего трения при любом ее движении, называют в физике идеальной. Другими словами, в идеальных элементах существуют только показатели нормального, постоянного давления, которые в основном определяются уровнем сжатия и температурой жидкости. Модель наиболее подходящего вещества используют тогда, когда скорости изменения деформаций в жидкости крайне малы.

Давление в любой материальной точке покоящейся жидкости одинаково и равномерно во всех направлениях. Практическое использование гидродинамики чрезвычайно велико и разнообразно. Гидродинамикой пользуются при моделировании самолетов и кораблей, расчете прочнейших трубопроводов, гидротурбин, насосов и водосливных плотин, при изучении морских течений и речных наносов. Законы гидродинамики, которые составляют основу механических явлений, в значительной степени определяют характер течения тепловых и диффузионных процессов.

Гидродинамические законы позволяют точно и преждевременно определять разность внутренних давлений, необходимую для дальнейшего перемещения определенного количества жидкости с установленной скоростью.

Уравнения Бернулли и постоянства расхода потока

Уравнение Бернулл. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Уравнение Бернулл. Автор24 — интернет-биржа студенческих работ

Готовые работы на аналогичную тему

Эти два уравнения являются мощной базой и главнейшими формулами гидродинамики. С их помощью возможно подойти к решению практически любой важной задачи во всех сферах науки. Особое внимание необходимо уделить выводу уравнения Бернулли, а также уяснению его энергетического, физического и геометрического смысла. Для улучшения усвоения и понимания данной формулы, а также возможностей ее использования в практических расчетах следует решить несколько задач и выполнить определенные лабораторные работы.

Произведение средней скорости потока идеальной жидкости на площадь неоднородного сечения при установившемся движении есть величина постоянная.

Уравнение неразрывности или постоянства потока является первым и основным законом гидродинамики, которое позволяет при секундном известном расходе установить скорость движения веществ в любом сечении потока и наоборот — точный расход жидкости при начальной скорости ее движения.

В свою очередь, уравнение Бернулли устанавливает тесную взаимосвязь скорости и давления в разнообразных средах одной и той же струи. Таким образом, обе формулы можно сформулировать следующим образом: сумма кинетической энергии и полный напор движущейся жидкости является главными параметрами движущейся жидкости.

Закон Пуазейля

Закон Пуазейля представляет собой универсальную формулу для объемной скорости дальнейшего течения жидкости.

Он был создан экспериментально французским исследователем Пуазейлем, который изучал течение крови в кровеносных сосудах. Именно эту теорию часто называют одним из важнейших законов гидродинамики.

Закон Пуазейля непосредственно связывает объемную скорость течения идеальной жидкости с разностью внутреннего давления в начале и конце трубки как основной движущей силой потока, радиусом, вязкостью жидкости и длиной самой среды. Эту гипотезу зачастую используют в случае, если движение жидкости ламинарное.

Формула закона Пуазейля записывается следующим образом:

Такое положение показывает, что величина $Q$ всегда прямо пропорциональна разнице внутреннего давления $P_1 - P_2$ в начале и конце трубки. Если $P_1$ равняется $P_2$, тогда поток жидкости мгновенно прекращается.

Формула закона Пуазейля также показывает, что высокая вязкость жидкости приводит к:

  • автоматическому снижению объемного параметра направления жидкости;
  • весомым различиям объемной скорости веществ, протекающих через кровеносные сосуды;
  • к постепенному введению дополнительной величины - гидродинамического сопротивления.

Новые законы гидродинамики

Для более детального понимания турбулентности, как состояния равномерной среды, жидкости, газа, или их смесей, внутри которой формируются хаотические колебания скорости, давления, температуры и плотности, необходимо знать вновь открытые законы гидродинамики. Среди них теории галактик нашей Вселенной и образования планет.

Кинематическая и внутренняя вязкость водного или воздушного потока (внутреннее трение) - это характеристика реальных жидкостей, или газов, которые могут сопротивляться перемещению одной части элементов относительно другой.

При такой трансформации возникают определенные силы внутреннего трения, направленные исключительно по касательной к поверхности среды.

Например, новый закон энергетического потенциала материального тела, находящегося в пространстве, утверждает, что каждое физическое вещество (молекула воздуха или воды), которое будет находиться в разных пространствах, будет обладать разным коэффициентом энергии. Однако следует помнить, чтобы перенести любое тело из одной среды в другую, необходима работа, которая будет прямо пропорциональна полученной энергии, выделенной из иной среды.

При решении конкретной задачи в гидродинамике используют основные методы и законы механики, учитывая общие свойства идеальных жидкостей, получают правильное решение, позволяющее точно определить давление, скорость, и касательную напряжения в любой точке занятого элементом пространства. Это даёт уникальную возможность рассчитать силы взаимодействия между твердым телом и жидкостью. Из нового закона стало понятно, что даже при ламинарном движении частиц в реке каждый слой водного потока испытывает серьезные потери в работе, силе и энергии.

Если такой процесс проходит по переменному, нестабильному сечению горизонтальной трубы желательно учитывать еще общие потери в переменном сечении, которые включают:

  • потери мощности водного потока в ходе перемещения каждого слоя;
  • температурные убытки внутри водного потока;
  • потери энергии водного потока на движение каждого слоя;
  • потери времени на перемещение каждого слоя водного потока;
  • потери от физических свойств и кинематической силы жидкости.

Для точного и быстрого расчета водного потока, перемещающегося по переменному сечению трубопровода или устью реки, в гидродинамике был выведен второй закон Белашова, который устанавливает момент силы для дальнейшего движения одного потока или любой жидкой смеси. Данные законы полностью соответствуют размерным единицам существующих физических величин и по ним возможно легко вычислить перемещение газовой смеси или воздушного потока, где на практике необходимо заменить плотность среды на плотность веществ, при этом все указанные выше потери будут выражены в Ньютонах.

Определение жидкости. Жидкость - физическое тело, обладающее свойством текучести, т.е. способностью неограниченно изменять свою форму под действием даже весьма малых сил, но в отличие от газов практически не изменяющее свой объем при изменении давления.

В гидравлике рассматривают только капельные жидкости. К ним относятся вода, нефть, керосин, бензин, ртуть и др. Газообразные жидкости - воздух и другие газы - в обычном состоянии капель не образуют. Основной особенностью капельных жидкостей является то, что в большинстве случаев их рассматривают как несжимаемые.

Основные свойства жидкости. Рассмотрим основные физические свойства жидкости: плотность, удельный вес, температурное расширение и вязкость.

1. Плотность - отношение массы жидкости к занимаемому объему :


где - вес жидкости в объеме V.

Для воды при имеем .

Между удельным весом и плотностью можно найти связь, если учесть что G=mg:

3. Температурное расширение. Характеризируется температурным коэффициентом объемного расширения, представляющим собой относительное изменение объема жидкости при изменении температуры на :

4. Вязкость – свойство жидкости оказывать сопротивление относительному движению (сдвигу) ее слоев. Это свойство проявляется в том, что в жидкости при ее движении между слоями возникают касательные напряжения. При течении вязкой жидкости вдоль твердой стенки происходит торможение потока, обусловленное вязкостью. Скорость U уменьшается по мере уменьшения расстояния y от стенки.




где коэффициент динамической вязкости жидкости; -приращение скорости, соответствующее приращению координаты .

Градиент скорости характеризует интенсивность сдвига жидкости в данной точке, коэффициент - вязкость капельных жидкостей и имеет размерность Нс/м 2 (Па∙с).

На практике наиболее часто используется коэффициент кинематической вязкости

Он измеряется в . Для воды при .

Приборы для измерения давления. Для измерения давления используют жидкостные (барометр, пьезометр, вакуумметр, дифманометр), механические (манометр, вакуумметр) и электрические приборы. Рассмотрим принцип действия основных из них.

1. Барометр состоит из открытой чашки, заполненной ртутью, и стеклянной трубки, верхний конец которой запаян, а нижний опущен в чашку под уровень ртути. В верхней части трубки воздуха нет, поэтому в ней действует давление насыщенных паров ртути. Значение атмосферного давления определяют по формуле




где - плотность ртути; - высота подъема жидкости в трубке.
2. Пьезометр - это прибор для измерения небольших давлений в жидкости при помощи высоты столба этой жидкости. Он состоит из вертикальной стеклянной трубки, верхний конец которой открыт и сообщается с атмосферой, а нижний присоединен к сосуду, в котором измеряют давление.




По основному уравнению гидростатики

3. Вакуумметр - это U-образная стеклянная трубка, в колене которой имеется жидкость, тяжелее от той, которая находится в сосуде. Один конец трубки соединен с сосудом, а второй открыт. Давление на свободной поверхности жидкости, если трубка присоединена выше этой поверхности, вычисляют по формуле




4. Пружинный манометр состоит из корпуса 5, штуцера 6, манометрической (пружинной) трубки 4, передающего механизма 3, стрелки 2 и шкалы 1. Жидкость под давлением попадает в штуцер, а затем в трубку. Под действием давления трубка разгибается и перемещается ее свободный конец, связанный со стрелкой прибора.





Гидростатика. В гидростатике изучается равновесие жидкостей, находящихся в общем случае, в состоянии относительного покоя, при котором в движущейся жидкости ее частицы не перемещаются друг относительно друга. При этом силы внутреннего трения отсутствуют, что позволяет считать жидкость идеальной.

В состоянии относительного покоя форма объема жидкости не изменяется, и она, подобно твердому телу, перемещается как единое целое. Так, жидкость находится в относительном покое в перемещающемся сосуде (например, в цистерне), внутри вращающегося с постоянной угловой скоростью барабана центрифуги и т.д. В подобных случаях покой рассматривают относительно стенок движущегося сосуда.

Жидкость в неподвижном сосуде находится в абсолютном покое (относительно поверхности земли), который в таком понимании является частным случаем относительного покоя.

Независимо от вида покоя на жидкость действуют силы тяжести и давления. В случае относительного покоя следует учитывать также силу инерции переносного (вместе с сосудом) движения жидкости.

Соотношение между силами, действующими на жидкость, которая находиться в состоянии покоя, определяющее условия равновесия жидкости, выражается дифференциальными уравнениями равновесия Эйлера.


В объеме жидкости, находящейся в покое, выделим элементарный параллелепипед объемом с ребрами , и , расположенными параллельно осям координат и . Сила тяжести, действующая на параллелепипед, выражается произведением его массы на ускорение свободного падения , т.е. равна . Сила гидростатического давления на любую из граней параллелепипеда равна произведению гидростатического давления на площадь этой грани. Будем считать, что давление является функцией всех трех координат: .

Согласно основному принципу статики, сумма проекций на оси координат всех сил, действующих на элементарный объем, находящийся в равновесии, равна нулю. В противном случае происходило бы перемещение жидкости.

Рассмотрим сумму проекций на ось . Сила тяжести направлена вниз, параллельно оси . Поэтому при выбранном положительном направлении оси сила тяжести будет проектироваться на эту ось со знаком минус:

Сила гидростатического давления действует на нижнюю грань параллелепипеда по нормали к ней, и ее проекция на ось равна . Если изменение гидростатического давления в данной точке в направлении оси равно , то по всей длине ребра оно составит . Тогда гидростатическое давление на противоположную (верхнюю) грань равно

() и проекция силы гидростатического давления на ось

Проекция равнодействующей силы давления на ось

Сумма проекций сил на ось равна нулю, т.е.

или, учитывая, что объем параллелепипеда (величина, заведомо не равная нулю), получим

Проекции сил тяжести на оси и равны нулю. Поэтому сумма проекций сил на ось

откуда после раскрытия скобок и сокращения находим

Соответственно для оси

Таким образом, условия равновесия элементарного параллелепипеда выражаются системой уравнений:

Данные уравнения представляют собой дифференциальные уравнения равновесия Эйлера.

Основное уравнение гидростатики. Из дифференциальных уравнений равновесия Эйлера следует, что давление в покоящейся жидкости изменяется только по вертикали (вдоль оси ), оставаясь одинаковым во всех точках любой горизонтальной плоскости, так как изменения давлений вдоль осей и равны нулю. В связи с тем, что в этой системе уравнений частные производные и равны нулю, частная производная может быть заменена на и, следовательно

Разделив левую и правую части последнего выражения на и переменив знаки, представим это уравнение в виде

Для несжимаемой однородной жидкости плотность постоянна и, следовательно

откуда после интегрирования получим

Для двух произвольных горизонтальных плоскостей 1 и 2 последнее уравнение выражают в форме

Это и есть основное уравнение гидростатики.

В данном уравнении и - высоты расположения двух точек внутри покоящейся однородной капельной жидкости над произвольно выбранной горизонтальной плоскостью отсчета (плоскостью сравнения), а и - гидростатические давления в этих точках.


Рассмотрим, например, две частицы жидкости, из которых одна расположена в точке 1 внутри объема жидкости – на высоте от произвольно выбранной плоскости сравнения 0-0, а другая находится в точке 2 на поверхности жидкости – на высоте от той же плоскости. Пусть и - давления в точках 1 и 2 соответственно. При этих обозначениях, согласно основному уравнению гидростатики

Член в уравнении гидростатики, представляющий собой высоту расположения данной точки над произвольно выбранной плоскостью сравнения, называется нивелирной высотой. Она, как и другой член этого уравнения , выражается в единицах длины

Величину называют напором давления, или пьезометрическим напором.

Следовательно, согласно основному уравнению гидростатики, для каждой точки покоящейся жидкости сумма нивелирной высоты и пьезометрического напора есть величина постоянная.

Члены основного уравнения гидростатики имеют определенный энергетический смысл. Так, выражение члена до сокращения характеризует удельную энергию, т. е. энергию, приходящую на единицу веса жидкости . Аналогичный энергетический смысл получает и нивелирная высота, если ее выражение умножить и затем разделить на единицу веса жидкости.

Таким образом, нивелирная высота , называемая также геометрическим (высотным) напором, характеризует удельную потенциальную энергию положения данной точки над выбранной плоскостью сравнения, а пьезометрический напор – удельную потенциальную энергию давления в этой точке. Сумма указанных энергий, называемая полным гидростатическим напором, или статическим напором, равна общей потенциальной энергии, приходящейся на единицу веса жидкости.

Следовательно, основное уравнение гидростатики представляет собой частный случай закона сохранения энергии: удельная потенциальная энергия во всех точках покоящейся жидкости есть величина постоянная.

Уравнение можно записать в форме


Последнее уравнение является выражением закона Паскаля, согласно которому давление, создаваемое в любой точке покоящейся несжимаемой жидкости, предается одинаково всем точкам его объема. Действительно, в соответствии с этим уравнением, при любом изменении давления в точке давление во всякой другой точке жидкости изменится настолько же.

Принцип сообщающихся сосудов и его использование. Пусть два открытых сообщающихся сосуда заполнены жидкостью плотностью . Выберем произвольную плоскость сравнения 0-0 и некоторую точку А внутри жидкости, лежащую в этой плоскости. Если считать точку А принадлежащей левому сосуду, то давление в данной точке

Если же считать точку А принадлежащей правому сосуду, то давление в ней

(, так как плоскость 0-0 проходит через точку А).

при равновесии для каждой точки давление одинаково в любом направлении (в противном случае происходило бы перемещение жидкости).

Аналогичный вывод может быть сделан для двух закрытых сообщающихся сосудов, в которых давления над свободной поверхностью жидкости одинаковы.

Таким образом, в открытых или закрытых находящихся под одинаковым давлением сообщающихся сосудах, заполненных однородной жидкостью, уровни ее располагаются на одной высоте независимо от формы и поперечного сечения сосудов. Этот принцип используется, в частности, для измерения уровня жидкости в закрытых аппаратах с помощью водомерных стекол.


Если сообщающиеся сосуды заполнены двумя несмешивающимися жидкостями, имеющими плотности (левый сосуд) и (правый сосуд), то при проведении плоскости сравнения 0-0 через границу раздела жидкостей аналогично предыдущему получим

Отсюда следует, что в сообщающихся сосудах высоты уровней разнородных жидкостей над поверхностью их раздела обратно пропорциональны плотностям этих жидкостей.

Если сосуды заполнены одной жидкостью плотностью , но давления над уровнем жидкости в них неодинаковы и равны (левый сосуд) и (правый сосуд), то

откуда разность уровней жидкости в сосудах

Полученное уравнение применяют при измерениях давлений или разностей давлений между различными точками с помощью дифференциальных U-образных манометров.


Условия равновесия жидкостей в сообщающихся сосудах используют также для определения высоты гидравлического затвора в различных аппаратах. Так, в непрерывно действующих сепараторах смесь жидкостей различной плотности (эмульсия) непрерывно поступает в аппарат 1 по центральной трубе 2 и расслаивается в нем, причем более легкая жидкость плотностью удаляется сверху через штуцер 3, а более тяжелая имеющая плотность , - снизу через U-образный затвор 4. Если принять, что уровень границы раздела фаз поддерживается на границе цилиндрической и конической частей аппарата и провести через эту границу плоскость сравнения 0-0, то необходимая высота гидравлического затвора составит

При этом допускается, что давление над жидкостью внутри аппарата и на выходе из затвора одинаково.


Пневматическое измерение количества жидкости в резервуарах. Для контроля над объемом жидкости в каком-либо резервуаре 1, например подземном, в него помещают трубу 2, нижний конец которого доходит почти до конца резервуара. Давление над жидкостью в резервуаре равно . По трубе 2 подают сжатый воздух или другой газ, постепенно повышая его давление, замеряемое манометром 3. Когда воздух преодолеет сопротивление столба жидкости в резервуаре и начнет барботировать сквозь жидкость, давление , фиксируемое манометром, перестанет возрастать и будет равно

откуда уровень жидкости в резервуаре


По величине и известной площади поперечного сечения резервуара определяют объем находящейся в нем жидкости.

Гидростатические машины. На использовании основного уравнения гидростатики основана работа гидростатических машин, например гидравлических прессов, применяемых в химической промышленности для прессования и брикетирования различных материалов. Если приложить относительно небольшое усилие к поршню 1, движущемуся в цилиндре меньшего диаметра , и создать давление на поршень, то согласно закону паскаля, такое же давление будет приходиться на поршень 2 в цилиндре большего диаметра . При этом сила давления на поршень 1 составит

а сила давления на поршень 2

В результате поршень в цилиндре большего диаметра передает силу давления, во столько раз большую, чем сила, приложенная к поршню в цилиндре меньшего диаметра, во сколько поперечное сечение цилиндра 2 больше, чем цилиндра 1. Таким способом с помощью сравнительно небольших усилий осуществляют прессование материала 3, помещенного между поршнем 2 и неподвижной плитой 4.

Давление жидкости на дно и стенки сосуда. Если жидкость помещена в сосуд любой формы, то гидростатическое давление во всех его точках горизонтального дна сосуда одинаково, давление же на его боковые стенки возрастает с увеличением глубины погружения.

Гидростатическое давление на уровне дна сосуда, как и для любой точки внутри жидкости, определяется уравнением , но для всех точек дна величина представляет собой высоту жидкости в сосуде. Обозначив последнюю через , получим

таким образом, сила давления на горизонтальное дно сосуда не зависит от формы сосуда и объема жидкости в нем. При данной плотности жидкости эта сила определяется лишь высотой столба жидкости и площадью дна сосуда:

Гидростатическое давление жидкости на вертикальную стенку сосуда изменяется по высоте. Соответственно сила давления на стенку также различна по высоте сосуда. Поэтому

где - расстояние от верхнего уровня жидкости до центра тяжести смоченной площади стенки.

В данном уравнении выражение в скобках представляет собой гидростатическое давление в центре тяжести смоченной площади стенки. Поэтому сила давления на вертикальную стенку равна произведению ее смоченной площади на гидростатическое давление в центре тяжести смоченной площади стенки.

Читайте также: