Оптический метод неразрушающего контроля реферат

Обновлено: 04.07.2024

Оптический неразрушающий контроль основан на анализе взаимодействия оптического излучения с деталями, изделиями, строительными конструкциями, и соответственно в целом со зданиями и сооружениями.

Ключевые слова

Текст научной работы

Общие положения, правила и контроль выполнения, а также требования к результатам работ по оптическому неразрушающему контролю качества определяются нормативными документами, в том числе требованиями.

Оптический неразрушающий контроль основан на анализе взаимодействия оптического излучения с деталями, изделиями, строительными конструкциями, и соответственно в целом со зданиями и сооружениями.

Оптическое излучение или свет образует электромагнитное излучение с длиной волны 10 -3 — 10 3 мкм, в котором принято выделять ультрафиолетовую, видимую и инфракрасную области спектра с длинами волн соответственно: 10 -3 . 0,38; 0,38 . 0,78 и 0,78 . 10 3 мкм.

Основными информационными параметрами деталей, изделий и строительных конструкций, и соответственно в целом зданий и сооружений, которые определены оптическим контролем, являются их спектральные и интегральные фотометрические характеристики, в общем случае зависят от строения вещества, его температуры, физического (агрегатного) состояния, микрорельефа, угла падения излучения, степени его поляризации, длины волны и т.д.

При этом к числу дефектов, обнаруживаемых неразрушающими методами оптического контроля качества, относятся пустоты (нарушения сплошности), расслоения, поры, трещины, включения инородных тел, внутренние напряжения, изменение структуры материалов и их физико-химических свойств, отклонения от заданной геометрической формы и т.д.

С помощью методов оптического контроля качества выявляются внутренние дефекты только в деталях, изделиях, строительных конструкциях из материалов, прозрачных в оптической области спектра.

При этом использование оптического излучения, как носителя информации перспективно т.к. электромагнитное поле по природе многомерно, что позволяет вести многоканальную (многомерную) обработку информации одним устройством с большой скоростью, определяемой скоростью света в данной среде.

Классификация методов оптического неразрушающего контроля качества по взаимодействию на детали, изделия, строительные конструкции, и соответственно в целом на здания и сооружения (объекты контроля) определяется по следующим признакам:

1. По характеру взаимодействия оптического излучения с контролируемыми деталями, изделиями, строительными конструкциями, и соответственно в целом со зданиями и сооружениями (объекты контроля) методы оптического неразрушающего контроля качества классифицируются на:

  • метод собственного оптического излучения, который основан на регистрации параметров собственного излучения (эмиссии) объектов контроля;
  • метод индуцированного оптического излучения, который основан на регистрации параметров оптического излучения (эмиссии), генерируемого объектами контроля при постороннем воздействии возбуждение;
  • метод прошедшего оптического излучения, который основан на регистрации параметров оптического излучения, прошедшего сквозь объекты контроля;
  • метод поглощенного оптического излучения, который основан на анализе параметров поглощения оптического излучения объектами контроля;
  • метод отраженного оптического излучения, который основан на регистрации параметров оптического излучения, отраженного от объектов контроля;
  • метод рассеянного оптического излучения, который основан на регистрации параметров оптического излучения, рассеянного от объектов контроля;
  • метод люминесцентного оптического излучения, который основан на регистрации люминесцентного излучения объекта контроля и на анализе параметров люминесценции. При этом люминесцентный метод является частным случаем метода рассеянного оптического излучения.

2. По первичному информативному физическому параметру контролируемых деталей, изделий, строительных конструкций, и соответственно в целом зданий и сооружений (объекты контроля) методы оптического неразрушающего контроля качества классифицируются на:

  • амплитудный метод оптического излучения, который основан на регистрации мощности или интенсивности оптического излучения после его взаимодействия с объектом контроля или иных энергетических характеристик, а именно мощности потока, энергии световых импульсов, освещенности поверхности объекта, яркости объекта;
  • фазовый метод оптического излучения, который основан на регистрации фазовых параметров оптического излучения после его взаимодействия с объектом контроля, а именно разности фаз световых волн, набега фазы или вариации фазы по пространству.
  • поляризационный метод оптического излучения, который основан на регистрации поляризационных характеристик оптического излучения после его взаимодействия с объектом контроля, а именно ориентации линейной поляризации, направления вращения циркулярной поляризации, коэффициента эллиптичности и ориентации осей эллиптически поляризованной волны, параметров Стокса;
  • геометрический метод оптического излучения, который основан на регистрации направления распространения оптического излучения после его взаимодействия с объектом контроля, а именно разности углов распространения световых волн или угла отклонения световой волны;
  • спектральный метод оптического излучения, который основан на регистрации и анализе спектральных характеристик оптического излучения после его взаимодействия с объектом контроля, а именно спектров (сплошных, фрагментированных, дискретных), спектральных величин, характеризующих разные шкалы (длины волны, оптической частоты, энергии световых квантов, разности частот и энергий);
  • временной метод оптического излучения, который основан на регистрации временных характеристик оптического излучения после его взаимодействия с объектом контроля, а именно времени прохождения оптического излучения через объект контроля, времени задержки, времени нарастания или спада;
  • пространственный метод оптического излучения, который основан на регистрации пространственных характеристик оптического излучения после его взаимодействия с объектом контроля, а также физических характеристик оптического излучения как функции одной двух или трех координат, это соответственно методы с одномерным (1D), двумерным (2D), трехмерным (3D) разрешением.

3. По способу получения первичной информации контролируемых деталей, изделий, строительных конструкций, и соответственно в целом зданий и сооружений (объекты контроля) методы оптического неразрушающего контроля качества классифицируются по следующим типам:

3.1. По способу визуального наблюдения за контролируемыми деталями, изделиями, строительными конструкциями, и соответственно в целом зданиями и сооружениями (объектами контроля):

а) визуальный метод, который основан на наблюдении и анализе объектов контроля глазами оператора без использования оптических устройств и приборов;

б) визуально-оптический метод, который основан на наблюдении и анализе объектов контроля с помощью оптических устройств и приборов, в данном методе имеет место непрерывный ход лучей между глазами оператора и объектами контроля. При этом визуальный и визуально-оптический методы объединяют под общим названием, а именно прямой визуальный контроль;

  • телевизионный метод, который основан на визуальном анализе изображения контролируемых объектов, регистрируемого оптико-электронными устройствами, а также средствами фото- и видеотехники, по основному оптическому явлению (эффекту), сопровождающему взаимодействие оптического излучения с объектами контроля;
  • дифракционный метод оптического излучения, который основан на анализе дифракционной картины, получаемой при взаимодействии когерентного оптического излучения с объектами контроля;
  • интерференционный метод оптического излучения, который основан на анализе интерференционной картины, получаемой при взаимодействии когерентных волн, опорной и модулированной объектами контроля. При этом есть частные случаи, а именно голографический метод и методы оптической когерентной томографии;
  • рефракционный (рефрактометрический) метод оптического излучения, который основан на анализе параметров оптического излучения после его преломления объектами контроля;
  • фазово-контрастный метод оптического излучения, который основан на трансформации разности фаз оптического излучения в различие интенсивности и визуализацию или фото регистрацию данного контраста.

3.2. По виду зондирующего оптического излучения за контролируемыми деталями, изделиями, строительными конструкциями, и соответственно в целом зданиями и сооружениями (объектами контроля) имеют следующую классификацию:

  • когерентный метод оптического излучения, который основан на измерении параметров когерентного оптического излучения после его взаимодействия с объектами контроля;
  • монохроматический метод оптического излучения, который основан на измерении параметров монохроматического оптического излучения после его взаимодействия с объектами контроля;
  • импульсный или импульсно-периодический метод оптического излучения, который основан на измерении параметров оптического излучения после воздействию на объекты контроля импульсного или импульсно- периодического оптического излучения;
  • модуляционный метод оптического излучения.

3.3. По способу обработки (преобразования) оптического излучения после его взаимодействия с деталями, изделиями, строительными конструкциями, и соответственно в целом со зданиями и сооружениями (объектами контроля) имеют следующую классификацию:

  • метод фильтрации оптического излучения, который основан на анализе изображения объектов контроля с помощью оптического фильтра. При этом в зависимости от типа фильтра метод фильтрации оптического излучения может осуществлять функции спектральной фильтрации объектов контроля или пространственной (угловой) фильтрации изображения объектов контроля, что определяет его как метод согласованной пространственной фильтрации;
  • стробоскопический метод оптического излучения, который основан на регистрации параметров оптического излучения в определенные отдельные интервалы времени после его взаимодействия с объектами;
  • многоканальный метод оптического излучения;
  • дифференциальный метод оптического излучения;
  • корреляционный метод оптического излучения.

4. По способу воздействия на детали, изделия, строительные конструкции, и соответственно в целом на здания и сооружения (объекты контроля) оптический неразрушающий контроль качества имеет следующую классификацию:

  • фотохимический метод оптического излучения, который основан на анализе параметров фотохимических процессов, возникающих при взаимодействии оптического излучения с объектами контроля;
  • оптико-акустический (оптоакустический) метод оптического излучения, который основан на анализе параметров оптико- акустического (оптоакустического) эффекта, возникающего при взаимодействии оптического излучения с объектами контроля;
  • электрооптический метод оптического излучения, который основан на дополнительном воздействии на объекты контроля внешнего электрического поля;
  • магнитооптический метод оптического излучения, который основан на дополнительном воздействии на объекты контроля магнитного поля;
  • фотоэлектрический метод оптического излучения, который основан на анализе параметров фотоэлектрических эффектов, возникающих при облучении объекта контроля оптическим излучением.

Цитировать

Оптический диапазон спектра, по определению, принятому Международной комиссией по освещению (МКО), составляют электромагнитные волны, длина которых от 1 мм до 1 нм (рис. 1).

Оптические методы НК основаны на использовании явлений отражения, поглощения, поляризации, интерференции и дифракции света проявляющихся в результате его взаимодействия с контролируемым объектом при получении информации о состоянии этого объекта и его параметрах. При изготовлении изделий микроэлектроники применяются различные материалы (металлы, полупроводники, диэлектрики), которые по разному взаимодействуют с оптическим излучением. Это взаимодействие определяется свойствами материалов, их геометрией, внешними условиями, а также параметрами оптического излучения.

По способам получения информации об объекте оптические методы НК разделяются на визуальные и фотоэлектрические. По физическим методам, с помощью которых извлекается информация о контролируемом объекте, оптический НК можно разделяют на следующие основные виды: микроскопия, интерферометрия, спектрометрия и эллипсометрия.


Рис. 1. Оптический диапазон спектра


Рис. 2. Взаимодействие света с контролируемым объектом

Теоретические основы оптических методов НК

Световые колебания, как и любые другие электромагнитные колебания, характеризуются волновыми и корпускулярными свойствами.

Волновые свойства света. Монохроматический луч света представляется как плоскопараллельная электромагнитная волна с взаимоперпендикулярными направлениями колебаний векторов электрического Eи магнитного H полей. Причём направления их колебаний перпендикулярны направлению распространения волны. Световые колебания характеризуются: частотой=2, длиной волны=c/, фазойt, скоростью распространения v=c/n, где - круговая частота, измеряемая в [рад/с]; - линейная частота, измеряемая в [Гц]; c - скорость распространения электромагнитной волны в вакууме; t - время; n -показатель преломления среды.

Т.к. основные физико-химические явления, связанные с проявлением световых колебаний, обязаны электрической составляющей Eсветовых колебаний, то обычно свет рассматривают, как электрическую волну, которая описывается следующим уравнением

гдеX = 2 (tX -tО) = 2 (x1 -xО)/v = 2nx(t)/c , - сдвиг фазы световых колебаний, характеризующий свойства объекта, с которым взаимодействовала световая волна в процессе его контроля (рис.2);

n = c/v - показатель преломления среды, характеризующий степень замедления распространения световой волны в анализируемой среде по сравнению с вакуумом.


В общем виде комплексный показатель преломления выражается как


= n - ik , где

k - коэффициент экстинкции, характеризующий поглощение света в веществе,

n = ()1/2 - действительный коэффициент преломления вещества, определяемый диэлектрической и магнитной проницаемостями этого вещества.

Таким образом, если проанализировать изменение фазы световых колебаний после прохождения луча света через исследуемый объект или после отражения от него, то можно получить достаточно большой объём информации о свойствах этого объекта. На этом и основан принцип действия большинства оптических методов НК. Кроме фазы информацию об объекте контроля несёт также степень изменения поляризации ( е-вектор поляризации) и степень поглощения света (амплитуда E).

Фазовый анализ провзаимодействующего с объектом светового пучка можно осуществить, используя такие проявления волновых свойств света, как дифракция и интерференция.

Для обычного некогерентного света, при наложении двух потоков происходит алгебраическое суммирование интенсивностей, пропорциональных квадрату амплитуд колебаний

При наложении двух когерентных световых потоков происходит их интерференция - явление возникновения стоячих световых волн, характеризуемых наличием пучностей, в которых происходит усиление световых колебаний, и впадин, в которых наблюдается снижение амплитуды световых колебаний. При этом

E2 = E21 + E22 + 2E1 E2 cos(1-2) .


При изменении разности фаз1 -2 от 0 до амплитуда световых колебаний изменяется от .

Явление интерференции используется в интерферометрах, спектральных приборах, в голографических методах контроля.

Исследование оптических и электрических характеристик объекта по степени изменения поляризации анализирующего светового потока осуществляется в эллипсометрах.

Явление поглощения объясняется корпускулярными свойствами света. Впервые они были обнаружены при открытии фотоэффекта.

Исходя из классической волновой теории света предполагалось, что энергия фотоэлектронов, эмиттируемых металлической пластиной (цезиевой или медной), освещаемой пучком света, должна увеличиваться с увеличением интенсивности светового пучка и, наоборот, должна уменьшаться с ростом частоты световых колебаний (из-за инерционности электронов, которые обладают конечной массой покоя). Однако, как оказалось на самом деле, с ростом интенсивности света энергия фотоэлектронов не изменяется, а с ростом частоты световых колебаний она наоборот увеличивается. Правда с ростом интенсивности света увеличивается общее число фотоэлектронов.

Объясняя это явление, а также явление теплового излучения, Планк предположил, что свет поглощается и излучается некоторыми порциями и что вся энергия, излучаемая телом, равна целому числуэтих порций - квантов с энергией, равной W = h , где h - постоянная Планка.

Таким образом, энергия поглощённого кванта пропорциональна частоте световых колебаний. Следовательно, с её ростом энергия фотоэлектронов будет увеличиваться. От интенсивности света энергия кванта не зависит, а следовательно и энергия фотоэлектрона также не зависит от интенсивности света. С увеличением интенсивности растёт число квантов, а следовательно растёт и число фотоэлектронов.

Корпускулярными свойствами света объясняются такие оптические явления, как поглощение света, внешний и внутренний фотоэффект, сплошной спектр теплового излучения твёрдого вещества, линейчатый спектр поглощения и излучения газов, люминисценция и др.

Поглощение света в веществе подчиняется закону Бугера-Ламберта, согласно которому амплитуда электромагнитной волны E, распространяющаяся в веществе в направлении x, уменьшается в е-xраз:

где  = ln(EО/E1) = 2k/ - показатель поглощения, характеризующий степень поглощения световой волны на единицу её пути в контролируемом веществе; E0 - начальная амплитуда световых колебаний; E1 -амплитуда световых колебаний после прохождения единицы пути (x=1).

Из этого выражения также следует, что контролируя изменение амплитуды световой волны, прошедшей через исследуемый объект, можно получить информацию как о геометрических параметрах (x) этого объекта (например, толщины тонкоплёночных элементов), если известен его показатель поглощения, так и о его структуре и химическом составе (k) используя спектральные методы контроля (рис. 3).

Излучение света (а точнее - электромагнитных волн в широком спектре) твёрдым телом, нагретым до некоторой температуры T, подчиняется закону Планка, описывающему спектральную плотность абсолютно чёрного тела (АЧТ):

Для твёрдого тела кривые, описываемые этим законом (рис.4) непрерывны в силу наличия большого количества энергетических состояний атомов и молекул кристаллической решётки, электронные переходы которой весьма разнообразны по излучаемым квантам электромагнитной энергии.

По спектру собственного излучения нагретого объекта можно бесконтактным способом измерить его температуру. На этом основаны методы оптической пирометрии и тепловидения.

В газообразном и жидком веществе электронные оболочки атомов относительно невелики и электроны соответственно могут находиться в ограниченном количестве энергетических состояний, которые определяют дискретность спектра излучаемых ими квантов энергии. Т.е. спектр собственного излучения газов и жидкостей обычно не сплошной а линейчатый, что позволяет легко идентифицировать по нему химический состав этого вещества (рис.5).


Рис. 3. Изменение коэффициента экстинкции k и показателя преломления n в области полосы поглощения света (в области электронного резонанса)


Рис. 4. Непрерывный спектр собственного излучения твёрдых тел с разной температурой


Рис. 5. Дискретный спектр излучения газов и жидкостей

Классификация оптических методов НК

Разнообразие оптических свойств материалов электронной техники определяет и разнообразие оптических методов, при помощи которых контролируются оптические свойства материалов.

По степени распространённости и применения оптических методов в электронной технике необходимо, прежде всего, выделить методы оптической микроскопии, которые интенсивно развиваются и широко используются в области исследований на стадии разработки и производственного контроля полуфабрикатов, структур и изделий на разных стадиях технологического процесса.

На втором месте стоят спектральные методы исследования и контроля, позволяющие получать информацию о материалах, структурах и изделиях как по спектральному составу их собственного излучения, возникающего при нагреве или каких-либо воздействиях, так и по спектральному составу излучения, взаимодействующего с исследуемым объектом. При этом используются спектры поглощения, отражения, испускания, люминесценции.

К спектральным методам примыкают интерференционные и эллипсометрические методы, основанные на классических явлениях интерференции (голография) и поляризации света.

Прямой контроль в оптической (световой) микроскопии

Одной из разновидностей оптических методов прямого контроля является группа методов оптического сравнения изображений и выделения оптическим способом разностного изображения. Устройства, реализующие эту группу методов, получили название оптических компараторов. Их принципиальные схемы приведены на рис. 6 и 7.


1 - фотоприёмник или экран; 2 - объектив; 3 - светоделитель; 4 - зеркало; 5 - дефектоскопируемый объект; 6 - образцовый объект; 7 - блок освещения; 8 - оптические цветные фильтры


Рис. 7. Оптический компаратор с модуляцией светового потока в одном из каналов:

1 - фотоприёмник или экран; 2 - объектив; 3 - светоделитель; 4 – двигатель с обтюратором; 5 - дефектоскопируемый объект; 6 - эталонный объект; 7 - блок освещения; 8 - оптический фильтр

Оптические компараторы имеют два канала, по одному из которых передаётся оптическое изображение от дефектоскопируемого объекта, а по второму - от образцового. Для контрастирования разностного оптического изображения используют три способа.

Во втором способе один из оптических каналов прерывается с определённой частотой крыльчаткой обтюратора (рис.5.18). Тогда в разностном изображении различающиеся участки мигают с частотой прерывания оптического канала.

Третий способ, который, по сути, является частным случаем первого, заключается в совмещении позитивного и негативного изображений дефектоскопируемого и образцового объектов соответственно.

Дальнейшее развитие рассматриваемая группа методов получила в гибридных компараторах - устройствах, основанных на поэлементном сравнении идентичных изображений с помощью цифровых телевизионных систем (рис.8).


Рис. 8. Телевизионный компаратор:

1 – контролируемый объект; 2, 4 – светоделители; 3 – источник освещения; 5 – эталонный объект; 6 – ТВ-камеры; 7 – блок сравнения (вычитания видеосигнала); 8 - ВКУ

Оптические изображения от контролируемого и эталонного объектов с помощью телевизионных камер 6 преобразуются в электрические нормированные по амплитуде видеосигналы. Затем полученные видеосигналы подаются в противофазе в блок сравнения 7, а разностный сигнал преобразуется в разностное изображение, представляемое на экране видеоконтрольного устройства 8.

1. Давыдов П. С. Техническая диагностика радиоэлектронных устройств и систем. - М.:Радио и связь, 2000. - 256 с.

2. Ермолов И.Н., Останин Ю.Я. Методы и средства неразрушающего контроля качества: Учеб. пособие для инженерно-техн. спец. вузов.-М.: Высшая школа, 2002. - 368 с.

3. Технические средства диагностирования: Справочник / Под общ. ред. В.В.Клюева. - М.: Машиностроение, 2005. - 672 с.

4. Приборы для неразрушающего контроля материалов и изделий. - Справочник. В 2-х кн./ Под ред. В.В.Клюева - М.: Машиностроение, 2006.

5. Ж.Госсорг. Инфракрасная термография. Основы, техника, применение: Пер. с франц. – М. Мир, 2005. – 416 с.

В ходе эксплуатации или изготовления различного оборудования, его узлов и деталей, постоянно требуется оценить его состояние. Делать это необходимо без остановки, вывода из эксплуатации, разборки или взятия образцов материалов, поскольку такие действия обходятся очень дорого.

Неразрушающий контроль

Для этого разработаны и широко применяются методы неразрушающего контроля, или non-destructive test. Обследование конструкции, механизма, детали проводят не прерывая его использования, не вызывая простоев. Периодическое обследование позволяет своевременно обнаружить предпосылки к возникновению неисправности механизма или усталости конструкции и предпринять действия по устранению причин возможных неисправностей или разрушений. Это существенно повышает безопасность эксплуатации и снижает стоимость и продолжительность внеплановых ремонтов.

С помощью неразрушающего контроля в конструкциях, узлах и деталях находят дефекты на ранней стадии их возникновения:

  • пористость;
  • растрескивание;
  • механические или термические напряжения;
  • сдвиговые деформации;
  • посторонние включения;
  • и многие другие.

Классификация методов неразрушающего контроля по ГОСТ 18353- 79

Основные методы неразрушающего контроля основаны на применении различных физических явлений и измерении характеризующих эти явления физических величин. Наиболее широко применяются следующие виды неразрушающего контроля:

  • ультразвуковой;
  • радиоволновый;
  • электрический;
  • акустический;
  • вихревых токов;
  • магнитный;
  • тепловой;
  • радиационный;
  • проникающими веществами;
  • оптический.

Общие виды неразрушающего контроля могут включать в себя несколько конкретных методов, различающихся по таким признакам, как:

  • способ взаимодействия с контролируемым объектом;
  • физические величины, измеряемые в ходе наблюдения;
  • способ получения и интерпретации данных.

Правильный выбор способа позволяет предприятию сэкономить средства и обеспечить высокую надежность контролируемого оборудования и конструкций.

Радиоволновой метод неразрушающего контроля

Заключается в облучении исследуемого объекта радиочастотным излучением и измерении параметров прошедшей, отраженной или рассеянной электромагнитной волны.

Радиоволновой метод

Он применим к диэлектрическим, полупроводниковым материалам, а также к тонкостенным металлическим оболочкам и конструкциям, в которых хорошо распространяются радиоволны. Используется для проверки однородности, габаритов и формы изделий из пластика, резины, композитных материалов. Измеряют при этом амплитудные, фазовые или поляризационные характеристики волны. Неразрушающий контроль радиоволновым методом позволяет обнаружить в массе материала неоднородности, посторонние включения, некачественные клеевые и сварные соединения и другие дефекты.

Электрический метод неразрушающего контроля

Группа методов неразрушающего контроля металлов и диэлектриков основана на измерении и интерпретации характеристик электростатического поля, приложенного к контролируемому объекту. Чаще всего измеряют электрический потенциал и емкость.

Для работы с токопроводящими материалами применяют эквипотенциальный способ, к диэлектрическим материалам чаще применяют емкостной. Термоэлектрический способ применим для достаточно точного определения химического состава материала без взятия образцов и применения дорогих масс-спектрографических установок.

Неразрушающий контроль электрический

Неразрушающий контроль электрический

С использованием электрических методик находят различные скрытые дефекты:

  • пустоты и пористость в отливках;
  • микротрещины в металлопрокате;
  • непровар и другие пороки сварки;
  • некачественные лакокрасочные покрытия и клеевые швы.

Акустический, или ультразвуковой контроль

Способ основан на возбуждении в конструкции колебаний определенной частоты, амплитуды, скважности импульсов и анализе отклика конструкции на эти колебания. Интерпретация результатов с помощью специализированных компьютерных программ позволяет воссоздать двумерные сечения исследуемого объекта, не разрушая его. Различают две основных группы методик акустической дефектоскопии:

  • Активные — установка осуществляет излучение колебаний и последующий прием отклика от конструкции.
  • Пассивные — осуществляется только измерение колебаний и импульсов.

Ультразвуковой неразрушающий контроль

Ультразвуковой неразрушающий контроль

Звуковые колебания с частотой выше 20 килогерц называют ультразвуком. Ультразвук является одним из самых популярных способов акустической дефектоскопии в промышленности и позволяет проверять качество и пространственную конфигурацию практически любых материалов. Популярность ультразвука определяется его преимуществами перед другими методами:

  • низкая цена оборудования;
  • компактность установок;
  • безопасность для персонала;
  • высокая чувствительность и пространственное разрешение.

Ультразвуковой способ мало применим к конструкциям, имеющим крупнозернистую структуру или сильно шероховатую поверхность.

Безопасность ультразвука для человека позволяет широко использовать его в медицинской диагностике, включая обследование ребенка в утробе матери и раннее определение его пола.

Вихретоковый метод неразрушающего контроля

Способ основан на наведении в исследуемом объекте вихревых (приповерхностных) токов малой интенсивности и частотой до нескольких мегагерц помещения его в электромагнитное поле, создаваемое вихретоковым преобразователями измерения. Применяется для металлов и других электропроводящих материалов. На основании неоднородностей приповерхностного вихревого поля можно судить о наличии неоднородностей и других дефектов в наружном слое металла (до глубины в несколько миллиметров). Измерения с высокой точностью определяют также дефекты лакокрасочных и защитных покрытий, нанесенных на металлическую деталь. В роли вихретокового преобразователя служить мощная катушка индуктивности, генерирующая высокочастотное электромагнитное поле. Вихревые токи, наводимые этим полем в приповерхностном слое металла, измеряют этой же катушкой (совмещенная схема) или отдельной (разнесенная схема). По пространственной картине распределения интенсивности измеренных токов определяют места неоднородностей, вносящих искажение в поле.

Вихретоковый метод неразрушающего контроля

Вихретоковый метод неразрушающего контроля

На применении вихревых токов основано большое количество различных конструкций дефектоскопов, специализирующихся на определении толщины и однородности листов металлопроката и покрытий на конструкциях, непрерывного измерения диаметра проволоки и пруткового проката во время их производства. Применяются вихретоковые устройства, наряду с ультразвуковыми, и для определения состояния лопаток турбин и других ответственных высоконагруженных узлов.

Магнитный метод неразрушающего контроля

Эта группа методик имеет в своей физической основе измерение взаимодействия исследуемого объекта с магнитным полем. Применяются для дефектоскопии ферромагнитных материалов и сплавов. Три основных вида магнитных исследований – это:

  • магнитопорошковый;
  • феррозондовый;
  • магнитографический.

Магнитный метод

Чтобы обнаружить неоднородность в структуре магнитного материала, его намагничивают, а поверхность смазывают специальной суспензией или гелем, содержащим калиброванные металлические частицы. Эти частицы концентрируются вдоль силовых линий магнитного поля, простым и наглядным способом визуализируя его. В местах неоднородностей и дефектов магнитное поле искажено, и линии его будут искривлены. Магнитографические опыты проводились учеными еще в XVIII веке, но для целей дефектоскопии были приспособлены только в XX.

Тепловой метод

Тепловые методики основаны на измерении интенсивности тепловых полей, излучаемых контролируемым устройством или конструкцией. Распределение температур на поверхности и градиент их изменения отражает распределение тепла внутри объекта. В местах дефектов и неоднородностей равномерная тепловая картина будет искажена.

Использование тепловизора для неразрушающего контроля

Использование тепловизора для неразрушающего контроля

Исследователи путем расчетов и экспериментов определили типовые изменения в тепловом портрете изделия, характерные для тех или иных дефектов, и в настоящее время распознавание таких особенностей доверяют компьютерам и нейронным сетям. Измерения тепловой картины на поверхности производят как с помощью контактных термометров, так и путем дистанционной пирометрии. С помощью теплового портрета обнаруживают дефекты сварки и пайки, нарушения герметичности сосудов, места концентрации внутренних напряжений и неисправные электронные компоненты. Самое широкое применение тепловой способ находит в электронике и приборостроении.

Радиационный метод неразрушающего контроля

Этот способ чрезвычайно эффективный, он позволяет получать информацию о самых крупных установках и конструкциях (практически без ограничения размера) путем просвечивания их проникающим ионизирующим излучением.

Радиационный метод неразрушающего контроля

Радиационный метод неразрушающего контроля

Применяется в следующих диапазонах:

  • гамма-лучи;
  • рентгеновское излучение;
  • нейтронное излучение.

Физической основой способа является возрастание плотности потока заряженных частиц в местах скрытых дефектов. На основании сравнения интенсивности прошедшего и отраженного потока делают вывод о глубине расположения неоднородности. Применяется при определении качества сварных швов на крупных изделиях, таких, как корпуса атомных или химических реакторов, турбин, магистральных трубопроводов и их запорной арматуры.

Метод неразрушающего контроля проникающими веществами

Суть способа заключается в том, что во внутренние полости контролируемого устройства или конструкции запускают специально подготовленную жидкость, реже — химически активное или радиоактивное вещество. По его скоплению или следам и определяют место дефекта.

Различают две разновидности:

  • капиллярный, для нахождения поверхностных капиллярных трещин, по которым и просачивается вещество – индикатор;
  • течеискание — для обнаружения утечек в трубопроводах и емкостях.

Метод неразрушающего контроля проникающими веществами

Метод неразрушающего контроля проникающими веществами

Поверхность тщательно очищают, далее наносят на нее вещество-индикатор, или пенетрант. После определенной выдержки наносят вещество — проявитель и наблюдают картину дефектов визуально. В случае применения радиоактивных маркеров обнаружение дефектов производят соответствующей рентгенографической аппаратурой. Методика обладает следующими достоинствами:

  • высокая чувствительность;
  • простота применения;
  • наглядность представления.

Он хорошо сочетается с другими методиками и служит им для взаимной проверки.

Оптический метод неразрушающего контроля

Оптический способ дефектоскопии основан на анализе оптических эффектов, связанных с отражением, преломлением и рассеянием световых лучей поверхностью или объемом объекта.

Оптический метод

Внешние оптические методики позволяют определять чистоту и шероховатость поверхностей, особо важную в точном машиностроении. При измерении размеров мелких деталей применяется физическое явление дифракции, шероховатость поверхностей определяется на основе интерференционных измерений.

Внутренние дефекты возможно выявить лишь для прозрачных материалов, и здесь оптическим методикам нет равных по дешевизне и эффективности.

Выгодно отличаются они своей простотой и малой трудоемкостью и при нахождении пороков поверхностей, таких, как трещины, заусенцы и забоины.

Особенности выбора метода неразрушающего контроля

В ряде отраслей промышленности, таких, как :

  • атомная;
  • химическая;
  • аэрокосмическая;
  • оборонная;

выбор способов дефектоскопии строго регламентирован государственными стандартами и нормами сертифицирующих организаций, таких, ка МАГАТЭ или Госатомнадзора.

Вне этих отраслей руководитель подразделения качества предприятия выбирает методики дефектоскопии, руководствуясь следующими параметрами:

  • физико-химические свойства применяемого материала;
  • размеры и прежде всего — толщина конструкции;
  • тип контролируемого объекта, соединения или конструкции;
  • требования технологического процесса;
  • стоимостные параметры того или иного способа дефектоскопии.

Универсального способа определить все дефекты и сразу не существует. При планировании стратегии качества изделия необходимо определить дефекты, наиболее значимые по степени привносимого ими риска неисправности. Далее находится та комбинация средств измерения и методик неразрушающего контроля, которая:

  • позволит выявить все критически значимые дефекты с заданной вероятностью;
  • минимизирует финансовые издержки трудозатраты;
  • окажет минимальное влияние на основной производственный процесс.

Средства неразрушающего контроля применяются сегодня практически на всех производствах — от авиазавода и судоверфи до авторемонтной мастерской и кондитерской фабрики. Контролируют прочность сварных швов и герметичность сосудов высокого давления, качество лакокрасочного покрытия и однородность массы для приготовления зефира в шоколаде. Экономя предприятиям средства на проведение выборочных испытаний на разрушение, применение неразрушающей дефектоскопии сказывается и на цене выпускаемых на рынок продуктов при одновременной гарантии их высокого качества.

Картинка Оптический неразрушающий контроль

Применение оптических методов неразрушающего контроля широко распространено в различных отраслях промышленного производства. Это связано с его обширными возможностями по диагностике технологического оборудования, конструкций и материалов, а также относительной простотой реализации. Основными сферами применения данного метода являются:

  • проверка проходимости вентиляционных каналов в составе производственных конструкций;
  • визуализация скрытых полостей в материалах и оборудовании;
  • обследование сооружений, конструкций и зданий;
  • проверка трубопроводного, сантехнического и иного специального оборудования;
  • другие сферы применения.

Основной принцип оптического метода

Оптический метод неразрушающего контроля базируется на исследовании характера взаимодействия оптического излучения с анализируемым объектом. Такое изучение представляет собой совокупность двух основных областей спектра, к которым относятся инфракрасная и ультрафиолетовая области. Они являются невидимыми для человеческого глаза. Поэтому для фиксации их параметров в процессе взаимодействия с объектом применяются специальные измерительные приборы. Они различаются в зависимости от типа фиксируемого излучения.

Методы оптического неразрушающего контроля

При проведении диагностических работ эксперт может остановить свой выбор на применении одного из методов оптического неразрушающего контроля. Этот выбор делается в зависимости от преимущественного типа дефектов, характерного для данной категории объектов. Они могут иметь вид пор, трещин, расслоений, включения инородных мелких или крупных объектов, а также иных нарушений целостности материала или изделия. Для таких целей применяются разные типы контроля с помощью оптических приборов. Основными методами оптического контроля являются:

Читайте также: