Основные свойства живой материи реферат

Обновлено: 19.05.2024

2. ЕДИНСТВО СОСТАВА ЖИВОЙ МАТЕРИИ

Молекулы, из которых состоят живые организмы, подчиняются всем известным законам химии, но, кроме того, они взаимодействуют между собой в соответствии с другой системой принципов, которой можно дать общее название - молекулярная логика живого состояния. Эти принципы вовсе не всегда представляют собой какие-то новые, до сих пор еще неизвестные физические законы или силы. Их следует рассматривать скорее как особую систему закономерностей, характеризующих природу, функции и взаимодействие биомолекул, т. е. таких молекул, которые входят в состав живых организмов.
Все живые организмы содержат органические макромолекулы, построенные по общему плану. Большинство химических компонентов живых организмов представляют собой органические соединения, т. е. соединения углерода, в которых атомы углерода ковалентно связаны с другими атомами углерода, а также с атомами водорода, кислорода и азота. Живая материя состоит из великого множества самых разнообразных органических соединений, причем многие из них представляют собой необычайно большие и сложные молекулы. Даже самые простые, мельчайшие по размеру бактериальные клетки содержат очень большое число различных органических молекул. Например, в клетке бактерии Escherichia coli (обычная кишечная палочка) насчитывается около 5000 разных видов органических соединений, в том числе 3000 различных белков и 1000 разных типов нуклеиновых кислот.
Белки и нуклеиновые кислоты - это очень крупные и сложные молекулы (макромолекулы), известно точное строение лишь немногих из них. В гораздо более сложном организме человека встречается около 5000000 типов белковых молекул. Фактически каждый вид живых организмов содержит свой набор белков и нуклеиновых кислот, и почти все они четко отличаются от белков и нуклеиновых кислот, принадлежащих другому виду. Поскольку существуют около 10 млн видов живых организмов, легко подсчитать, что все эти виды, вместе взятые, должны содержать, по минимальной оценке, 1011 различных белков и почти столько же различных нуклеиновых кислот. Однако, как это ни парадоксально, все огромное разнообразие органических молекул в живых организмах сводится к довольно простой картине. Это связано с тем, что все макромолекулы в клетке состоят из простых и небольших молекул нескольких типов, используемых в качестве строительных блоков, которые связываются в длинные цепи, содержащие от 50 до многих тысяч звеньев.
Длинные, похожие на цепи молекулы дезоксирибонуклеиновой кислоты (ДНК) построены всего из четырех типов строительных блоков - дезоксирибонуклеотидов, расположенных в определенной последовательности. Белки представляют собой цепи, состоящие из 20 различных ковалентно связанных друг с другом аминокислот - низкомолекулярных органических соединений с известной структурой. Эти аминокислоты могут быть расположены в самых разных последовательностях и образовывать огромное множество разнообразных белков, подобно тому, как 33 буквы алфавита, расположенные в определенном порядке, составляют почти неограниченное число слов, предложений и даже книг. Более того, те четыре нуклеотида, из которых построены все нуклеиновые кислоты, и 20 аминокислот, из которых построены все белки, одинаковы во всех организмах, включая животных, растения и микроорганизмы. Этот факт убедительно свидетельствует в пользу того, что все живые организмы произошли от общего предка.
Для простых молекул, из которых построены все макромолекулы, характерна еще одна примечательная особенность. Она состоит в том, что каждая из них выполняет в клетке сразу несколько функций. Различные аминокислоты служат не только строительными блоками белков, но и предшественниками гормонов, алкалоидов, пигментов и многих других биомолекул. Нуклеотиды используются не только как строительные блоки нуклеиновых кислот, но и как коферменты и переносчики энергии. В живых организмах обычно не бывает соединений, которые не выполняли бы какой-либо функции, хотя функции некоторых биомолекул нам пока неизвестны. Исходя из всех этих рассуждений, можно сформулировать ряд принципов молекулярной логики живого: структура биологических макромолекул проста в своей основе. Все живые организмы состоят из одних и тех же молекул, используемых как строительные блоки, что указывает на их происхождение от общего предка. Идентичность организмов каждого вида сохраняется благодаря наличию свойственного только ему набора нуклеиновых кислот и белков. Все биомолекулы выполняют в клетках специфические функции.

3. ХИМИЯ ЖИВОЙ МАТЕРИИ

Кроме четырех основных элементов, в клетке в заметных количествах (десятые и сотые доли процента) содержатся натрий, калий, кальций, хлор, фосфор, сера, железо, магний. Каждый из них выполняет важную функцию в клетке. Например, ионы Na+, К+ и Cl- обеспечивают проницаемость клеточных мембран для различных веществ и проведение импульса по нервному волокну. Кальций и фосфор участвуют в формировании костной ткани, обеспечивая прочность кости. Кроме того, кальций - один из факторов, влияющих на процесс свертывания крови. Железо входит в состав гемоглобина - белка эритроцитов, - связывающего кислород. Магний в клетках зеленых растений - компонент хлорофилла - пигмента, обеспечивающего преобразование солнечной энергии в энергию химических связей (фотосинтез), в клетках животных находится в составе ряда ферментов.

Остальные элементы (цинк, медь, йод, фтор и др.) содержатся в живых организмах в очень малых количествах - в общей сложности до 0,02 %. Они встречаются главным образом в специализированных клетках, где участвуют в образовании биологически активных веществ. Так, цинк входит в молекулу гормона поджелудочной железы инсулина, регулирующего углеводный обмен, йод - компонент гормона щитовидной железы тироксина, регулирующего интенсивность обмена веществ и рост организма в процессе развития. Все химические элементы находятся в организме либо в виде ионов, либо входят в состав тех или иных соединений - молекул неорганических и органических веществ.

Из неорганических соединений самое распространенное в живых организмах - вода. Вода является наиболее широко распространенным веществом в живой природе, и ее весовое содержание в большинстве живых организмов составляет 70 % и более. Ее содержание в клетках разного типа колеблется в широких пределах: в клетках эмали зубов воды около 10 %, а в клетках развивающегося зародыша - более 90 %. В теле медузы воды до 98 %. Кроме того, первые живые организмы возникли, вероятно, в первичном океане, так что вода - это по существу прародительница всего живого.
Вода заполняет все составные части каждой живой клетки, и именно она представляет собой ту среду, в которой осуществляются транспорт питательных веществ, катализируемые ферментами метаболические реакции и перенос химической энергии. Поэтому все структурные элементы живой клетки и их функции обязательно должны быть приспособлены к физическим и химическим свойствам воды. Более того, клетки научились использовать уникальные свойства воды для реализации некоторых процессов их жизнедеятельности.
Часто мы рассматриваем воду просто как безвредную инертную жидкость, удобную для практического использования в разных целях. Хотя в химическом отношении вода весьма устойчива, она представляет собой вещество с довольно необычными свойствами. В самом деле, вода и продукты ее ионизации - ионы Н+ и ОН- - оказывают очень большое влияние на свойства многих важных компонентов клетки, таких, как ферменты, белки, нуклеиновые кислоты и липиды. Например, каталитическая активность ферментов в значительной мере зависит от концентрации ионов Н+ и ОН-.
Среди других химических веществ живой клетки преобладают органические соединения. Они составляют в среднем 20-30 % массы организма. К ним относятся биологические полимеры - белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул - гормонов, пигментов, аминокислот, нуклеотидов, АТФ и др. В различные типы клеток входит неодинаковое количество тех или иных органических соединений. Например, в растительных клетках преобладают сложные углеводы - полисахариды; в животных - больше белков и жиров. Тем не менее, каждая группа органических веществ в любом типе клеток выполняет сходные функции.
Практически все сухое вещество клеток составляют органические соединения, представленные четырьмя основными видами молекул: белками, нуклеиновыми кислотами, полисахаридами и липидами.

1) азотистого основания;
2) пятиуглеродного сахара;
3) фосфорной кислоты.

Словом, все многообразие живых организмов зависит от последовательности размещения в молекуле ДНК четырех структурных единиц - нуклеотидов.

Полисахаридам присущи важные биологические функции. Крахмал и гликоген используются как временные депо глюкозы. Нерастворимые полимеры углеводов выполняют функции структурных и опорных элементов в клеточных стенках бактерий и растений, а также в соединительной ткани и оболочках клеток животных. Полисахариды других типов служат в качестве смазки в суставах, обеспечивают слипание клеток и придают биологическую специфичность поверхности животных клеток.

4. МАКРОМОЛЕКУЛЫ И ИХ СОСТАВ

Биологический уровень организации очень сложен, его нельзя свести к закономерностям других естественных наук. В настоящее время существуют несколько подходов к определению живого вещества.
Эпителий представляет собой пласты, покрывающие внутренние и внешние поверхности организмов. Его основной функцией является защита соответствующих органов от механических повреждений и инфекции.

Содержание

1.В чем заключаются особенности поточно-цеховой системы производства молока_________________________________________3стр.
2. Подготовка маток к опоросу и проведение опороса_________6стр.
3. Физико-технические свойства шерсти____________________11 стр.
4. Подготовка и проведение ягнения маток и выращивание ягнят_____________________________________________________14 стр.
5. Охарактеризуйте мясное и молочное коневодство. Какие породы лошадей используют для производства конины и кобыльева молока___________________________________________________22 стр.
6. Литература_________________________________________29 стр.

Работа содержит 1 файл

Биология.docx

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО

ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ

ИНСТИТУТ ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ

По предмету: Разведение с основами зоотехнии

1.В чем заключаются особенности поточно-цеховой системы производства молока___________ ______________________________ 3стр.

2. Подготовка маток к опоросу и проведение опороса__ _______6стр.

3. Физико-технические свойства шерсти____________________11 стр.

4. Подготовка и проведение ягнения маток и выращивание ягнят_________________________ ____________________________14 стр.

5. Охарактеризуйте мясное и молочное коневодство. Какие породы лошадей используют для производства конины и кобыльева молока________________________ ___________________________22 стр.

6. Литература____________________ _____________________29 стр.

Биологический уровень организации очень сложен, его нельзя свести к закономерностям других естественных наук. В настоящее время существуют несколько подходов к определению живого вещества:

1. Витализм – учение, основанное на признании наличия в организмах управляющей ими нематериальной составляющей сверхъестественной силы – души. Его основу составляют удивительная сложность строения и целесообразность поведения живых организмов. Сторонники данного учения считают, что жизнь является уникальным явлением, которое нельзя объяснить физико-химическими процессами. Так, еще в древности существовало представление об энтехелии, одушевляющей материю тела и направляющей поведение организма.

2. Редукционный подход – его представители считают возможным использовать законы физики и химии для анализа процессов жизнедеятельности. Они отрицают целенаправленность строения и поведения. Основу жизни – гомеостаз – объясняют действием законов неживой природы. Так, терморегуляция теплокровных существ происходит по принципу обратной связи – выделение пота при повышении температуры.

3. Живая клетка – элементарная организованная часть живой материи и сложная высокоупорядоченная система. Было установлено, что в ней непрерывно совершается синтез крупных молекул из простых и мелких – анаболические реакции, на которые затрачивается энергия, и их распад – катаболические реакции. Совокупность таких реакций в клетке и есть процесс метаболизма. Для его поддержания необходим непрерывный приток энергии.

Свойства, отличающие живое от неживого, отражающие специфику биологической формы движения материи:

– самовоспроизведение – может производиться многократно, а генетическая информация о нем закодирована в молекулах ДНК;

– регуляция процессов – происходит в химических реакциях посредством механизма обратной связи; внутри клеток реакции синтеза и распада идут с участием ферментов, синтезируемых внутри самих клеток;

– рост организмов – осуществляется при помощи увеличения их массы за счет размеров и числа клеток;

– иерархичность организации – клетки как биоединицы специфически организованны в ткани, ткани – в органы, органы – в системы органов;

– обмен веществ и энергии – сначала из внешней среды поступает энергия в форме солнечного света, затем химическая энергия преобразуется в клетках для синтеза ее структурных компонентов, работы по обеспечению транспорта веществ через мембрану и механической работы по обеспечению двигательной функции организма и сокращению мышщ;

– питание – источник энергии и веществ, необходимых для жизнедеятельности;

– дыхание – процесс освобождения энергии высокоэнергетических соединений;

– раздражимость – избирательная реакция живых существ на изменения внешней и внутренней среды, обеспечивающая стабильность жизнедеятельности;

– гомеостаз – живые организмы, обитающие в непрерывно меняющихся внешних условиях, поддерживают постоянство своего химического состава и интенсивность течения всех физиологических процессов с помощью авторегуляционных механизмов;

– способность к движению – свойственна живым существам, хотя их скорости значительно различаются; существуют различные механизмы движения живых существ.

Эпителиальные клетки удерживаются вместе цементирующим веществом, содержащим гиалуроновую кислоту. Так как к эпителию не подходят кровеносные сосуды, снабжение кислородом и питательными веществами происходит путем диффузии через лимфатическую систему. В эпителий могут проникать нервные окончания.

В зависимости от формы клетки и количества клеточных слоев эпителий делится на несколько типов.

Наименее специализированным из всех является кубический эпителий. Его клетки, как следует из названия, имеют в поперечном разрезе кубическую форму. Этот тип эпителия выстилает протоки многих желёз, а также выполняет секреторные функции внутри них.

Клетки плоского эпителия тонкие и уплощённые; протоплазматическими связями они плотно соединяются друг с другом. Благодаря этому они не препятствуют диффузии различных веществ в те органы, которые эти клетки выстилают: альвеолы лёгких, стенки капилляров.

Высокие и довольно узкие клетки цилиндрического эпителия выстилают желудок и кишечник. Разбросанные среди цилиндрических клеток бокаловидные клетки выделяют слизь, защищающую эти органы от самопереваривания, и одновременно создают смазку, помогающую в продвижении пищи. На свободной поверхности клеток нередко встречаются микроворсинки, увеличивающие всасывающую поверхность.

Мерцательный эпителий похож на цилиндрический, но несёт на своей поверхности многочисленные реснички. Он выстилает яйцеводы, желудочки головного мозга, спинномозговой канал и дыхательные пути.

Некоторые клетки псевдомногослойного эпителия не доходят до свободной поверхности, однако все они прикреплены к базальной мембране и образуют таким образом единственный ряд клеток. Этот тип ткани выстилает дыхательные и мочевые пути, входит в состав слизистой оболочки обонятельных полостей.

Истинный многослойный эпителий состоит из нескольких слоёв клеток; внутри кубических, а снаружи – более плоских, называемых чешуйками. Толщины этой ткани достаточно, чтобы защитить покрываемые органы от просачивания различных веществ и механических повреждений. Чешуйки могут оставаться живыми (например, в пищеводе, протоках желёз) или ороговеть, превратившись в кератин (наружная поверхность кожи, слизистая щёк, влагалище). Клетки многослойного эпителия переходного типа (мочевой пузырь, мочеточник) способны растягиваться.

Иногда бокаловидные секреторные клетки образуют многоклеточную железу. Экзокринные железы выделяют секрет на поверхность эпителия, а эндокринные с эпителием не связаны и выделяют секрет в пронизывающие их капилляры. Продукты, вырабатываемые железами, могут выводиться из клетки тремя способами:

  • мерокриновый механизм (потовые железы и др.): выделение происходит через мембрану, и цитоплазма не расходуется;
  • апокриновый механизм (млечные железы): вместе с секретом отторгаются внешние слои цитоплазмы;
  • голокриновый механизм (сальные железы): разрушается вся клетка.

Формирование желёз различных типов

Соединительная ткань – главная опора организма животного. Она составляет скелет, соединяет между собой различные ткани и органы, окружает некоторые органы, защищая их от повреждения. Соединительная ткань состоит из клеток различных типов, располагающихся обычно далеко друг от друга; их потребности в кислороде и питательных веществах, как правило, невелики.

Соединительные ткани. Слева направо: рыхлая соединительная ткань, плотная соединительная ткань, хрящ, кость, кровь

Рыхлая соединительная ткань состоит из клеток, разбросанных в межклеточном веществе, и переплетённых неупорядоченных волокон. Волнистые пучки волокон состоят из коллагена, а прямые – из эластина; их совокупность обеспечивает прочность и упругость соединительной ткани. По прозрачному полужидкому матриксу, содержащему эти волокна, разбросаны клетки различных типов:

  • овальные тучные клетки окружают кровеносные сосуды; они вырабатывают матрикс, а также продуцируют гепарин (противодействие свёртыванию крови) и гиспарин (расширение сосудов, сокращение мышц, стимуляция секреции желудочного сока);
  • фибропласты – клетки, продуцирующие волокна;
  • макрофаги (гистоциты) – амёбоидные клетки, поглощающие болезнетворные организмы;
  • плазматические клетки – ещё один компонент иммунной системы;
  • хроматофоры – сильно разветвлённые клетки, содержащие меланин; имеются в глазах и коже;
  • жировые клетки;
  • мезенхимные клетки – недифференцированные клетки соединительной ткани, способные при необходимости превращаться в клетки одного из перечисленных выше типов.

Фибропласты и макрофаги в случае повреждения способны мигрировать к повреждённым участкам тканей. Рыхлая соединительная ткань окутывает все органы тела, соединяет кожу с лежащими под ней структурами, покрывает кровеносные сосуды и нервы на входе и выходе из органов.

Плотная соединительная ткань состоит из волокон, а не из клеток. Белая ткань содержится в сухожилиях, связках, роговице глаза, надкостнице и других органах. Она состоит из собранных в параллельные пучки прочных и гибких коллагеновых волокон. Жёлтая соединительная ткань находится в связках, стенках артерий, лёгких. Она образована беспорядочным переплетением жёлтых эластичных волокон.

Содержание

Введение
Фундаментальные свойства живых систем
Уровни организации живых систем
Функции живых систем
Вывод.

Прикрепленные файлы: 1 файл

реферат по биологии.docx

  1. Введение
  2. Фундаментальные свойства живых систем
  3. Уровни организации живых систем
  4. Функции живых систем
  5. Вывод.

Фундаментальные свойства живых систем.

К числу основных, фундаментальных свойств живого относятся:

1. Потребление из окружающей среды и превращение питательных веществ ( подсистем) с низкой энтропией ( метаболизм). Это необходимо для поддержания структурной целостности биосистемы, её роста и размножения.

2. Обмен веществом и энергией с окружающей средой. Таким путем обеспечивается приток необходимых для жизнедеятельности структурных элементов живого, их превращение, утилизация, выделение продуктов с высокой энтропией и тепловой энергии.

3. Регуляция. Поддержание структурно- функциональной организации биологической системы требует упорядоченности течения обменных процессов. Для этого у высокоорганизованных организмов формируются специальные механизмы регуляции, модулирующие активность отдельных органов и систем, интенсивность протекающих в них процессов. Механизмы регуляции обеспечивают адаптацию системы к изменяющимся условиям среды.

4. Раздражимость и реактивность. Различные химические и физические факторы окружающей среды являются своеобразными сигналами или источниками информации, на которые живой организм реагирует в той или иной форме. Структуры, предназначенные для восприятия и переработки соответствующей информации, используют поступающее раздражение, что позволяет организму адекватно на него реагировать.

5. Репродукция. Это свойство обеспечивает поддержание или увеличение численности биологических объектов всех видов и типов. В основе репродукции лежит процесс клеточного деления. В ходе клеточного деления осуществляется перенос ДНК (генетического материала) материнских клеток к дочерним клеткам и за счет этого обеспечивается в последующем репродукция и всех остальных компонентов живого. Сохранение информации о свойствах предшествующих поколений, зашифрованных в молекулах ДНК (генах), передающихся из поколения в поколение - суть наследственности.

6. Гомеостаз. Это самовозобновление и самоподдержание внутренней среды организма.

Уровни организации живых систем.

К 60-м годам текущего столетия сложилось представление об уровнях организации живого как конкретном выражении - иерархической упорядоченности. Жизнь на Земле представлена организмами определенного строения, принадлежащим к определенным систематическим группам (популяция, вид), а также сообществам разной сложности (биогеоценозы, биосфера). В свою очередь, организмы характеризуются молекулярной, клеточной, тканевой, органной структурностью. Каждый организм, с одной стороны, состоит из единиц подчиненных ему уровней организации (органов, тканей и т.д.), с другой - сам является единицей в составе надорганизменных биологических систем (популяций, видов, биогеоценозов, биосферы в целом).

Существование жизни на всех уровнях определяется структурой низшего уровня. Например, характер клеточного уровня организации определяется молекулярным и субклеточным уровнями; организменного - клеточным, тканевым, органным; популяционно-видового - организменным и т.д. Следует отметить большое сходство дискретных единиц на низших уровнях и все возрастающее различие на высших уровнях.

По подходу к изучению биологических систем выделяют следующие уровни организации живой материи на базе разных способов структурно-функционального объединения составляющих элементов.

1. Молекулярный. Любая живая система, как бы сложно она ни была организована, состоит из биологических макромолекул: нуклеиновых кислот, белков, полисахаридов, а также других важных органических веществ. С этого уровня начинаются разнообразные процессы жизнедеятельности организма: обмен веществ и превращение энергии, передача наследственной информации и др.

2. Клеточный. Клетка - структурная и функциональная единица, а также единица развития всех живых организмов, обитающих на Земле. На клеточном уровне сопрягаются передача информации и превращение веществ и энергии.

3. Организменный. Элементарной единицей организменного уровня служит особь, которая рассматривается в развитии - от момента зарождения до прекращения существования - как живая система. На этом уровне возникают системы органов, специализированных для выполнения различных функций.

4. Популяционно-видовой. Совокупность организмов одного и того же вида, объединенная общим местом обитания, в которой создается популяция - надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования - процесс микроэволгоции.

5. Биогеоценотический. Биогеоценоз - совокупность организмов разных видов 'и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп образуются динамичные, устойчивые сообщества.

6. Биосферный. Биосфера - совокупность всех биогеоценозов, система, охватывающая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Функции живых систем

Энергетическая функция выполняется, прежде всего, растениями, которые в процессе фотосинтеза аккумулируют солнечную энергию в виде разнообразных органических соединений. Чтобы биосфера могла существовать и развиваться, ей необходима энергия. Собственных источников энергии она не имеет и может потреблять энергию только от внешних источников. Главным источником для биосферы является Солнце. По словам Вернадского, зеленые хлорофилльные организмы, зеленые растения, являются главным механизмом биосферы, который улавливает солнечный луч и создает фотосинтезом химические тела - своеобразные солнечные консервы, энергия которых в дальнейшем становится источником действенной химической энергии биосферы, а в значительной мере - всей земной коры. Без этого процесса накопления и передачи энергии живым веществом невозможно было бы развитие жизни на Земле и образование современной биосферы.

Минерализация органических веществ, разложение отмершей органики до простых неорганических соединений, химическое разложение горных пород, вовлечение образовавшихся минералов в биотический круговорот определяет деструктивную (разрушительную) функцию живого вещества. Данную функцию в основном выполняют грибы, бактерии. Мертвое органическое вещество разлагается до простых неорганических соединений (углекислого газа, воды, сероводорода, метана, аммиака и т. д.), которые вновь используются в начальном звене круговорота. Этим занимается специальная группа организмов - редуценты (деструкторы).

Концентрационная (накопительная) функция - избирательное накопление определенных веществ, рассеянных в природе - водорода, углерода, азота, кислорода, кальция, магния, натрия, калия, фосфора и многих других, включая тяжелые металлы, в живых существах. Раковины моллюсков, панцири диатомовых водорослей, скелеты животных — все это примеры проявления концентрационной функции живого вещества.

Живое вещество преобразует физико-химические параметры среды в условия, благоприятные для существования организмов. В этом проявляется еще одна главная функция живого вещества — средообразующая. Например, леса регулируют поверхностный сток, увеличивают влажность воздуха, обогащают атмосферу кислородом.

Можно сказать, что средообразующая функция - совместный результат всех рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья биологического круговорота (в ходе фотосинтеза растения выполняют газовую функцию: поглощают углекислый газ и выделяют кислород); деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для организмов элементов.

На земной поверхности нет химической силы, более постоянно действующей, а потому и более могущественной по своим конечным последствиям, чем живые организмы, взятые в целом. Химическое состояние наружной коры нашей планеты всецело находится под влиянием жизни и определяется живыми организмами, с деятельностью которых связан великий планетарный процесс – миграция химических элементов в биосфере. Жизнь на Земле – самый выдающийся процесс на её поверхности, получающий живительную энергия Солнца и приводящий в движение (круговорот веществ) едва ли не все химические элементы таблицы Менделеева. Жизнь сводится к непрерывной последовательности роста, самовоспроизведения и синтеза сложных химических соединений. Без переноса энергии, сопровождающего эти процессы, невозможно было бы ни существование самой жизни, ни образование надорганизменных систем всех уровней организации. Если бы солнечная энергия на планете только рассеивалась, то жизнь на Земле была бы невозможной. Чтобы биосфера существовала, она должна получать и накапливать энергию извне. И эта работа выполняется живыми организмами.

Список использованной литературы:

1. Киселёв В. Н. Основы экологии: Учеб. пособие. – Минск.: Унiверсiтэцкае, 2000.

2. Лапо А.В. Следы былых биосфер. – М., 1987.

3. Петров К. М. Общая экология: взаимодействие общества и природы: Учебное пособие для вузов. – СПб.: Химия, 1997.


Оглавление

  • 1. История развития клеточной теории
  • 2. Жизнь. Свойства живой материи
  • 3. Уровни организации жизни
  • 4. Состав клетки
  • 5. Биосинтез белка. Генетический код
  • 6. Общие сведения о прокариотической и эукариотической клетках

Приведённый ознакомительный фрагмент книги Общая биология предоставлен нашим книжным партнёром — компанией ЛитРес.

2. Жизнь. Свойства живой материи

Жизнь — это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии.

Свойства живых структур:

1) самообновление. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад);

2) самовоспроизведение. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями. Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;

3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм;

4) раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования;

5) поддержание гомеостаза — относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;

6) структурная организация — упорядоченность, живой системы, обнаруживается при исследовании — биогеоценозов;

7) адаптация — способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде;

8) репродукция (воспроизведение). Так как жизнь существует в виде отдельных живых системы, а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем;

9) наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

10) изменчивость — за счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередьизменчивостьсвязанасошиб-ками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации;

11) индивидуальное развитие (процесс онтогенеза) — воплощение исходной генетической информации, заложенной в структуре молекул ДНК, в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров;

12) филогенетическое развитие. Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество видов;

13) дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток.

Читайте также: