Очистка нефти от примесей реферат

Обновлено: 01.05.2024

Очистка нефтепродуктов - удаление компонентов,отрицательно влияющих на свойства топлива и масел из н/продуктов.

Очистка нефтепродуктов - это удаление компонентов, негативно влияющих на эксплуатационные свойства топлива и масел, из остатков от перегонки нефти, дистиллятов и др нефтепродуктов.

Этими компонентами могут быть сернистые и азотистые соединения, асфальтово-смолистые вещества, нефтено-ароматические и твердые углеводороды и тд.

Технологии очистки н/продуктов предполагают использование комплексов дорогостоящего высокотехнологичного оборудования, включающего колонны, экстракторы, роторно-дисковые контакторы, инжекторные смесители и тд.

В промышленности применяются химические, физико-химические и каталитические методы очистки.

Химическая очистка.

Производится путем воздействия различных реагентов на удаляемые компоненты очищаемых продуктов.

Наиболее простым способам является очистка 92-98%-ной серной кислотой и олеумом, применяемая для удаления непредельных и ароматических углеводородов, асфальтово-смолистых веществ, азотистых и сернистых соединений, и очистка щелочами (растворами едкого натра и кальцинированной соды) - для удаления некоторых кислородных соединений, сероводорода и меркаптанов.

Для удаления сернистых соединений применяют плюмбит натрия и некоторые др. реагенты.

Физико-химическая очистка.

Производится с помощью растворителей, избирательно удаляющих нежелательные компоненты из очищаемого продукта.

Полициклические ароматические углеводороды удаляют из остатков после переработки нефти (гудронов и полугудронов) асфальтово-смолистых веществ с помощью неполярных растворителей , к примеру, сжиженные пропан и бутан (процесс деасфальтизации).

Полициклические ароматические и нефтено-ароматические углеводороды с короткими боковыми цепями, непредельные углеводороды, сернистые и азотистые соединения, смолистые вещества из масляных дистиллятов и деасфальтизата удаляют с помощью полярных растворителей, к примеру,фенол, фурфурол и тд.

Твердые углеводороды из рафинатов (продуктов селективной очистки масляных дистиллятов и остатков), удаляют также в процессе деасфальтизации, с помощью полярных и неполярных растворители и их смесей, к примеру, кетонов в смеси с толуолом, хлорпроизводных углеводородов в смеси с бензолом и тд.

Твердые парафины удаляют путем кристаллизации их из растворов очищаемого продукта.

Очистка дизельного топлива, керосина, тяжелого бензина и маловязкого нефтяного масла производится комплексообразованием нормальных парафиновых углеводородов с карбамидом (карбамидная депарафинизация).

Непредельные углеводороды, смолы, кислоты и тд, полициклические ароматические и нафтеноароматические углеводороды удаляют с использованием адсорбционной очистки.

Адсорбционная очистка осуществляются прохождением нагретого продукта через тонкодисперсные адсорбенты (контактная очистка) или фильтрацией продукта через зёрна адсорбента.

Избирательная адсорбция при помощи молекулярных сит (цеолитов) позволяет выделить нормальные парафины из лёгких бензиновых и керосино-газойлевых фракций.

Каталитическая очистка.

Сернистые, азотистые и кислородные соединения, переходящие в углеводороды и легко удаляемые соединения (сероводород, аммиак, воду) удаляют путем гидрогенизации в мягких условиях ( технология гидроочистки).

Для депарафинизации масляного сырья, а также получения масел с высоким индексом вязкости, используется технология гидрогенизации в жёстких условиях, при которой происходит деструкция твёрдых углеводородов с образованием низкомолекулярных и низкозастывающих углеводородов.

Введение
Нефть
Состав
Углеводородные соединения
Гетеросоединения

Физические свойства
Способы переработки
Первичная переработка
Подготовка нефти а переработке
Общие сведения о перегонке и ректификации нефти
Нефтяные фракции

Вторичная переработка
Типы и назначение термолитических процессов
Процесс получения бензина из керосина
Процесс получения битумов
Процесс получения технического углерода
Повышение октанового числа

Экологические проблемы
Месторождения нефти в РФ
Цены на нефть
Нефть и жизнь

I. ВВЕДЕНИЕ

Нефть и продукты ее преобразования были известны еще в далеком прошлом, их использовали для освещения или в лечебных целях. Потребность в нефти и нефтепродуктах резко возросла в начале XX в. в связи с появлением двигателей внутреннего сгорания и быстрым развитием промышленности.

В настоящее время нефть и газ, а также получаемые из них продукты применяются во всех отраслях мирового хозяйства.
Нефть и газ используются не только в качестве топлива, но и в качестве ценного сырья для химической промышленности. Великий русский ученый Д. И. Менделеев говорил, что сжигать нефть в топках – преступление, так как она является ценным сырьем для получения множества химических продуктов. Из нефти и газа в настоящее время вырабатывается огромное число продуктов, которые используются в промышленности, сельском хозяйстве, в быту (минеральные удобрения, синтетические волокна, пластмассы, каучук и т. д.). В последние годы во многих странах мира ведутся исследования с целью переработки нефти и нефтепродуктов при помощи микроорганизмов в белки, которые могут быть использованы как корм для скота.

Экономика государств зависит от нефти больше, чем от любого другого продукта. Поэтому нефть с начала ее промышленной добычи и до настоящего времени является предметом острой конкурентной борьбы, причиной многих международных конфликтов и войн.

Зависимость государства от нефти как сырья или способа экономического влияния, определяет её уровень развития и положение на мировой арене.
Итак, нефть играет очень значимую роль в современном мире. Это не только одно из важнейших полезных ископаемых, которое является сырьем для получения невероятного множества веществ и мощным энергетическим ресурсом, но и крупнейший объект международной торговли, и неотъемлемое звено экономических отношений.

II. НЕФТЬ

Нефть – это природная горючая маслянистая жидкость, относящаяся к группе горных осадочных пород, одно из важнейших полезных ископаемых Земли. Отличается исключительно высокой теплотворностью: при горении выделяет значительно больше тепловой энергии, чем другие горючие смеси.

1. Состав

Нефть состоит главным образом из углерода – 80-85% и водорода – 10-15% от массы нефти. Кроме них в нефти присутствуют еще три элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5 – 8 %. В незначительных концентрациях в нефти встречаются ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий и др. Их общее содержание не превышает 0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоит нефть. Кислород и азот находятся в нефти только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

1.1 Углеводородные соединения

В состав нефти входит около 425 углеводородных соединений. Нефть в природных условиях состоит из смеси метановых, нафтеновых и ароматических углеводородов. В нефти также содержится некоторое количество твердых и газообразных растворенных углеводородов. Количество природного газа в кубометрах, растворенного в 1 т нефти в пластовых условиях, называется газовым фактором.
В нефтяных (попутных) газах кроме метана и его газообразных гомологов содержатся пары пентана, гексана и гептана.

Класс соединений

Процентное содержание

Парафины – насыщенные (не имеющие двойных связей между атомами углерода) углеводороды линейного или разветвлённого строения. Подразделяются на следующие основные группы:

  1. Нормальные парафины, имеющие молекулы линейного строения. Обладают низким октановым числом и высокой температурой застывания, поэтому многие вторичные процессы нефтепереработки предусматривают их превращение в углеводороды других групп.
  2. Изопарафины – с молекулами разветвленного строения. Обладают хорошими антидетонационными характеристиками и пониженной, по сравнению с нормальными парафинами, температурой застывания.
    Нафтены (циклопарафины) – насыщенные углеводородные соединения циклического строения. Доля нафтенов положительно влияет на качество дизельных топлив (наряду с изопарафинами) и смазочных масел. Большое содержание нафтенов в тяжёлой бензиновой фракции обуславливает высокий выход и октановое число продукта риформинга.

Ароматические углеводороды – ненасыщенные углеводородные соединения, молекулы которых включают в себя бензольные кольца, состоящие из 6 атомов углерода, каждый из которых связан с атомом водорода или углеводородным радикалом. Оказывают отрицательное влияние на экологические свойства моторных топлив, однако обладают высоким октановым числом.

Олефины – углеводороды нормального, разветвлённого, или циклического строения, в которых связи атомов углерода, молекулы которых содержат двойные связи между атомами углерода. Во фракциях, получаемых при первичной переработке нефти, практически отсутствуют, в основном содержатся в продуктах каталитического крекинга и коксования. Ввиду повышенной химической активности, оказывают отрицательное влияние на качество моторных топлив.

1.2 Гетеросоединения

Наряду с углеводородами в нефти присутствуют химические соединения других классов. Обычно все эти классы объединяют в одну группу – гетеросоединений. В нефти также обнаружено более 380 сложных гетеросоединений, в которых к углеводородным ядрам присоединены такие элементы, как сера, азот и кислород. Большинство из указанных соединений относится к классу сернистых соединений – меркаптанов. Это очень слабые кислоты с неприятным запахом. С металлами они образуют солеобразные соединения – меркаптиды. В нефтях меркаптаны представляют собой соединения, в которых к углеводородным радикалам присоединена группа SH. Меркаптаны разъедают трубы и другое металлическое оборудование буровых установок. Главную массу неуглеводородных соединений в нефтях составляют асфальтово-смолистые компоненты. Это темно-окрашенные вещества, содержащие помимо углерода и водорода кислород, азот и серу. Они представлены смолами и асфальтенами. Смолистые вещества заключают около 93% кислорода в нефти. Кислород в нефти встречается в связанном состоянии также в составе нафтеновых кислот (около 6%), фенолов (не более 1%), а также жирных кислот и их производных. Содержание азота в нефтях не превышает 1%. Основная его масса содержится в смолах. Содержание смол в нефтях может достигать 60% от массы нефти, асфальтенов – 16%. Асфальтены представляют собой черное твердое вещество. По составу они сходны со смолами, но характеризуются иными соотношениями элементов. Они отличаются большим содержанием железа, ванадия, никеля и др. Если смолы растворяются в жидких углеводородах всех групп, то асфальтены нерастворимы в метановых углеводородах, частично растворимы в нафтеновых и лучше растворяются в ароматических. В “белой” нефти смолы содержатся в малых количествах, а асфальтены вообще отсутствуют.

2. Физические свойства нефти

Важнейшими свойствами нефти являются плотность, содержание серы, фракционный состав, вязкость и содержание воды, хлористых солей и механических примесей.
Плотность нефти, зависит от содержания тяжелых углеводородов, таких как парафины и смолы.

По плотности можно ориентировочно судить об углеводородном составе нефти и нефтепродуктов, поскольку ее значение для углеводородов различных групп различно. Более высокая плотность сырой нефти указывает на большее содержание ароматических углеводородов, а более низкая – на большее содержание парафиновых углеводородов. Углеводороды нафтеновой группы занимают промежуточное положение. Таким образом, величина плотности до известной степени будет характеризовать не только химический состав и происхождение продукта, но и его качество. Наиболее качественными и ценными являются легкие сорта сырой нефти . Чем меньше плотность сырой нефти, тем легче процесс ее переработки нефти и выше качество получаемых из нее нефтепродуктов.

По содержанию серы сырую нефть в Европе и России подразделяют на малосернистую (до 0,5%), сернистую (0,51-2%) и высокосернистую (более 2%).
Нефть является смесью нескольких тысяч химических соединений, большинство из которых углеводороды; каждое из этих соединений характеризуется собственной температурой кипения, что является важнейшим физическим свойством нефти, широко используемым в нефтеперерабатывающей промышленности.

Присутствие механических примесей в составе нефти объясняется условиями ее залегания и способами добычи. Механические примеси состоят из частиц песка, глины и других твердых пород, которые, оседая на поверхности воды, способствуют образованию нефтяной эмульсии. В отстойниках, резервуарах и трубах при подогреве нефти часть механических примесей оседает на дне и стенках, образуя слой грязи и твердого осадка. При этом уменьшается производительность оборудования, а при отложении осадка на стенках труб уменьшается их теплопроводность. Массовая доля механических примесей до 0,005% включительно оценивается как их отсутствие.

Вязкость определяется структурой углеводородов, составляющих нефть, т.е. их природой и соотношением, она характеризует свойства распыления и перекачивания нефти и нефтепродуктов: чем ниже вязкость жидкости, тем легче осуществлять ее транспортировку по трубопроводам, производить ее переработку. Особенно важна эта характеристика для определения качества масленых фракций, получаемых при переработке нефти и качества стандартных смазочных масел. Чем больше вязкость нефтяных фракций, тем больше температура их выкипания.

III. СПОСОБЫ ПЕРЕРАБОТКИ НЕФТИ

Технологические процессы нефтеперерабатывающего завода принято классифицировать на две группы: физические и химические.
Физическими (массообменными) процессами достигается разделение нефти на составляющие компоненты (топливные и масляные фракции) без химических превращений и удаление (извлечение) из фракций нефти, нефтяных остатков, масляных фракций, газоконденсата и газов нежелательных компонентов (полициклических аренов, асфальтенов, тугоплавких парафинов), неуглеводных соединений.
В химических процессах переработка нефтяного сырья осуществляется путем химических превращений с получением новых продуктов, не содержащихся в исходном сырье. Химические процессы, применяемые на современных нефтеперерабатывающих заводах, по способу активации химические реакции подразделяют на термические и каталитические.

1. Первичная переработка

1.1 Подготовка нефти к переработке

1.2 Общие сведения о перегонке и ректификации нефти

Перегонка (фракционирование) – это процесс физического разделения нефти и газов на фракции (компоненты), отличающиеся друг от друга и от исходной смеси по температурным пределам кипения.
Перегонка с ректификацией – наиболее распространенный в химической и нефтегазовой технологии массообменный процесс, осуществляемый в аппаратах – ректификационных колоннах путем многократного противоточного контактирования паров и жидкости. Контактирование потоков пара и жидкости может производиться либо непрерывно (в насадочных колоннах), либо ступенчато (в тарельчатых ректификационных колоннах). При взаимодействии встречных потоков пара и жидкости на каждой ступени контактирования (тарелке или слое насадки) между ними происходит тепло- и массообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами: пар несколько обогащается низкокипящими, а жидкость – высококипящими компонентами. При достаточно длительном контакте и высокой эффективности контактного устройства пар и жидкость, уходящие из тарелки или слоя насадки, могут достичь состояния равновесия, т. е. температуры потоков станут одинаковыми и при этом их составы будут связаны уравнениями равновесия. Такой контакт жидкости и пара, завершающийся достижением фазового равновесия, принято называть равновесной ступенью, или теоретической тарелкой. Подбирая число контактных ступеней и параметры процесса, можно обеспечить любую требуемую четкость фракционирования нефтяных смесей. Место ввода в ректификационную колонну нагретого перегоняемого сырья называют питательной секцией (зоной), где осуществляется однократное испарение. Часть колонны, расположенная выше питательной секции, служит для ректификации парового потока и называется концентрационной (укрепляющей), а другая – нижняя часть, в которой осуществляется ректификация жидкого потока, – отгонной, или исчерпывающей, секцией.

Различают простые и сложные колонны.
Простые ректификационные колонны обеспечивают разделение исходной смеси на два продукта: ректификат (дистиллят), выводимый с верха колонны в парообразном состоянии, и остаток – нижний жидкий продукт ректификации.

Сложные ректификационные колонны разделяют исходную смесь более чем на два продукта. Различают сложные колонны с отбором дополнительных фракций непосредственно из колонны в виде боковых погонов и колонны, у которых дополнительные продукты отбирают из специальных отпарных колонн, именуемых стриппингами. Последний тип колонн нашел широкое применение на установках первичной перегонки нефти.
Четкость погоноразделения – основной показатель эффективности работы ректификационной колоны – характеризует их разделительную способность. Она может быть выражена в случае бинарных смесей концентрацией целевого компонента в продукте.

Применительно к ректификации нефтяных смесей она обычно характеризуется групповой чистотой отбираемых фракций, т. е. долей компонентов, выкипающих по кривой истинной температуры кипения до заданной температурной границы деления смеси в отобранных фракциях (дистиллятах или остатке), а также отбором фракций от потенциала. Как косвенный показатель четкости (чистоты) разделения на практике часто используют такую характеристику, как налегание температур кипения соседних фракций в продукте. В промышленной практике обычно не предъявляют сверхвысоких требований по отношению к четкости погоноразделения, поскольку для получения сверхчистых компонентов или сверхузких фракций потребуются соответствующие сверхбольшие капитальные и эксплуатационные затраты.

От основного количества воды и твердых частиц нефти освобождают путем отстаивания в резервуарах на холоду или при подогреве. Окончательно их обезвоживают и обессоливают на специальных установках .

👉Однако вода и нефть часто образуют трудно разделимую эмульсию, что сильно замедляет или даже препятствует обезвоживанию нефти.

В общем случае эмульсия есть система из двух взаимно нерастворимых жидкостей, в которых одна распределена в другой во взвешенном состоянии в виде мельчайших капель.

👉Существуют два типа нефтяных эмульсий: нефть в воде, или гидрофильная эмульсия, и вода в нефти, или гидрофобная эмульсия.

Чаще встречается гидрофобный тип нефтяных эмульсий. Образованию сойкой эмульсии предшествуют понижение поверхностного натяжения на границе раздела фаз и создание вокруг частиц дисперсной фазы прочного адсорбционного слоя. Такие слои образуют третьи вещества — эмульгаторы. К гидрофильным эмульгаторам относятся щелочные мыла, желатин, крахмал.

Гидрофобными являются хорошо растворимые в нефтепродуктах щелочноземельные соли органических кислот, смолы, а также мелкодисперсные частицы сажи, глины, окислов металлов и т.п., легче смачиваемые нефтью чем водой.

Существуют три метода разрушения нефтяных эмульсий:

* механический:

отстаивание — применяется к свежим, легко разрушимым эмульсиям. Расслаивание воды и нефти происходит вследствие разности плотностей компонентов эмульсии.

* химический:

в) растворением (разрушением) адсорбционной пленки в результате ее химической реакции с вводимым в систему деэмульгатором. Химический метод применяется чаще механического, обычно в сочетании с электрическим.

* электрический:

при попадании нефтяной эмульсии в переменное электрическое поле частицы воды, сильнее реагирующие на поле чем нефть, начинают колебаться, сталкиваясь друг с другом, что приводит к их объединению, укрупнению и более быстрому расслоению с нефтью.

В сочетании с химическим методом этот метод имеет наибольшее распространение в промышленной нефтепереработке.

Деятельность предприятий нефтяного комплекса приводит к образованию объемов шламовых отходов: шламов чистки резервуарных парков и оборудования, осадков и избыточных активных илов сооружений биологической очистки сточных вод, шламов химводоочистки теплоэлектроцентрали нефтеперерабатывающего завода (ТЭЦ НПЗ) и др.

В крупных градопромышленных агломерациях на долю нефтешламов приходится до 30 — 40% совокупного объема продуцируемых отходов. Большое количество шламов размещено в накопителях нефтеперерабатывающих и нефтехимических предприятий, в результате из использования выводятся сотни гектаров полезной территории. В настоящее время разработано несколько способов предложено несколько способов переработки нефтешламов, которые рассмотрены в данной работе.

ГЛАВА 1. ПЕРЕРАБОТКА НЕФТЕШЛАМОВ РЕЗЕРВУАРНОГО ТИПА

При всем многообразии характеристик различных нефтяных отходов в самом общем виде все нефтешламы могут быть разделены на три основные группы в соответствии с условиями их образования — грунтовые, придонные и резервуарного типа. Первые образуются в результате проливов нефтепродуктов на почву в процессе производственных операций, либо при аварийных ситуациях. Придонные шламы образуются при оседании нефтеразливов на дне водоемов, а нефтешламы резервуарного типа — при хранении и перевозке нефтепродуктов в емкостях разной конструкции.

В качестве конкретного примера можно привести результаты анализа массовой проверки чистоты и технического состояния резервуаров автозаправочных станций г. Москвы, проведенной в конце 1997 г. Анализ показал, что основу механических примесей составляют окислы железа (ржавчина) — 50-80% с включением кварцевого песка и смолистых отложений. Механические примеси содержатся в природных отложениях в 85% обследованных резервуаров, а вода — в 60%.

При попадании воды в объем нефтепродуктов происходит образование устойчивых эмульсий типа вода-масло, стабилизация которых обусловливается содержащимися в нефтепродуктах природными стабилизаторами из разряда асфальтенов, смол и парафинов.

Устойчивость эмульсий типа вода-масло объясняется главным образом наличием на поверхности капелек эмульсии структурно-механического барьера, представляющего собой двойной электрический слой на межфазной поверхности. В состав таких защитных пленок могут входить соли поливалентных металлов органических кислот и других полярных компонентов нефтепродукта, которые дополнительно адсорбируются на асфальто-смолистых агрегатах и переводят их в коллоидное состояние. В коллоидном же состоянии асфальтены обладают наибольшей эмульгирующей способностью. Многочисленные исследования указывают на существование прямой связи между устойчивостью эмульсии и концентрацией природных стабилизаторов на границе раздела фаз. Естественно, что концентрация таких веществ возрастает в объеме нефтепродуктов по мере увеличения их молекулярного веса (переход к тяжелым фракциям нефти). Помимо образования эмульсий в среде нефтепродуктов в процессе перевозки и хранения происходит образование полидисперсных систем при взаимодействии жидких углеводородов и твердых частиц механических примесей.

При длительном хранении резервуарные нефтешламы со временем разделяются на несколько слоев с характерными для каждого из них свойствами.

Следующий слой целиком состоит из отстоявшейся минерализованной воды с плотностью 1,01-1,19 г/см3.

Наконец, придонный слой (донный ил) обычно представляет собой твердую фазу, включающую до 45% органики, 52-88% твердых механических примесей, включая окислы железа. Поскольку донный ил представляет собой гидратированную массу, то содержание воды в нем может доходить до 25%.

Из приведенных данных по составу и свойствам разных типов нефтешламов резервуарного происхождения следует, что в процессе зачистки и переработки шламов могут быть применены различные технологические приемы в зависимости от их физико-механических характеристик. В большинстве случаев основная часть резервуарных нефтешламов состоит из жидковязких продуктов с высоким содержанием органики и воды и небольшими добавками механических примесей. Такие шламы легко эвакуируются из резервуаров и отстойников в сборные емкости с помощью разнообразных насосов. Гелеобразные системы, как правило, образуются по стенкам емкостей. Естественно, что наиболее легко образуются нефтешламы, когда внутренние покрытия резервуаров не обладают топливо- и коррозионностойкой защитой.

Тщательный анализ современных технологий по зачистке резервуаров от нефтешламов позволяет сделать однозначный вывод в пользу применения методов, основанных на принципах использования замкнутых, рециркуляционных процессов, включающих в себя и одновременную антикоррозионную защиту отмываемых поверхностей.

В основе таких способов зачистки резервуаров от нефтешламов лежат физико-химические особенности используемых моющих средств, которые обладают высокой деэмульгирующей способностью, обеспечивающей полное разделение моющего раствора и нефтепродукта.

Конкретное практическое воплощение указанные физико-химические принципы очистки находят, например, в моющих средствах, в которые в качестве базовых компонентов входит натриевая соль полиакриловой кислоты, электролит и вода. Такие составы показали высокую эффективность при зачистке железнодорожных цистерн и емкостей из-под нефти, мазута, масел и других нефтепродуктов объемом до 120 м3.

ГЛАВА 2. ОЧИСТКА УГЛЕВОДОРОДОВ НЕФТИ БИОТЕХНОЛОГИЧЕСКИМИ МЕТОДАМИ

В основе биотехнологий, направленных на улучшение экологических условий, лежит способность микроорганизмов к ферментативному окислению углеводородов нефти. Степень деструкции углеводородов коррелирует с увеличением численности и оксигеназной активности микроорганизмов. Микробное окисление углеводородов нефти происходит через серию каталитических процессов с образованием промежуточных продуктов метаболизма – спиртов, альдегидов, кетонов, жирных и карбоновых кислот, которые в конечном итоге окисляются до СО2.

Бактерии рода Pseudomonas

В ходе исследования по выделению микробов обнаружено, что они способные расщеплять карбазол и фенантрен в различных степенях. Минерализация этих соединения протекла как по классическому биохимическому пути, так и через альтернативные пути. Исследования проводили с использованием проб загрязненной почвы из трех разных мест территории нефтеперерабатывающего завода города Алжира.

Выявлено, что применение светокорректирующей пленки стимулирует на 2 порядка рост численности основных физиологических групп микрофлоры, участвующей в процессах восстановления нефтезагрязненных почв. При этом процессы биодеградации нефтяных загрязнений протекают в 5-6 раз быстрее. В конце эксперимента содержание нефти составило 34 г/кг почвы, в опытных образцах полностью отсутствовали легкие углеводороды С9-С15, и на 70-80 % уменьшилась концентрация углеводородов с большим молекулярным весом (С16–С34).

Обнаруженный эффект фотолюминесцентной активации может быть использован при разработке экологически безопасных методов восстановления нефтезагрязненных почв на ограниченных площадях.

Нефтесорбирующий бон состоит из сердечника, трубчатой оболочки и носителя. Трубчатая оболочка изготовлена из синтетического материала, например, ленточного капрона, который соединяется таким образом, что образует цилиндрическую поверхность – герметичную трубу, которая располагается вокруг сердечника и обеспечивает плавучесть бона. Трубчатая оболочка жестко соединена с носителем по длине с одной стороны сердечника или с двух противоположных сторон сердечника. Носитель выполнен в виде полимерных сорбирующих волокон с различной плотностью, чередующихся между собой. Полимерные волокна носителя, обладающие сорбирующими свойствами, пропитывают составом из микроорганизмов и биогенного питания, например, клетки Pseudomonas putida 36 и Arthrobacter oxydans-091 в комплексе с минеральными добавками аммонийных и фосфорных солей, обладающим высокой деструктивной способностью к нефти и нефтепродуктам.

— высокой нефтесорбирующей способностью;

— высокой барьерной функцией для оконтуривания нефтяных пятен в открытых проточных водоемах и в качестве заграждающего экрана для удержания нефти, нефтепродуктов в толще воды;

— высокой деструктивной способностью, т. к. содержит живые адсорбированные клетки микроорганизмов, что способствует микробиологической деструкции нефти и нефтепродуктов;

— простотой конструкции, что дает возможность быстрой установки практически в любом месте на реке.

ГЛАВА 3. ОБРАБОТКА ШЛАМОВЫХ ОТХОДОВ НЕФТЕПЕРЕРАБОТКИ БИОТЕРМИЧЕСКИМИ МЕТОДАМИ

Деятельность предприятий нефтяного комплекса приводит к образованию объемов шламовых отходов: шламов чистки резервуарных парков и оборудования, осадков и избыточных активных илов сооружений биологической очистки сточных вод, шламов химводоочистки теплоэлектроцентрали нефтеперерабатывающего завода (ТЭЦ НПЗ) и др.

В крупных градопромышленных агломерациях на долю нефтешламов приходится до 30 — 40% совокупного объема продуцируемых отходов. Большое количество шламов размещено в накопителях нефтеперерабатывающих и нефтехимических предприятий, в результате из использования выводятся сотни гектаров полезной территории.

В табл. 1 представлены ориентировочные годовые объемы некоторых видов шламовых отходов, образующихся на НПЗ мощностью до 10 млн. т/год по сырой нефти.

Нефтешламовые отходы представляют собой сырье, пригодное к использованию в качестве грунтоподобных материалов экранирования полигонов, рекультивации несанкционированных свалок, заполнения выемок отработанных карьеров. Однако перед утилизацией они должны подвергаться обработке в целях снижения токсичности путем разложения углеводородов.

Перспективным способом разложения токсичных нефтепродуктов в шламовых отходах является биотермическое компостирование.

Сотрудники Самарского государственного технического университета разработали технологии интенсивного биотермического компостирования нефтешламовых отходов для их последующей утилизации в качестве рекультивационных материалов

При разработке технологии решались следующие задачи:

• интенсификация аэробной биодеструкции углеводородов в шламовых отходах, имеющих неблагоприятный для компостной микрофлоры химический состав;

• исследование возможности применения для биообработки углеводородсодержащих шламов добавок на основе отходов вспомогательных производств нефтетехнологического комплекса взамен природных материалов;

• функционально-компоновочное и конструктивно-технологическое оформление сооружений интенсивной биодеструкции нефтешламов.

Биотермическая обработка шламовых отходов осуществляется с использованием порообразующих и инокулирующих добавок на основе природных материалов: перлита, торфа, лигнина, древесных отходов, отходов агропромышленного комплекса и др. [1].

Добавки создают в нефтешламовой смеси условия, благоприятные для жизнедеятельности аэробной компостной микрофлоры. Некоторые добавки, такие, как лигнин и доломитовая мука, выполняют функции нейтрализаторов, корректируя реакцию среды. Массовые соотношения шламовых отходов и добавок лежат в пределах от 1:0,5 до 1:2. Большие объемы добавок на основе природного сырья, удаленность источников их образования от нефтеперерабатывающих предприятий и соответственно высокая стоимость транспортировки сдерживают массовое применение технологий компостирования шламов.

С целью снижения затрат предлагается заменять природные добавки материалами на основе шламовых отходов нефтяного комплекса: осадками и активными илами сооружений очистки нефтесодержащих стоков, шламами водоподготовки, золошлаками ТЭЦ НПЗ и др. Такие отходы имеют ресурсное, технологическое и генетическое сродство с обрабатываемыми нефтешламами и позволяют реализовать принцип «обработки подобного подобным [2].

В табл. 2 приведен состав некоторых отходов нефтяного комплекса, пригодных для производства рекультивационных материалов, а также инокулирующих и порообразующих добавок компостирования нефтешламов.

Перед биотермическим компостированием нефтешламов проводится их декантация с отделением водной фазы и свободных углеводородов. Затем нефтешламы транспортируются на специализированные сооружения биообработки. Здесь их смешивают с порообразующими и инокулирующими добавками. Исходная смесь формируется в виде пласта или штабеля и подвергается аэрации в естественных (периодическое перемешивание) или искусственных (продувка) условиях.

Жизнедеятельность аэробной нефтеразрушающей микрофлоры приводит к биохимическому распаду углеводородов с выделением теплоты (явление термогенеза). При этом общая продолжительность разложения основной массы углеводородов в шламовых отходах в классических схемах составляет от 6 месяцев до 2 лет в зависимости от природных условий и способов интенсификации. Процесс компостирования нефтешламов описывается температурно-временной характеристикой [1, 3].

Компостирование нефтешламов по классической схеме сопровождается последовательной сменой температурных фаз.

Фаза нарастания температур является лимитирующей. Чем быстрее процесс выйдет на термофильный режим в диапазоне температур от 50 до 70°С, тем быстрее произойдет биоразложение основной массы нефтепродуктов в шламах.

Накопленный авторами опыт показывает, что в компостируемых нефтеотходах процесс выхода на термофильную стадию длителен, иногда продолжается до полугода. Это связано с биоингибированием природной компостной микрофлоры токсичными углеводородами шламов. Например, биоразложение нефтепродуктов, осуществлявшееся по классической схеме без интенсификации, протекает не менее года.

Для интенсификации процесса в условиях жесткого метаболизма рекомендуется проводить инокуляцию или вводить в шламовую смесь стартовые дозы микроорганизмов, адаптированных к разложению нефтепродуктов. В качестве аборигенной микрофлоры-инокулятора предложено использовать осадки первичных отстойников и избыточный активный ил сооружений биологической очистки сточных вод НПЗ. При этом в компостируемый материал вносится дополнительный субстрат, содержащий доступные формы биогенных элементов.

Низкие значения рН = 5-5-6, например, в шламах первичной переработки высокосернистой нефти также препятствуют протеканию термогенеза. Это вызвано подавлением активации компостной микрофлоры с цистированием части микробных клеток и невозможностью их выхода из спорового состояния. Со временем микрофлора адаптируется к низким значениям рН. Однако время адаптации составляет не менее 2 — 3 мес, а в холодное время года — и до полугода, что, естественно, приводит к увеличению общей продолжительности обработки, размеров земельных площадей, отторгаемых под компостирование, и капитальных затрат на сооружения.

Для ускорения обработки кислых шламов авторами предложено использовать добавки на основе щелочных шламов химводоочистки и шлаков ТЭЦ НПЗ, пригодных в качестве корректоров реакции среды (Пат. 2250146 РФ).

Один из способов интенсификации биотермической обработки — управление аэрацией, размерами и формой штабелей компоста в зависимости от стадийности процесса. Например, на фазе роста температур с одновременной инокуляцией смеси стартовыми дозами адаптированной микрофлоры аэрация должна осуществляться в непрерывном режиме, а толщина слоя компоста, подвергаемого продувке, должна быть не более 1,5 — 2 м.

После подъема температуры выше 50°С смесь из инокулируемых штабелей перемещают в высоконагружаемый кавальер высотой до 6 — 8 м, а аэрацию проводят периодически, контролируя динамику термогенеза и степень распада углеводородов. На этой фазе можно использовать компостируемый материал для производства экранов биологической рекультивации полигонов.

С выходом компостируемой смеси на стадию медленного падения температуры полученный компост переносят в бурт дозревания и гуммификации.

Полученный рекультивационный материал можно использовать для заполнения отработанных карьеров, в планировочных работах, а также для технического экранирования заполненных накопителей промышленных отходов на стадии их ликвидации или консервации.

Температурно-временная характеристика компостирования нефтешламов с использованием интенсивных технологий представлена на рис. 3. Благодаря внесению инокулирующих и нейтрализующих добавок продолжительность процесса по сравнению с классической схемой оказалась почти в 2 раза меньше и составила 202 сут. вместо одного года (см. рис. 2). Ускорению процесса также способствовало выделение функциональных зон в общей технологической цепочке компостирования нефтешламов (зоны инокуляции, высоких температур, дозревания и гумификации) и дифференцированное управление аэрацией в каждой из них в соответствии с динамикой термогенеза.

Выделение при компостировании дифференцированных температурных зон и интенсивное управление процессом в каждой из этих зон стало основой для конструктивно-технологического и функционально-компоновочного оформления сооружений по биодеструкции нефтепродуктов в нефтесодержащих шламах. На рис. 4 представлен комплекс по биодеструкции нефтешламовых отходов, разработанный авторами и успешно внедренный на одном из предприятий Самарской области.

Производительность комплекса составляет 10 тыс. т шламов в год, в том числе: нефтешламов и замазученных грунтов — 5 тыс. т; шламов и избыточных активных илов канализационно-очистных сооружений НПЗ — Зтыс.т; по шламам химводоочистки ТЭЦ НПЗ — 2 тыс. т.

После обработки на комплексе шламы с остаточной концентрацией углеводородов 0,5 — 1,0% по массе были использованы в качестве грунтоподобных материалов при рекультивации ряда объектов размещения бытовых и промышленных отходов Самарской области.

Внедрение комплексов биодеструкции шламов на нефтедобывающих и нефтеперерабатывающих предприятиях позволяет сократить площадь земель, отторгаемых под размещение шламов, в десятки раз и снизить нагрузку на все компоненты окружающей природной среды.биотехнология экологический очистка нефть

СПИСОК ИСТОЧНИКОВ

1. Экологическая биотехнология / Пер. с англ. под ред. К.Ф. Форстера, Д.А.Дж. Вейза. Л.: Химия, 1997.

2. Одум Ю. Экология / Пер. с англ. под ред. В.Е. Соколова: В 2-х т. М: Мир, 1986.

3. Чертес, К.Л., Туровский, И.С. Технология компостирования осадков сточных вод. М.: ВНИПИЭИлеспром, 1998.

Читайте также: