Нетрадиционные и возобновляемые источники энергии реферат

Обновлено: 02.07.2024

Перспективной задачей в энергетическом комплексе 21 века является использование и внедрение возобновляемых источников энергии. Это позволит снизить нагрузку на экологическую систему планеты. Применение традиционных источников негативно влияет на экологию и приводит к исчерпанию земных недр. К ним относятся:

  • уголь;
  • природный газ;
  • нефть;
  • уран.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Альтернативная энергетика – система новых способов и методов получения, передачи и применения энергии, которые используются слабо, однако являются выигрышными для окружающей среды.

Альтернативные источники энергии (АИЭ) – вещества и процессы, которые существуют в природной среде и дают возможность получать необходимую энергию.

Структура и обоснованная необходимость в их применении

К нетрадиционным источникам энергии относят:

  • солнечную;
  • ветровую;
  • геотермальную;
  • энергию морей, рек, приливов;
  • биоэнергетику;
  • энергию атмосферного электричества и грозовую энергетику.

Увеличение населения Земли требует больших энергетических затрат. Запас полезных ископаемых, представляющих традиционные источники, не безграничен. Поэтому ведется активный поиск путей решения энергетической проблемы. Переход на использование чистых, природных источников является важной вехой в развитии человечества.

Основные причины, побуждающие к переходу на АЭИ:

  1. Глобально-экологическая. Применение традиционных энергодобывающих технологий ведет мир к глобальной экологической катастрофе. Одно из таких последствий – изменение климата, которое длится уже несколько лет.
  2. Политическая. Страна, освоившая АЭИ первой, сможет диктовать цены на топливные ресурсы.
  3. Экономическая. Переход на нетрадиционные энергетические технологии даст возможность перераспределить топливные ресурсы для развития промышленности. Стоимость альтернативной энергии значительно ниже, чем электроэнергии, получаемой из традиционных источников.
  4. Социальная. С ростом численности населения становится сложным найти место для строительства АЭС и ГРЭС, которое было бы безопасным для окружающих. Исследования показали, что у населения, проживающего неподалёку от таких станций, подтвержден больший процент онкологических и других тяжелых заболеваний.
  5. Эволюционно-историческая. Объем топливных ресурсов ограничен, биосфера и атмосфера страдают от их использования. Эти факторы тормозят процесс эволюции человечества. Переход на альтернативные источники энергии будет толчком к новому этапу развития.

Виды нетрадиционных источников энергии, преимущество и недостатки

Виды нетрадиционных источников энергии

Преимущества ВИЭ:

  • неисчерпаемость ресурсов;
  • уменьшение негативного воздействия на окружающую природу и здоровье людей.

Недостатки ВИЭ:

  • небольшая плотность энергетического потока;
  • скачкообразность объемов выработки энергии;
  • высокая стоимость оборудования энергодобывающих установок.

Солнечная энергия

Гелиоустановки используют энергию Солнца для потребностей теплоснабжения и для производства электричества. Способов преобразования солнечного излучения существует множество. Оптимальным и наиболее распространенным считают метод, основанный на использовании фотоэлектрических преобразователей. Такие фотоэлементы объединяют в солнечные батареи.

В 80 странах мира ведется активное строительство солнечных электростанций. Крупная фотоэлектрическая установка расположена в Канаде, в провинции Онтарио (Sarnia PV рlant). Площадь электростанции – 385 гектаров. Она способна снабжать электроэнергией свыше 12 000 домохозяйств.

В 100 км от Рима находится самая крупная электростанция в Италии – Montalto di Castro. Она оснащена аэрационной системой, которая защищает модули установки от возникновения коррозии под влиянием соленого морского воздуха.

В России насчитывается свыше 40 солнечных электростанций, которые расположены преимущественно в Крыму, Оренбургской и Астраханской областях, Республике Башкортостан, Республике Алтай.

Преимущества солнечной энергии:

  • возобновляемый источник;
  • бесшумная работа;
  • экологически чистое преобразование солнечного излучения в другие виды энергии.

Недостатки:

  • высокая стоимость оборудования для гелиоустановок;
  • привязанность интенсивности излучения Солнца к сезонам и времени суток;
  • строительство солнечных электростанций занимает большие территории;
  • использование токсичных соединений при создании фотоэлектрических элементов, что приводит к проблеме их утилизации.

Ветровая энергия

Начало использования энергии ветра восходит к появлению ветряных мельниц, которые были принесены крестоносцами в Европу в 13 веке.

Принцип действия ветрогенератора прост. Сила ветра заставляет двигаться ветряное колесо, вращение которого передается ротору электрогенератора.

Ветроэнергетические установки распространены в США, Китае, Индии.

Мировой лидер по установленной мощности ветрогенератов на душу населения Дания обеспечивает 47% спроса на электроэнергию за счет них. К 2030 году власти планируют полностью отказаться от использования полезных ископаемых для производства электроэнергии.

Крупнейший в мире морской ветропарк Walney Extension расположен в Великобритании и насчитывает 87 ветряных турбин. Они способны обеспечить электроэнергией около 600 000 домохозяйств.

Среди наземных ветропарков следует выделить расположенные в США Fowler Ridge (штат Индиана) и Penascal (штат Техас).

В России расположено 16 действующих ветровых электростанций (Крым, Ульяновская, Оренбургская и Калининградская области, Республика Калмыкия).

Преимущества ветряных электростанций:

  • неисчерпаемость энергии;
  • не наносит вред экологии.

Недостатки:

  • отдельный ветрогенератор обладает слабой мощностью;
  • переменчивость силы ветра;
  • шум, производимый ветрогенераторами, нарушает перелеты птиц и насекомых;
  • поблизости от таких станций возникают помехи в радиоволнах и работе военных.

Для того, чтобы не нарушать природный баланс, в США перед строительством ветряных парков проводят исследования путей миграции птиц. В дальнейшем производится установка радаров, которые улавливают приближение стай и временно отключают ветрогенераторы.

Геотермальная энергия

Большие объемы тепловой энергии хранятся в глубине Земли, что объясняется высоким температурным показателем земного ядра. В качестве источников геотермальной энергии используют вулканические области, горячие источники воды или пара.

Геотермальные электростанции преобразовывают энергию горячих подземных вод в электричество.

Значимой ГеоЭС называют бинарную электростанцию в Новой Зеландии (вблизи Таупо, остров Северный). Она способна обеспечивать дома электричеством, отоплением и горячим водоснабжением. Страна – мировой лидер по производству геотермальной энергии. Её доля в энергетике Новой Зеландии составляет 14%.

Крупнейшей в мире одиночной ГеоЭс являеется электростанция в Кении Оликария 4, мощностью 140 мегаватт.

Мощный геотермальный комплекс расположен в США. Он состоит из 22 геотермальных электростанций, суммарная мощность которых составляет 1517 МВт.

На территории России расположены 4 ГеоЭС. Первая из них была создана во времена СССР на Камчатке.

Преимущества геотермальной энергетики:

  • неисчерпаемость источников;
  • сезонная и суточная независимость.

Среди минусов выделяют:

  • минерализация и, изредка, токсичность термальных вод, что вызывает необходимость после переработки закачивать воды обратно в подземные недра;
  • вероятность возникновения землетрясений при вмешательстве в слои Земли.

Энергия приливов и волн

Мировой океан создает энергию разнообразных видов:

  • энергия биомассы;
  • приливов и отливов;
  • энергия океанических течений;
  • тепловая.

По мнениям исследователей, к 2050 году энергией, вырабатываемой из Мирового океана можно будет заменить энергетические мощности 250 ядерных реакторов.

В Японии (префектура Кагошима) создали установку, генерирующую электроэнергию из океанических течений.

Цель Шотландии состоит в переходе к 2030 году на энергию альтернативных источников. Шотландские приливы самые мощные в Европе, что позволило запустить строительство самой крупной в мире приливной электростанции. За её счет 175 000 домохозяйств будут обеспечены электричеством.

Лидером по разработке технологий развития приливной энергетики выступает Великобритания.

Единственная приливная электростанция в России расположена в губе Кислая Баренцева моря, возле поселка Ура-Губа Мурманской области.

Плюсы использования энергии приливов:

  • экологичность;
  • низкая себестоимость добычи энергии.

Недостатки:

  • высокая стоимость строительства установок;
  • зависимость мощности от времени суток.

Биоэнергетика

Данный альтернативный источник относится к вторичным, его вырабатывают из биотоплива. Промышленные и сельскохозяйственные предприятия всё чаще получают необходимую им электроэнергию путём выделения её из органического мусора.

К альтернативному биотопливу относят:

  • отходы сельского хозяйства и деревообработки (твердое);
  • биодизель, биомазут, метанол, этанол, бутанол (жидкое);
  • водород, метан, биогаз (газообразное).

Преимущества использования биотоплива:

  • утилизация органического мусора;
  • снижение уровня загрязнения окружающей среды;
  • изготовляется из возобновляемых ресурсов;
  • снижение выброса парниковых газов в атмосферу;
  • культуры, выращиваемые для биотоплива, поглощают оксид углерода;
  • лёгкое в транспортировке;
  • отличается высокой энергоплотностью.

К недостаткам относят:

  • территориальное ограничение (для выращивания биотопливных культур подходит местность с определенными климатическими условиями);
  • представляет угрозу продовольственной безопасности (земли могли бы использоваться для выращивания сельскохозяйственных культур);
  • разрушение малых экосистем вследствие применения пестицидов для удобрения.

Энергия малых рек

К альтернативным источникам гидроэнергетики относят малые гидроэлектростанции. Такие установки обладают мощностью 5-10 МВТ.

Малая гидроэнергетика – наиболее освоенный вид возобновляемых нетрадиционных источников энергии. Мировым лидером в этой сфере выступает Китай. Малые ГЭС широко используются в ряде других стран: Германии, Австрии, Испании, Канаде, Японии, Украине, Беларуси, Бразилии, России (Алтайский край).

Преимущества развития малой гидроэнергетики:

  • строительство в короткие сроки;
  • низкая степень воздействия на окружающую среду;
  • постоянный источник энергии;
  • надежность электроснабжения;
  • близость к потребителю.

Недостатки:

  • малые источники могут промерзать, останавливая работу системы;
  • высокие затраты на строительство;
  • необходимость строительства плотины, что не всегда может быть одобрено природным законодательством.

Атмосферное электричество и грозовая энергетика

Процессы испарения, образования облаков, переноса тепла и влаги, происходящие в нижних атмосферных слоях, сопровождаются явлениями электризации. Вследствие этих факторов, в атмосфере образуется энергетический ресурс.

Исследования в отрасли атмосферного электричества начали проводить с 1850-1860-х годов. Свой вклад внёс и Никола Тесла, который предложил способ преобразования высокого постоянного атмосферного напряжения в низкое переменное.

Новые исследования бразильских ученых дали возможность найти способ преобразования электрических зарядов в атмосфере в электрический ток.

Преимущества атмосферных электростанций:

  • экологически чистая энергия;
  • независимость от времени года или суток;
  • оборудование станций расположено в воздухе, что экономит земные территории.

Недостатки:

  • невозможность создавать запасы, кроме как, преобразовывая в другие соединения (водород);
  • существует вероятность нарушения глобального электрического контура;
  • высокое напряжение представляет опасность для персонала;
  • расположение оборудования на высоте может представлять опасность для авиации.

Грозовая энергетика находится на стадии освоения. Для удержания и использования энергии молнии требуются мощные и дорогостоящие системы. Специалистами NASA проведены исследования и разработана карта, показывающая все точки мира с наиболее частыми ударами молнии. В дальнейшем эти теоретические разработки помогут опредделить наиболее перспективную территорию для получения грозовой энергии.

Человечеству нужна электроэнергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива — урана и тория, из которого можно получать в реакторах-размножителях плутон.

Содержание

Введение
Глава 1. Нетрадиционные источники энергии
Глава 2. Источники возобновляемой энергии
2.1. Энергия ветра
2.2. Гидроэнергия
2.3. Энергия приливов и отливов
2.4. Энергия волн
2.5. Энергия солнечного света
2.6. Геотермальная энергия
Глава 3. Политика России в области нетрадиционных и возобновляемых источниках энергии
Глава 4. Меры поддержки возобновляемых источников энергии
4.1. Зеленые сертификаты
4.2. Возмещение стоимости технологического присоединения
4.3. Фиксированные тарифы на энергию ВИЭ
4.4. Система чистого измерения
4.5. Инвестиции
Глава 5. ВНИЭ в современном мире
Заключение
Список использованных источников

Введение

Человечеству нужна электроэнергия, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива — урана и тория, из которого можно получать в реакторах-размножителях плутоний. Поэтому важно на сегодняшний день найти выгодные источники электроэнергии, причем выгодные не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкций, эксплуатации, дешевизны материалов, необходимых для постройки станции, долговечности станций.

Данный реферат является кратким обзором возобновляемых и неисчерпаемых источников энергии. В работе рассмотрены нетрадиционные источники электрической энергии.

Цель работы – прежде всего, ознакомиться с современным положением дел в этой необычайно широкой проблематике в России и в мире.

Российская энергетика сегодня — это 600 тепловых, 100 гидравлических, 9 атомных электростанций. Есть, конечно, несколько электростанций использующих в качестве первичного источника солнечную, ветровую, гидротермальную, приливную энергию, но доля производимой ими энергии очень мала по сравнению с тепловыми, атомными и гидравлическими станциями.

Глава 1. Нетрадиционные источники энергии

В соответствии с резолюцией № 33/148 Генеральной Ассамблеи ООН (1978 г) к нетрадиционным и возобновляемым источникам энергии относятся: солнечная, ветровая, геотермальная, энергия морских волн, приливов и океана, энергия биомассы, древесины, древесного угля, торфа, тяглового скота, сланцев, битуминозных песчаников и гидроэнергия больших и малых водотоков.

Начиная с 90-х годов, по инициативе ЮНЕСКО при поддержке государств-членов ООН и заинтересованных организаций проводятся мероприятия по продвижению идеи широкого использования возобновляемых источников.

Всё это многообразие сводится, как показано на рисунке 1, к трём глобальным видам источников: энергии Солнца, тепла Земли и энергии орбитального движения планет, причём солнечное излучение по мощности превосходит остальные более чем в 1000 раз. Невозобновляемыми источниками энергии являются нефть, газ, уголь, сланцы. Извлекаемые запасы органического топлива в мире оцениваются следующим образом (млрд.т.у.т.):

  • уголь — 4850
  • нефть — 1140
  • газ — 310
  • всего – 6310.

При уровне мировой добычи девяностых годов (млрд.т.у.т) соответственно 3,1 — 4,5 — 2,6, всего — 10,3 млрд.т.у.т, запасов угля хватит на 1500 лет, нефти — на 250 лет и газа — 120 лет. Не такая уж блестящая перспектива оставить потомков без энергетического обеспечения. Особенно учитывая устойчивую тенденцию удорожания нефти и газа. И чем дальше, тем более быстрыми темпами. Между тем теоретический потенциал солнечной энергии, приходящий на Землю в течение года, превышает все извлекаемые запасы органического топлива в 10-20 раз. А экономический потенциал возобновляемых источников энергии в настоящее время оценивается в 20 млрд.т.у. т в год, что в два раза превышает объём годовой добычи всех видов органического топлива. И это обстоятельство указывает путь развития энергетики будущего, не такого уж и далёкого. Повсеместный переход на возобновляемые источники энергии не происходит лишь потому, что промышленность, машины, оборудование и быт людей на Земле сориентированы на органическое топливо. А ещё потому, что некоторые виды возобновляемых источников энергии непостоянны и имеют низкую плотность энергии.

Основное преимущество возобновляемых источников энергии — их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Эти качества и послужили причиной бурного развития возобновляемой энергетики за рубежом и весьма оптимистических прогнозов их развития в ближайшем десятилетии. Возобновляемые источники энергии играют значительную роль в решении трёх глобальных проблем, стоящих перед человечеством: энергетика, экология, продовольствие.

Таблица 1: Роль НВИЭ в решении трёх глобальных проблем человечества (энергетика, экология, продовольствие) + положительное влияние, — отрицательное влияние, 0 — отсутствие влияния.

Вид ресурсов или установок Энергетика Экология Продовольствие
Ветроустановки + + + 1)
Малые и микроГЭС + + + 2)
Солнечные тепловые установки + + + 3)
Солнечные фотоэлектрические установки + + + 4)
Геотермальные электрические станции + +/- 0
Геотермальные тепловые установки + +/- + 5)
Биомасса. Сжигание твёрдых бытовых отходов + +/- 0
Биомасса. Сжигание сельскохозяйственных отходов, отходов лесозаготовок и лесопереработок + +/- + 6)
Биомасса. Биоэнергетическая переработка отходов + + + 7)
Биомасса. Газификация + + 0
Биомасса. Получение жидкого топлива + + + 8)
Установки по утилизации низкопотенциального тепла + + 0

Примечания:

1) Водоподъёмные установки на пастбищах и в удалённых населённых пунктах.

В современном мире существуют несколько глобальных проблем. Одна из них - истощение природных ресурсов. С каждой минутой в мире используется огромное количество нефти и газа для нужд человека. Поэтому возникает вопрос: на долго ли нам хватит этих ресурсов, если продолжать их использовать в таком же огромном объеме? По расчетам, запас нефтяных ресурсов планеты исчерпается к концу нынешнего столетия. То есть, нашим внукам и правнукам будет нечего использовать для получения энергии? Звучит пугающе. Также использование традиционных полезных ископаемых плохо влияет на экологическую обстановку мира. Поэтому, человечество сейчас все больше задумывается об альтернативных источниках получения энергии. В этом и состоит актуальность данной реферативной работы.

1. Возобновляемые энергоресурсы

1.1. Классификация возобновляемых источников энергии

Возобновляемые источники энергии (ВИЭ) - это энергоресурсы постоянно существующих природных процессов на планете, а также энергоресурсы продуктов. жизнедеятельности биоцентров растительного и животного происхождения [1] Характерной особенностью ВИЭ является цикличность их возобновления, которая позволяет использовать эти ресурсы без временных ограничений.

Обычно, к возобновляемым источникам энергии относят энергию солнечного излучения, потоков воды, ветра, биомассы, тепловую энергию верхних слоев земной коры и океана.

ВИЭ можно классифицировать по видам энергии:[3]

механическая энергия (энергия ветра и потоков воды);

тепловая и лучистая энергия (энергия солнечного излучения и тепла Земли);

химическая энергия (энергия, заключенная в биомассе).

Потенциальные возможности ВИЭ практически неограниченны, но несовершенство техники и технологии, отсутствие необходимых конструкционных и других материалов пока не позволяет широко вовлекать ВИЭ в энергетический баланс. Однако за последние годы в мире особенно заметен научно-технический прогресс в сооружении установок по использованию ВИЭ и в первую очередь: фотоэлектрических преобразований солнечной энергии, ветроэнергетических агрегатов и биомассы.

Целесообразность и масштабы использования возобновляемых источников энергии определяются в первую очередь их экономической эффективностью и конкурентоспособностью с традиционными энергетическими технологиями. Это объясняется несколькими причинами:

Нет потребности в транспортировке;

ВИЭ - экологически выгодны и не загрязняют окружающую среду;

Отсутствие топливных затрат;

При определенных условиях, в малых автономных энергосистемах, ВИЭ могут оказаться экономически выгоднее, чем традиционные ресурсы;

Нет необходимости в использовании воды в производстве.

исчерпание в ближайшем будущем разведанных запасов органического топлива;

загрязнением окружающей среды окисями азота и серы, углекислым газом, пылевидными остатками от сгорания добываемого топлива, радиоактивным загрязнением и тепловым перегревом при использовании ядерного топлива;

быстрым ростом потребности в электрической энергии, потребление которой может возрасти в несколько раз в ближайшие годы.

1.2. Ветроэнергетика

Энергия ветра уже более 6000 тысяч лет используется людьми. Первые простейшие ветродвигатели применяли в глубокой древности в Египте и Китае. В Египте (около Александрии) сохранились остатки каменных ветряных мельниц барабанного типа, построенных ещё во II-I вв. до н. э. Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в 13-м веке принесены в Европу крестоносцами.

Начиная с XIII в., ветродвигатели получили широкое распространение в Западной Европе, особенно в Голландии, Дании и Англии, для подъёма воды, размола зерна и приведения в движение различных станков.

Однако в начале 19-20 вв. НТП затормозил развитие ветроэнергетики. Полезные ископаемые, такие как нефть и газ, заменили ветер в качестве источника энергии. Но человечество такими темпами истощает природные ресурсы Земли, что вновь встает вопрос о возврате к истокам, т.е. к новому этапу развития ветровой энергетики.

Наиболее острый вопрос ветроэнергетики - экономическая эффективность ВЭУ. Очень важно выбрать правильное место для установки агрегатов. Для этого существуют специальные характеристики, позволяющие правильно подобрать местоположение. Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км от берега (а иногда и дальше) строятся оффшорные фермы. Башни ветрогенераторов устанавливают фундаменты из свай, забитых на глубину до 30 метров. Также могут использоваться и другие типы подводных фундаментов, а также плавающие основания.

Не стоит забывать, что производительность энергии зависит от 2 главных факторов: направления и скорости ветра.

Скорость ветра - главное препятствие развития ветровой энергетики. Ветер характеризуется не только многолетней и сезонной изменчивостью. Он может менять скорость и направление в течение очень коротких промежутков времени. Отчасти кратковременные колебания скорости ветра компенсируются самим ветроагрегатом, особенно на больших скоростях ветра, когда он начинает подтормаживать своё вращение (обычно, после 13-15 м/с). Однако более длительные изменения или снижение скорости ветра влияют на выработку ветроагрегата и всего ветропарка в целом. Но в современной ветроэнергетике этот недостаток сводится к минимуму тем, что ветромониторинг, начинающийся еще на предпроектной стадии, продолжает вестись и в дальнейшем. Накопленная база данных ветропотенциала позволяет прогнозировать выработку ветропарка уже на 2-м году его эксплуатации на 24 часа вперед с достаточно высокой для электрических сетей точностью.

Все ветровые установки можно разделить на 2 больших типа: с вертикальной осью вращения ротора и с горизонтальной.

Агрегаты с горизонтальной осью вращения являются традиционной компоновкой ветряков. В них используются лопасти, которые вращаются под действием ветрового потока. Система устанавливается в самое выгодное положение в потоке ветра с помощью крыла-стабилизатора. На мощных станциях, работающих на сеть, для этого используется электронная система управления рысканием. Недостатками такой системы являются высокий уровень шума, потеря в механической передаче энергии, снижение продолжительности эксплуатации оборудования. Также при сильных порывах ветра лопасти агрегаты могут получить значительные повреждения или, вовсе, сломаться.

В настоящее время промышленным производством ВУЭ занимается более 300 фирм. Наиболее развитую промышленность имеют Дания, Германия, США. Серийное производство ветроустановок развито в Нидерландах, Великобритании, Италии и других странах.

1.3. Гидроэнергетика

Основными причинами столь бурного развития гидроэнергетики являются постоянное возобновление ресурсов круговоротом воды в природе и относительно простыми механизмами добычи самой энергии. Однако, зачастую, постройка и установка ГЭС очень трудоемкий и капиталоемкий процесс. Особенно это относится к сооружению плотин и накоплению огромных масс воды за ними. Также стоит отметить, что добыча гидроэнергии экологически чистый процесс. Но пока людям служит лишь небольшая часть гидроэнергетического потенциала земли. Ежегодно огромные потоки воды, образовавшиеся от дождей и таяния снегов, стекают в моря неиспользованными. Если бы удалось задержать их с помощью плотин, человечество получило бы дополнительно колоссальное количество энергии [16].

Если описывать работу ГЭС, то ее принцип заключается в выработке энергии турбиной, вращаемой с помощью падающей с неопределенной высоты воды. Гидравлическая турбина преобразует энергию воды, текущей под напором, в механическую энергию вращения вала. Существуют разные конструкции гидротурбин, соответствующие разным скоростям течения и разным напорам воды, но все они имеют только два лопастных венца. Ось вращения турбины, рассчитанной на большой расход и малый напор, обычно располагают горизонтально. Такие турбины называют осевыми или пропеллерными. Во всех крупных осевых турбинах лопасти рабочего колеса могут поворачиваться в соответствии с изменениями напора, что особенно ценно в случае приливных ГЭС, всегда работающих в условиях переменного напора. Турбины устанавливаются в зависимости от напора водяного потока на ГЭС.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

Мощные - вырабатывают от 25 МВТ до 250 МВт и выше;

Средние - до 25 МВт;

Малые гидроэлектростанции - до 5 МВт.

Мощность ГЭС напрямую зависит от напора воды, а также от КПД используемого генератора. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Существуют также гидроаккумулирующие электростанции. Они способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные моменты (времена не пиковой нагрузки), агрегаты ГАЭС работают как насосы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и, соответственно, приводит в действие дополнительные турбины.

В гидроэлектрические станции, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

В настоящее время лидерами по выработке гидроэнергии являются Норвегия, Китай, Канада, Россия. Лидером по количеству энергии воды на душу населения является Исландия.

1.4 Гелиоэнергетика

Солнце - один из самых источников излучения в нашей Вселенной. И поэтому не случайно энергия звезды все больше используется человеком для переработки в электричество. Действительно, излучение Солнца, доходящее до всей поверхности Земли, имеет колоссальную мощность 1,2*10 14 кВт. И иногда очень обидно, что огромная часть этой энергии пропадает зря, особенно если она по своему количеству в разы превосходит ресурсы всех остальных ВИЭ вместе взятых. Поэтому в последние годы все активнее развивается гелиоэнергетика, в которой используется солнечная радиация для получения электричества.

Первые зачатки гелиоэнергетики появились в середине 19 века. Первооткрывателями стали ученые Адамс и Дей, которые впервые провели эксперимент с твердотельными фотоэлектрическими элементами на основе селена. Однако прошло более 50-ти лет, чтобы их открытие переросло во что-то большее. Основой для создания первых солнечных батарей послужила разработка теории полупроводниковых материалов с p - n переходом. В этой методике используются атомы кремния. Суть всей технологии заключается в том, что при повышении температуры молекулы кремния за счет нагревания солнечной энергией, тепловые колебания кристаллической решетки приводят к разрыву некоторых валентных связей. В результате этого часть электронов, ранее участвовавших в образовании валентных связей, отщепляется и становится электронами проводимости. При наличии электрического поля они перемещаются против поля и образуют электрический ток [15].

Однако с помощью солнечного тепла можно не только получать ток, но обеспечивать теплопроводность. Такое возможно благодаря солнечным коллекторам, в которых нагревается вода при помощи солнечной радиации. И теперь она может использоваться для обогрева каких-либо сооружений.
Также как и в ветроэнергетике, для гелиостанций очень важно правильно выбрать место для их постройки. Не следует забывать, что солнечные лучи, прежде чем достигнуть поверхности Земли, преодолевают множество преград. Прежде всего, к ним можно отнести атмосферу, а в особенности озоновый слой. Именно благодаря ему на Земле вообще возможна жизнь, ведь он не пропускает вредное для всего живого ультрафиолетовое излучение. Также немаловажную роль играют содержащиеся в атмосфере частицы водяного пара, пыли, примесей газов и другие аэрозоли. Они частично рассеивают радиацию.

Читайте также: