Нетрадиционные газовые ресурсы реферат

Обновлено: 03.07.2024

Россия является мировым лидером по добыче жидких углеводородов. Однако основные месторождения нефти и газа на настоящий момент разрабатываются в течение длительного времени и многие из них с уверенностью можно отнести к категории зрелых месторождений “Brown Field”, а новые находятся в труднодоступных регионах Восточной Сибири, Дальнего Востока и Арктической шельфовой зоны, что обуславливает высокую стоимость их разработки в силу колоссальных инфраструктурных затрат. Может ли стать освоение месторождений нетрадиционных ресурсов углеводородного сырья решением проблемы ожидаемого ослабления потенциала ТЭК?

Россия является одним из мировых лидеров по подтвержденным запасам жидких углеводородов и угля, согласно ежегодному статистическому отчету BP Statistical Review of World Energy, June 2012, запасы жидких углеводородов и угля в России составляют более 162 миллиардов тонн нефтяного эквивалента (15,8% общемировых запасов), что ставит её на второе место в мире после США. Россия лидирует по запасам природного газа (44,6 трлн. куб. метров), при этом по добыче газа занимает вторую позицию после США. По запасам нефти Россия (12,1 млрд. тонн) находится на восьмом месте после Венесуэлы, Саудовской Аравии, Канады, Ирана, Ирака, Кувейта и ОАЭ, при этом по годовому уровню добычи нефти (511,4 млн. тонн) мы уступаем только Саудовской Аравии.


Страны-лидеры по запасам УВС на 2011 год



Запасы и добыча УВС в России в 2011 году

Такое соотношение запасов и добычи нефти вызывает определенную озабоченность в экспертном сообществе: занимая лишь восьмую позицию в мире по запасам, Россия последние 7 лет поддерживает добычу на уровне 500 млн. тонн в год, что объяснимо высокой долей доходов от продажи нефти в бюджете страны, но весьма проблематично с точки зрения возможностей поддержания столь высокого уровня добычи в последующем. По совокупной добыче жидких углеводородов и угля Россия с показателем 1215 миллионов тонн нефтяного эквивалента занимает третье место в мире после Китая (2252 миллиона тонн нефтяного эквивалента) и США (1502 миллиона тонн нефтяного эквивалента). При таких позициях на мировом энергетическом рынке, на сегодняшний момент освоение нетрадиционных источников углеводородного сырья вроде бы как не видится необходимым, однако при существующем уровне добычи все запасы могут быть извлечены в ближайшее столетие.

Можно предположить, что в стратегическом плане у России есть три альтернативы (в настоящей статье не рассматривается энергетика вообще и альтернативная энергетика в частности):

Заниматься геологоразведочными работами на нефть и газ в необжитых регионах для чего потребуются колоссальные затраты на создание инфраструктуры (железных и автомобильных дорог, морских и речных портов, аэропортов, линий электропередач, жилых и промышленных районов, подготовка кадров и т.д.), но при этом обеспечивать восполнение минерально-сырьевой базы (МСБ) за счет “традиционных” запасов и ресурсов углеводородов

Обеспечить восполнение МСБ за счет вовлечения в разработку “нетрадиционных” ресурсов углеводородного сырья в районах с уже обустроенной инфраструктурой (Западная Сибирь – нефть баженовской свиты, Кузбасс – метан угольных пластов, Татария – битуминозная нефть и т.д.).

Нечто среднее между первым и вторым вариантом.

Скорее всего, третий вариант как раз и будет реализовываться на практике, так как строительство инфраструктурных объектов в необжитых районах страны является стратегической задачей на длительную перспективу, но надо понимать, что это потребует времени и огромных затрат. Поэтому, восполнение МСБ можно пока обеспечивать за счет нетрадиционных источников УВС в обустроенных регионах, а полномасштабную геологоразведку на нефть и газ в новых регионах начинать активно проводить по мере обустройства там необходимой инфраструктуры.

В этой связи сегодня крайне актуально оценить ресурсную базу “нетрадиционных” углеводородов в России.



Распространение зоны возможного гидратообразования на территории России и в прилегающих шельфовых зонах

1 – вода,
2 – суша,
3 – зоны возможного газогидратообразования,
4 – изолинии глубины залегания подошвы зон возможного газогидратообразования

Значительную долю ресурсов нетрадиционного газа составляют газовые гидраты – твердые кристаллические вещества, по консистенции похожие на снег или рыхлый лед. Их кристаллическая решетка построена из молекул воды, во внутренних полостях которых размещаются молекулы метана: 1 кубический сантиметр газового гидрата может содержать до 160-180 см 3 метана. Газовый гидрат устойчив только при низкой температуре и высоком давлении, что определяет зоны его скоплений: глубоководный шельф (при глубине свыше 400-500 метров) или зоны вечной мерзлоты. По оценкам экспертов, к настоящему времени выявлено более 220 крупных газогидратных месторождений, и если будут разработаны хотя бы 10% разведанных на этих месторождениях запасов газогидратов, мир будет обеспечен газом на 200 лет вперед.



Запасы угольного метана в России и мире

Одним из перспективных мест скопления газогидратов является также дно озера Байкал, под которым проходит граница расхождения Евразийской и Амурской тектонических плит, вследствие чего образуется канал миграции глубинных углеводородов на поверхность. Попадание метана в обводненные донные отложения при высоком давлении (глубина озера достигает 1400 метров) и низкой температуре вызывает образование залежей гидратов метана.



Запасы сланцевого газа

Уголь является для метана вмещающей породой: значительная часть метана сорбируется на поверхности частичек угля. Толща угольного пласта подвергнута своеобразным тектоническим деформациям - кливажам, т.е. способностью горной породы делиться по параллельным поверхностям трещин на тонкие пластинки с размерами от видимых трещин до невидимых нанотрещин, обширная сетка которых важна для добычи газа, потому что позволяет освобождаться сорбированному в угле газу и поступать к забою скважины. Тонна угля может содержать до 1300 м³ метана, при этом, средняя газообильность выработок составляет около 30–40 м 3 метана на тонну добываемого угля. Добыча метана из угленосных толщ на глубине до 1200 метров производится по технологии откачки воды из угольного пласта: по мере снижения гидростатического давления метан отделяется от поверхности угля и поступает в скважину.

По оценке специалистов Газпрома, Россия является мировым лидером по запасам метана в угольных отложениях.



Мировые прогнозы добычи сланцевого газа, млрд. куб. м.

Согласно исследованию Массачусетского технологического института (MIT), динамика добычи сланцевого газа стремительно растет: если в 2012 году в США было добыто 160-165 миллиардов м3 метана из сланцев, то к 2020 году добыча вырастет до уровня 260-270 миллиардов м3, а к 2030 году ожидается достижение показателей до 280-290 миллиардов м3 в год.



Мировые цены на сжиженный природный газ, июнь 2013 ($USD/MMBtu)

К 2020 г. добыча метана из сланцев в мире прогнозируется (MIT,Douglas Westwood) на уровне 325-335 млрд. куб. метров ~10% от нынешнего уровня мировой добычи газа. Так что метан, добываемый из сланцев, становится существенным фактором мировой добычи газа и энергопотребления, и не учитывать его в рыночных прогнозах было бы неправильно.

Проницаемость газосодержащих сланцевых пластов очень низка, что делает разработку месторождения традиционными методами экономически бесполезной. Поэтому вместо многочисленных малорентабельных вертикальных скважин применяют горизонтальное бурение с последующими многостадийными гидравлическими разрывами пласта (ГРП). При ГРП в горизонтальную скважину под большим давлением закачивается смесь воды, песка и специальных химических реактивов, создающая систему трещин, по которым газ из сланцевой породы мигрирует к забою скважины. Недостатком такой добычи является то, что зона дренирования скважины определяется зоной искусственно созданных трещин в сланцевой породе, и как только газ собирается в этой зоне, требуется бурить следующую скважину, так как естественная фильтрация газа по натуральным сланцам практически невозможна. Растущая добыча газа из сланцев в США и применение более совершенных технологий многостадийного ГРП привели к значительному падению цен на сжиженный газ в регионах его добычи в США- согласно данным Waterborne Energy, Inc. в июне 2012 года они были в 3 раза ниже, чем цены на спотовом рынке в Европе, и почти в 5 раз ниже, чем на рынке Азиатско-Тихоокеанского региона. Количество потенциальных ресурсов нетрадиционных источников газа в России оценивается экспертами Газпром ВНИИГАЗ в 248 триллионов кубических м3, что в 5,5 раза превышает запасы традиционного газа.



*Газпром ВНИИГАЗ



Разработка битуминозных песков карьерным способом

При извлечении битуминозных песков открытым способом разрабатывается карьер с битумосодержащей породой, которая перевозится на горно-обогатительную фабрику, проходит стадии дробления, обогащения, отделения битума от песка и воды, высокотемпературной переработки с добавлением водорода, при которой высокомолекулярные углеводородные цепочки подвергаются расщеплению, и таким образом получается высококачественная синтетическая нефть.

Если месторождение битуминозного песка находится на глубине более 500 метров, то для добычи битума используется скважинный способ. Для этого с кустовой площадки бурятся до 10 пар горизонтальных скважин: одна скважина – нагнетательная, вторая – добывающая. В нагнетательную скважину под большим давлением закачивают перегретый пар с растворителем, происходит нагревание и разжижение битума, который становится текучей субстанцией и поступает по добывающей скважине на поверхность для дальнейшей переработки. В настоящий момент применяются также геофизические методы разогрева пласта, основанные на высокочастотных электромагнитных колебаниях (по принципу СВЧ-печи), создаваемых непосредственно под землей. По данным IHS Cambridge Energy Research Associates (IHS CERA), в 2009 году добыча синтетической нефти из битуминозных песков в провинции Альберта достигла уровня 65 миллионов тонн в год, что составило почти 40% годовой добычи нефти Канады.



Разработка битуминозных песков скважинным способом

Куст из 10 пар скважин, в каждой паре 1 горизонтальная эксплуатационная скважина и 1 горизонтальная нагнетательная скважина.

Глубина залегания – около 500 метров от уровня поверхности.

Отход горизонтальных стволов – 700 – 1000 метров от вертикали

В Российской Федерации крупные запасы битуминозных песков обнаружены в Волго-Уральском бассейне и Восточной Сибири, при этом масштабная разведка нетрадиционных нефтяных запасов не проводилась. По результатам аудита национальных ресурсов РФ основными мировыми аналитическими нефтяными агенствами — British Petroleum (BP) и Oil and Gas Journal (OGJ), объем российских запасов технически доступной нефти в битуминозных песках составляет 33,7 миллиарда баррелей. Кроме того, на территории России имеются месторождения битуминозного песка эквивалентного 212 миллиардам баррелей нефти, но эти запасы сегодня относят к технически недоступным. Общий объем битуминозных песков в России, по оценкам экспертов, составляет 245 миллиардов баррелей при подтвержденных запасах 88 миллиардов баррелей, что равно подтвержденным запасам (по данным BP) традиционной нефти в России.

Сланцевая нефть, так же как и газ, возникает в результате вызревания керогена, образовавшегося из органики сланцев. В ходе данного процесса, длящегося в течение десятков и сотен миллионов лет, происходит естественная миграция метана в верхнюю часть сланцевого слоя с последующим вытеснением образующейся нефти в нижнюю плоскость. Методика добычи сланцевой нефти сходна с технологией извлечения сланцевого газа и представляет собой горизонтальное бурение в сочетании с многостадийным гидравлическим разрывом пласта. При этом, горизонтальную скважину располагают глубже – на уровне залегания более тяжелых конденсата и нефти. Как следует из прогноза экспертов Rystad Energy,EIA и Morgan Stanley Research, к 2016 году добыча нефти из сланцев в США достигнет 95-100 миллионов тонн в год, что составит 20% от ожидаемой добычи нефти в США.

У нас наибольший интерес экспертного сообщества вызывают проблемы добычи нефти из баженовского горизонта, открытого в 60-х годах в ходе широкомасштабных геологоразведочных работ в Западной Сибири. Геологические запасы нефти баженовской свиты оцениваются в пределах от 20 до 140 миллиардов тонн при разных оценках значений коэффициента открытой пористости и нефтесодержания пород баженовского горизонта. С учетом особенностей пород баженовской свиты, оптимальной методикой добычи нефти является технология бурения горизонтальных скважин с последующим многостадийным гидравлическим разрывом пласта. Подобная технология успешно и широко используется в США для добычи сланцевого газа и нефти из аналогичных баженовской свите пластов. Практически вся площадь простирания баженовского горизонта (более 1 млн. квадратных километров) находится в инфраструктурно обустроенном регионе Западной Сибири, что делает весьма привлекательной добычу нефти из баженовского горизонта в среднесрочной и долгосрочной перспективе.

Таким образом, даже учитывая то, что все приведенные выше оценки ресурсов “нетрадиционного” углеводородного сырья в России предварительны, нуждаются в серьезных доработках, что потребует проведения широкомасштабных и наукоемких исследований, все равно можно с уверенностью констатировать тот факт, что эти ресурсы по объемам сопоставимы, а в некоторых случаях и превышают доказанные запасы “традиционных” углеводородов. А так как огромная их часть сосредоточена в регионах с уже развитой инфраструктурой, то они могут рассматриваться, как альтернатива для восполнения МСБ России. Причем, как показывает мировой опыт, с появлением все более новых и совершенных технологий их добычи, себестоимость добычи “нетрадиционных” углеводородов становится сопоставимой с себестоимостью традиционного углеводородного сырья. Во всяком случае, если обратиться к нашей недавней практике инфраструктурной перестройки города Владивосток и строительства объектов к саммиту АТЭС 2012 на острове Русский, и оценкам экспертов рынка бурения и нефтесервисов России за 2012 год, то в обоих случаях было истрачено чуть более 20 миллиардов долларов США, что делает альтернативу разработки “нетрадиционных” углеводородов в обжитых регионах не такой уж фантастикой!

Газообразные углеводороды и, прежде всего, метан широко распространены в природе не только в виде крупных залежей традиционного природного газа в пористых и трещиноватых осадочных породах или в растворенном виде в нефти. Огромное количество метана рассеяно в осадочных и изверженных горных породах и в илах озер, морей и океанов. Метан содержится в кристаллических сланцах, мраморах, гнейсах, гранитах и других горных породах, причем на каждый килограмм породы приходится до 0,1 м 3 метана. В небольших концентрациях метан растворен в пресной и морской воде, входит в состав почвенного воздуха и является одной из важных составляющих земной атмосферы. Много метана растворено в пластовых водах на глубинах 1,5-5 км. К нетрадиционным ресурсам природного газа относятся: метан угленосных толщ, водорастворенные газы подземной гидросферы, природные газовые гидраты.

Удельное газосодержание подземных вод относительно невелико (0,3 – 20 м 3 газа на 1 м 3 воды), что затрудняет добычу газа в промышленных масштабах. Общие ресурсы газа в подземных водах до глубины 4500 м могут достигать 10 000 трлн м 3 . Однако вследствие низкого газосодержания,

промышленная добыча возможна лишь в небольших объемах и в местах аномально высокой газонасыщенности подземных вод (например, месторождение Мобара в Японии, где газосодержание подземных вод в хорошо проницаемых породах на глубине 200 – 600 м достигает 25 – 28 м 3 на 1 м 3 добываемой воды). Поэтому газ подземной гидросферы рассматривается как весьма проблематичный источник природного газа [16].

Важным источником практически чистого метана могут служить залежи каменного угля. Большие объемы метана выделяются в угольных пластах при метаморфизме угля, который сопровождается низкотемпературным термохимическим распадом органического вещества. Количество выделяющегося метана на одну тонну угольного вещества увеличивается от 161 м 3 при образовании бурого угля до 192 м 3 при образовании каменного угля. В процессе метаморфизма происходит изомеризация углеродсодержащих группировок атомов с образованием более устойчивых структурных элементов ароматической графитоподобной решетки. Распад функциональных групп приводит к переходу части органического вещества в газовую фазу в виде молекул СО2, СО, СН4 и т.п. Гомогенный твердофазный процесс изомерной перегруппировки атомов протекает самопроизвольно и имеет низкую энергию активации 29-53 кДж/моль [20].

Метан скапливается благодаря адсорбции в угле, в вертикальных разломах и трещинах угольных пластов, расслоениях и трещинах между ними. Из одной тонны угля обычно выделяется 6-8 м 3 газа. Так как мировые ресурсы угля составляют примерно 10 4 млрд т, содержание газа в угольных залежах сопоставимо с его содержанием в газовых месторождениях. По разным источникам в угленосных толщах угольных бассейнов мира содержится от 85 до 262 трлн м 3 природного газа. Поэтому даже умеренная добыча газа из угольных пластов могла бы внести существенный вклад в обеспечение мира природным газом.

Большинство каменноугольных бассейнов России (Кузнецкий, Печорский, Донецкий, Таймырский, Тунгусский и др.) являются газоугольными. Метаноносность таких высокометаморфизованных угольных пластов возрастает с увеличением глубины их залегания и достигает 40-50 м 3 /т. Предварительная дегазация угольных пластов является необходимым условием безопасной работы шахтеров и источником сопутствующего метана. Хотя шахтами отрасли ежегодно выбрасывается в атмосферу свыше 7,5 млрд м 3 метана, его утилизация до сих пор практически не осуществляется.

Важным источником газообразного углеводородного сырья являются газы нефтеперерабатывающих заводов. В отличие от природных, в нефтезаводских газах содержатся не только насыщенные, но и ненасыщенные углеводороды. Кроме того, в состав этих газов обычно входят водород, сероводород и небольшое количество органических сернистых соединений. Основным источником нефтезаводских газов являются процессы деструктивной переработки нефти, а их состав зависит от конкретных процессов, применяемых на данном производстве.

Среди нетрадиционных источников углеводородных газов необходимо также отметить природные и антропогенные источники биогаза, преимущественно метана, образующегося в результате бактериального брожения органического вещества. В ряде стран, бедных энергоресурсами, например Индии, биогаз активно используется в бытовом секторе. Швеция и другие европейские страны реализуют проекты переработки отходов

сельскохозяйственной продукции и деревообработки в биогаз с последующим производством из него альтернативных моторных топлив. Биогаз может стать серьезным дополнительным источником углеводородного сырья, т.к. ежегодные воспроизводимые ресурсы биомассы в мире оцениваются в 200 млрд т.

Газовые гидраты.

Важное значение для оценки ресурсов природного газа имеет свойство метана и других газообразных углеводородов при высоком давлении и пониженной температуре образовывать с водой газовые гидраты - твердые кристаллические соединения с общей формулой CnH2n+2 . mH2O, которые при высоких давлениях существуют и при положительных температурах. По структуре газовые гидраты это соединения включения (клатраты), образующиеся при внедрении молекул газа в пустоты кристаллических структур, составленных из молекул воды. Существуют два типа решетки гидратов: структура I, построенная из 46 молекул воды и имеющая 8 полостей, и структура II - 136 молекул воды, 16 малых полостей и 8 больших. Молекулы газа - гидратообразователя находятся в полостях решетки, которая может существовать только при наличии этих молекул [21].

Метан, этан, углекислый газ, сероводород и азот образуют гидраты структуры I, при которой формула полностью насыщенного газом гидрата 8M . 46H2O, где М - молекула гидратообразователя. Пропан и изобутан образуют гидраты структуры II с идеальной формулой 8M . 136H2O. Углеводороды с размерами молекул, большими, чем у изобутана, гидратов не образуют. Один объем воды при образовании гидрата связывает от 70 до 210 объемов газа, при этом удельный объем воды возрастает на 26-32%. При образовании гидрата метана один объем воды связывает 207 объемов метана, а 1 м 3 гидрата метана содержит 164,6 м 3 газа при нормальных условиях. При

этом объем, занимаемый газом в гидрате, не превышает 20%. Таким образом,

в гидратном состоянии 164,6 м 3 газа занимают объем всего 0,2 м 3 [22].

В природных условиях гидраты метана широко распространены и образуют крупные залежи метанового газа. Например, на океанском дне даже

при температуре +10 о С уже на глубине 700 м давление достаточно для образования газовых гидратов. Мировые ресурсы газа в газогидратных залежах, сосредоточенных на материках, определяются величиной около

10 14 м 3 , а ресурсы газа, сосредоточенные в гидратном состоянии в акватории Мирового океана, в пределах шельфа и материкового склона - в 1,5 10 16 м 3 [23], хотя имеются и более высокие оценки. Энергия, высвобождающаяся при разложении газогидратных залежей, столь велика, что этот процесс может инициировать тектономагматические процессы в литосфере Земли.

Целый ряд закономерностей в распространении скоплений газогидратов, а также изотопно-геохимический облик газогидратных газов и вод свидетельствует о глубинном генезисе углеводородных газов, вошедших

в состав газогидратов. Только в случае признания ведущей роли глубинных углеводородных и углеводородно-водных флюидов в формировании скоплений газогидратов, главные геологические закономерности их распространения получают непротиворечивое объяснение [24]. Водород и углерод являются основными химическими элементами, поднимающимися из земных глубин к поверхности в процессе постоянно идущей дегазации планеты. Водород диффундирует сквозь толщу земных пород в атомарном и

молекулярном виде, а углерод – в химически связанном виде, в составе оксидов углерода СО и СО2. При температуре ниже 600 о С эти газы вступают

в реакцию, образуя воду и метан (СО + 3Н2 → Н2О + СН4). Вода входит в кристаллическую решетку гидросиликатов, а метан накапливается в виде газовых включений [25], в т.ч. газогидратов.

Мощнейшие скопления газовых гидратов приурочены в основном к краевым частям океанического дна, где океанообразование продолжается, и

где в современную нам эпоху происходит массовое поступление глубинного метана. Большая часть газогидратов обнаружена на дне океанов в молодых отложениях – метан продолжает поступать в гигантских объемах. Той же причиной обусловлено образование нефти и газа на континентах. В мезозое-кайнозое сформировались осадочные бассейны, ставшие резервуарами углеводородов, где расположено большинство известных месторождений нефти и газа. Разница лишь в том, что на континентах возникшая по той же причине (в результате десерпентизации низов коры) и в тот же отрезок времени, что и океаны, впадина заполнялась осадками, в которых и накапливался метан, в последствии химическим и биогенным путями преобразованный в нефть и углеводородные газы [25].

По некоторым оценкам, залегая в плейстоцен-современных осадках, газогидратный слой содержит не менее 11,3 10 18 м 3 или 8,5 10 15 т метанового углерода, тогда как запасы некарбонатного углерода в морской биоте определяются в 3 млрд т; в атмосфере – 3,6; детритном органическом веществе – 60; торфе – 500; биоте суши – 830; органическом веществе, растворенном в воде, - 980; почве – 1400; извлекаемых и неизвлекаемых ископаемых топливах (нефть, природный газ, уголь) – 5000 млрд т, т.е. суммарно, - 8,8 трлн т [26].

Другие источники не разделяют столь высоких значений гидратоносности, оценивая их ресурсы в 2 10 16 м 3 [27]. Тем не менее, более половины органического углерода в земной коре, видимо, содержится в составе газовых гидратов, что вдвое превышает все разведанные и неразведанные ресурсы нефти, угля и газа вместе взятые (рис. 9). Однако самое важное, что эти гигантские скопления метана содержатся в плейстоцен-современных отложениях, образовавшихся в последние пять миллионов лет. Это значит, что образовавший их метан выделился за время, составляющее одну тысячную всей истории планеты.


Рис. 9. Распределение органического углерода на Земле (10 15 г) [27].

В настоящее время имеются сведения о более чем 100 выявленных газогидратных залежах, а потенциальные мировые запасы газа в гидратном состоянии, по оценкам специалистов, превышают 16 10 12 toe (tons oil equivalent). Около 98% ресурсов газогидрата сосредоточено в акваториях Мирового океана на глубинах более 200-700 м, в придонных осадках толщиной до 400-800 м и более, и только 2% - в приполярных частях материков. Однако последний факт заслуживает серьезного внимания, поскольку это соответствуют 300 трлн м 3 газа, что вдвое превышает мировые разведанные запасы природного газа. Например, при современном уровне потребления выявленные запасы газа в гидратном состоянии в США могут обеспечить потребности страны в природном газе в течение 104 лет.

Разработка природных газогидратов - единственная промышленно значимая альтернатива разработке традиционных месторождений природного газа. Все большее число стран, включая США, Канаду, Индию, Китай, Японию принимает национальные хорошо финансируемые программы по исследованиям газогидратов и поискам их скоплений. Их оптимизм базируется на том, что уже при небольших масштабах выполненных геофизических и буровых работ, открыты гигантские скопления газогидратов и газогитратные провинции. Удельная плотность метана в гидратоносных акваториях не уступает средней плотности в обычных месторождениях газа. Однако остаются сложности с созданием в обозримом будущем технологий, по которым извлечение метана из газогидратов станет не просто возможным, но и рентабельным [24].

Читайте также: