Непрерывная и дискретная информация реферат

Обновлено: 07.07.2024

Министерство Образования Российской Федерации

Красноярский Государственный Педагогический Университет

по Теоретическим Основам Информатики
на тему: Непрерывная и

Выполнил: Гумеров О.А.

Проверил: Пак Н.И.

План.
1. Введение.

2. Информация, природа информации.

3. Формы представления информации.

4. Что объединяет непрерывные и дискретные величины.

5. Представление непрерывной информации.

6. Представление дискретной информации

7. Измерение информации.

Введение.
Информатика - наука о законах и методах накопления, обработки и передачи информации. В наиболее общем виде понятие информации можно выразить так:

Информация - это отражение предметного мира с помощью знаков и сигналов.

Принято говорить, что решение задачи на ЭВМ, в результате чего создается новая информация, получается путем вычислений. Потребность в вычислениях связана с решением задач: научных, инженерных, экономических, медицинских и прочих.

Каким образом отыскивается решение задачи?

Задача становится разрешимой, если найдено правило, способ получения результата. В информатике такое правило называют алгоритмом.

Содержание алгоритма - составляющие его действия и объекты, над которыми эти действия выполняются, - определяют средства, которые должны присутствовать в машине, предназначенной для исполнения алгоритма.

При решении задачи ЭВМ вводит в себя необходимую информацию и через какое-то время выводит (печатает, рисует) результаты - информацию, для получения которой и была создана. Таким образом, работа ЭВМ - это своеобразные манипуляции с информацией. И, следовательно, ЭВМ - это техническое средство информатики.

Информация. Природа информации.

Рассмотрим пример. Пусть нам известен дом, в котором проживает наш знакомый, а номер квартиры неизвестен. В этом случае местопребывание знакомого в какой-то степени не определено. Если в доме всего две квартиры, степень неопределенности невелика. Но если в доме 200 квартир - неопределенность достаточно велика.

Этот пример наталкивает на мысль, что неопределенность связана с количеством возможностей, т.е. с разнообразием ситуаций. Чем больше разнообразие, тем больше неопределенность.

Информация, снимающая неопределенность, существует постольку, поскольку существует разнообразие. Если нет разнообразия, нет неопределенности, а, следовательно, нет и информации.

Итак, информация - это отражение разнообразия, присущего объектам и явлениям реального мира. И, таким образом, природа информации объективно связана с разнообразием мира, и именно разнообразие является источником информации.

Формы представления информации.

Информация - очень емкое понятие, в которое вмещается весь мир: все разнообразие вещей и явлений, вся история, все тома научных исследований, творения поэтов и прозаиков. И все это отражается в двух формах - непрерывной и дискретной. Обратимся к их сущности.

Объекты и явления характеризуются значениями физических величин. Например, массой тела, его температурой, расстоянием между двумя точками, длиной пути (пройденного движущимся телом), яркостью света и т.д. Природа некоторых величин такова, что величина может принимать принципиально любые значения в каком-то диапазоне. Эти значения могут быть сколь угодно близки друг к другу, исчезающе малоразличимы, но все-таки, хотя бы в принципе, различаться, а количество значений, которое может принимать такая величина, бесконечно велико.

Такие величины называются непрерывными величинами, а информация, которую они несут в себе, непрерывной информацией.

Слово “непрерывность” отчетливо выделяет основное свойство таких величин - отсутствие разрывов, промежутков между значениями, которые может принимать величина. Масса тела - непрерывная величина, принимающая любые значения от 0 до бесконечности. То же самое можно сказать о многих других физических величинах - расстоянии между точками, площади фигур, напряжении электрического тока.

Кроме непрерывных существуют иные величины, например, количество людей в комнате, количество электронов в атоме и т.д. Такого рода величины могут принимать только целые значения, например, 0, 1, 2, . и не могут иметь дробных значений. Величины, принимающие не всевозможные, а лишь вполне определенные значения, называют дискретными. Для дискретной величины характерно, что все ее значения можно пронумеровать целыми числами 0,1,2.


  1. геометрические фигуры (треугольник, квадрат, окружность);

  2. буквы алфавита;

  3. цвета радуги;

Пример. Рассмотрим утверждение “Это окружность радиуса 8,25”.


  1. окружность“- дискретная информация, выделяющая определенную геометрическую фигуру из всего разнообразия фигур;

  2. значение “8,25” - непрерывная информация о радиусе окружности, который может принимать бесчисленное множество значений.

В качестве простого примера, иллюстрирующего наши рассуждения, рассмотрим пружинные весы. Масса тела, измеряемая на них, - величина непрерывная по своей природе. Представление о массе (информацию о массе) содержит в себе длина отрезка, на которую перемещается указатель весов под воздействием массы измеряемого тела. Длина отрезка - тоже непрерывная величина.

Чтобы охарактеризовать массу, в весах традиционно используется шкала, отградуированная, например, в граммах. Пусть, например, шкала конкретных весов имеет диапазон от 0 до 50 граммов.

При этом масса будет характеризоваться одним из 51 значений: 0, 1, 2, . 50, т.е. дискретным набором значений. Таким образом, информация о непрерывной величине, массе тела, приобрела дискретную форму. Таким образом, можно заметить, что:

Любую непрерывную величину можно представить в дискретной форме. И механизм такого преобразования очевиден.

Зададимся вопросом, можно ли по дискретному представлению восстановить непрерывную величину. И ответ будет таким: да, в какой-то степени можно, но сделать это не так просто, и восстанавливаемый образ может отличаться от подлинника.

Представление непрерывной информации.

Для представления непрерывной величины могут использоваться самые разнообразные физические процессы.

В рассмотренном выше примере весы позволяют величину “масса тела” представить “длиной отрезка”, на который переместится указатель весов (стрелка). В свою очередь, механическое перемещение можно преобразовать, например, в “напряжение электрического тока”. Для этого можно использовать потенциометр, на который подается постоянное напряжение, например, 10 вольт, от источника питания. Движок потенциометра можно связать с указателем весов. В таком случае изменение массы тела от 0 до 50 граммов приведет к перемещению движка в пределах длины потенциометра (от 0 до L миллиметров) и, следовательно, к изменению напряжения на его выходе от 0 до 10 вольт.

Такое преобразование можно изобразить следующим образом:

Масса Длина Напряжение

0 - 50 [г] 0 - L [мм] 0 - 10 [в]

1. Информация о массе тела может представляться, вообще говоря, многими способами.

2. В качестве носителей непрерывной информации могут использоваться любые физические величины, принимающие непрерывный “набор” значений (правильнее было бы сказать принимающие любое значение внутри некоторого интервала).

Отметим, что физические процессы (перемещение, электрический ток и др.) могут существовать сами по себе или использоваться, например, для передачи энергии. Но в ряде случаев эти же процессы применяются в качестве носителей информации. Чтобы отличить одни процессы от других, введено понятие “сигнал”.

Если физический процесс, т.е. какая-то присущая ему физическая величина, несет в себе информацию, то говорят, что такой процесс является сигналом. Именно в этом смысле пользуются понятиями “электрический сигнал”, “световой сигнал” и т.д. Таким образом, электрический сигнал - не просто электрический ток, а ток, величина которого несет в себе какую-то информацию.

Представление дискретной информации.

Как уже говорилось, дискретность - это случай, когда объект или явление имеет конечное (счетное) число разнообразий. Чтобы выделить конкретное из всего возможного, нужно каждому конкретному дать оригинальное имя (иначе, перечислить). Эти имена и будут нести в себе информацию об объектах, явлениях и т. п.

В качестве имен часто используют целые числа 0, 1, 2. Так именуются (нумеруются) страницы книги, дома вдоль улицы, риски на шкалах измерительных приборов. С помощью чисел можно перенумеровать все “разнообразия” реального мира. Именно такая цифровая форма представления информации используется в ЭВМ.

В обыденной жизни, тем не менее, цифровая форма представления информации не всегда удобна. Первенство принадлежит слову! Традиционно информация об объектах и явлениях окружающего мира представляется в форме слов и их последовательностей.

Основной элемент в этой форме - слово. Слово - имя объекта, действия, свойства и т.п., с помощью которого выделяется именуемое понятие в устной речи или в письменной форме.

Слова строятся из букв определенного алфавита (например, А, Б. , Я). Кроме букв используются специальные символы - знаки препинания, математические символы +, -, знак интеграла, знак суммы и т.п. Все разнообразие используемых символов образует алфавит, на основе которого строятся самые разные объекты:

из букв - собственно слова,

из цифр, букв и математических символов - формулы и т.д.

И все эти объекты несут в себе информацию :

числа - информацию о значениях;

слова - информацию об именах и свойствах объектов;

формулы - информацию о зависимостях между величинами и т.д.

Эта информация (и это очевидно) имеет дискретную природу и представляется в виде последовательности символов. О такой информации говорят как об особом виде дискретной информации и называют этот вид символьной информацией.

Наличие разных систем письменности, в том числе таких, как иероглифическое письмо, доказывает, что одна и та же информация может быть представлена на основе самых разных наборов символов и самых разных правил использования символов при построении слов, фраз, текстов.

Из этого утверждения можно сделать следующий вывод:

Разные алфавиты обладают одинаковой изобразительной возможностью”, т.е. с помощью одного алфавита можно представить всю информацию, которую удалось представить на основе другого алфавита. Можно, например, ограничиться алфавитом из десяти цифр - 0, 1, . 9 и с использованием только этих символов записать текст любой книги или партитуру музыкального произведения. При этом сужение алфавита до десяти символов не привело бы к каким-либо потерям информации. Более того, можно использовать алфавит только из двух символов, например, символов 0 и 1. И его “изобразительная возможность” будет такой же.

Итак, символьная информация может представляться с использованием самых различных алфавитов (наборов символов) без искажения содержания и смысла информации: при необходимости можно изменять форму представления информации - вместо общепринятого алфавита использовать какой-либо другой, искусственный алфавит, например, двухбуквенный.

Форма представления информации, отличная от естественной, общепринятой, называется кодом. Коды широко используются в нашей жизни: почтовые индексы, телеграфный код Морзе и др. Широко применяются коды и в ЭВМ и в аппаратуре передачи данных. Так, например, широко известно понятие “программирование в кодах”.

Кроме рассмотренных существуют и другие формы представления дискретной информации. Например, чертежи и схемы содержат в себе графическую информацию.

Измерение информации.

Как уже говорилось в примере с номером квартиры, одни сведения могут содержать в себе мало информации, а другие - много. Разработаны различные способы оценки количества информации. В технике чаще всего используется способ оценки, предложенный в 1948 году основоположником теории информации Клодом Шенноном. Как было отмечено, информация уничтожает неопределенность. Степень неопределенности принято характеризовать с помощью понятия “вероятность”.

Вероятность - величина, которая может принимать значения в диапазоне от 0 до 1. Она может рассматриваться как мера возможности наступления какого-либо события, которое может иметь место в одних случаях и не иметь места в других.

Если событие никогда не может произойти, его вероятность считается равной 0. Так, вероятность события “Завтра будет 5 августа 1832 года” равна нулю в любой день, кроме 4 августа 1832 года. Если событие происходит всегда, его вероятность равна 1.

Количество информации I, характеризующей состояние, в котором пребывает объект, можно определить, используя формулу Шеннона:

n - число возможных состояний;

p[1]. p[n] - вероятности отдельных состояний;

log( ) - функция логарифма при основании 2.

Знак минус перед суммой позволяет получить положительное значение для I, поскольку значение log(p[i]) всегда не положительно.

Единица информации называется битом. Термин “бит” предложен как аббревиатура от английского словосочетания “Binary digiT”, которое переводится как “двоичная цифра”.

1 бит информации - количество информации, посредством которого выделяется одно из двух равновероятных состояний объекта.

Пусть также, объект А работает почти без перерыва, т.е. вероятность того, что он включен, очень велика (например, р_А_вкл=0,99 и р_А_выкл=0,01, а объект Б работает иначе и для него р_Б_вкл=р_Б_выкл=0,5).

Подсчитаем для этого примера среднее количество информации для указанных объектов, которое получает диспетчер:


  1. Объект А : I = -(0,99*log(0,99)+0,01*log(0,01))=0,0808.

  2. Объект Б : I = -(0,50*log(0,50)+0,50*log(0,50))=1.

Формула Шеннона, в принципе, может быть использована и для оценки количества информации в непрерывных величинах.

При оценке количества дискретной информации часто используется также формула Хартли:

где n - число возможных равновероятных состояний;

log() - функция логарифма при основании 2.

Формула Хартли применяется в случае, когда вероятности состояний, в которых может находиться объект, одинаковые.

I = log(8) = 3 [бита].

Оценим количество информации в тексте.

Точно ответить на вопрос, какое количество информации содержит 1 символ в слове или тексте, достаточно сложное дело. Оно требует исследования вопроса о частотах использования символов и всякого рода сочетаний символов. Эта задача решается криптографами. Мы же упростим задачу. Допустим, что текст строится на основе 64 символов, и частота появления каждого из них одинакова, т.е. все символы равновероятны.

Тогда количество информации в одном символе будет равно

I = log(64) = 6 [бит].

Из двух символов данного алфавита может быть образовано n=64*64=4096 различных сочетаний. Следовательно, два символа несут в себе I=log(4096)=12 бит информации.

Оценим количество информации, содержащейся в числах.

Если предположить, что цифры 0, 1, . 9 используются одинаково часто (равновероятны), то


  1. одна цифра содержит I = log(10) = 3,32 [бит];

  2. четырехзначное число из диапазона [0..9999], если все его значения равновероятны, содержит

  1. а восьмиразрядное число - I=log(100000000)=26,56 [бита].

Повторим основные положения, рассмотренные выше.

1. Информация - отражение предметного или воображаемого мира с помощью знаков и сигналов.

2. Информация может существовать либо в непрерывной, либо в дискретной формах.

3. Информация о чем-либо может быть представлена многими способами. В качестве носителей информации могут использоваться разнообразные физические величины такой же природы (для непрерывной информации - непрерывные физические величины, для дискретной - дискретные).

4. Физический процесс является сигналом, если какая-либо присущая ему физическая величина несет в себе информацию.

5. Чтобы представить дискретную информацию, надо перечислить (поименовать) все разнообразия, присущие объекту или явлению (цвета радуги, виды фигур и др.).

Дискретная информация представляется:


  1. числами (как цифровая),

  2. символами некоторого алфавита (символьная),

  3. графическими схемами и чертежами (графическая).

7. Разные алфавиты обладают одинаковой “изобразительной силой”: с помощью одного алфавита можно представить всю информацию, которую удавалось представить на основе другого алфавита. А значит, информацию обо всем окружающем человека мире можно представить в дискретной форме с использованием алфавита, состоящего только из двух символов (т.е. с использованием двоичной цифровой формы).

8. Форма представления информации, отличная от естественной, общепринятой, называется кодом.

Широко известны такие коды, как почтовые индексы, нотная запись музыки, телеграфный код Морзе, цифровая запись программ для ЭВМ (программирование в кодах), помехозащищенные коды в системах передачи данных.

9. Информация уничтожает неопределенность знаний об окружающем мире. Степень неопределенности принято характеризовать с помощью понятия “вероятность”.

Вероятность - величина, которая может принимать значения в диапазоне [0,1] и которая может рассматриваться как мера возможности наступления какого-либо события. Если событие никогда не может произойти, его вероятность считается равной 0, а если событие происходит всегда, его вероятность равна 1.

Для оценки количества информации в технике чаще всего используется способ, предложенный Клодом Шенноном. Для случая, когда все состояния, в которых может находиться объект, равновероятны, применяют формулу Хартли. Одна единица информации называется битом.

Леди — это женщина, которая делает мужчину похожим на джентльмена. Рассел Лайнз
ещё >>

Содержание работы

Основные данные о работе…………………………………………….1
Содержание……………………………………………………………..2
Основная часть………………………………………………………….3
Дискретная и непрерывная информация………………………………3
Формы предоставления информации………..………………………. 4
Предоставление дискретной и непрерывной информации……..…. 6

Содержимое работы - 1 файл

Дискретная и непрерывная информация.doc

Основные данные о работе

Основы теории управления.

Дискретная и непрерывная информация.

Содержание

Основные данные о работе…………………………………………….1

Дискретная и непрерывная информация……………… ………………3

Формы предоставления информации………..………………………. 4

Предоставление дискретной и непрерывной информации……..…. 6

Основная часть

Дискретная и непрерывная информация.

Один из способов такого выбора состоит в0следующем. Область определения функции разбивается точками x1, x2. хn, на отрезки равной длины и на каждом из этих отрезков значение0функции принимается постоянным и равным, например, среднему значению на этом отрезке; полученная на этом этапе функция0называется в математике0ступенчатой. Следующий шаг – проецирование значений “ступенек” на ось значений0функции (ось ординат). Полученная таким образом последовательность значений функции у1, у2, . уn. является дискретным представлением0непрерывной функции, точность которого можно неограниченно улучшать путем уменьшения длин отрезков разбиения области значений аргумента.

Возможность дискретизации0непрерывного сигнала с любой желаемой точностью (для возрастания точности достаточно уменьшить шаг) принципиально важна с точки зрения0информатики. Компьютер – цифровая0машина, т.е. внутреннее представление информации в нем0дискретно. Дискретизация входной информации (если она непрерывна) позволяет сделать ее пригодной для компьютерной0обработки.

Формы предоставления информации.

Информация - очень емкое0понятие, в которое вмещается весь мир: все разнообразие вещей и явлений, вся история, все тома научных0исследований, творения поэтов и прозаиков. И все это отражается в двух формах – непрерывной0и дискретной. Обратимся к их сущности.

Объекты и явления характеризуются значениями0физических величин. Например, массой0тела, его температурой, расстоянием между двумя точками, длиной пути (пройденного движущимся телом), яркостью света и т.д. Природа некоторых величин0такова, что величина может принимать0принципиально любые значения в каком-то диапазоне. Эти значения могут быть сколь угодно близки друг к другу, исчезающе0малоразличимы, но все-таки, хотя бы в принципе, различаться, а количество0значений, которое может принимать такая величина, бесконечно велико.

Такие величины называются непрерывными0величинами, а информация, которую они несут в себе, непрерывной0информацией.

Слово “непрерывность” отчетливо выделяет основное свойство таких величин – отсутствие0разрывов, промежутков между значениями, которые может принимать величина. Масса тела – непрерывная0величина, принимающая любые значения от 0 до бесконечности. То же самое можно сказать о многих других физических величинах - расстоянии между точками, площади фигур, напряжении электрического тока.

Кроме непрерывных0существуют иные величины, например, количество людей в комнате, количество электронов в атоме и т.д. Такого рода величины могут принимать только целые значения, например, 0, 1, 2, . и не могут иметь дробных значений. Величины, принимающие не всевозможные, а лишь вполне определенные значения, называют0дискретными. Для дискретной величины0характерно, что все ее значения можно пронумеровать целыми числами 0,1,2.

Геометрические0фигуры (треугольник, квадрат, окружность);

Можно утверждать, что различие между двумя формами0информации обусловлено принципиальным различием природы величин. В то же время непрерывная и дискретная информация часто используются совместно для представления сведений об объектах и явлениях.

Пример. Рассмотрим утверждение “Это окружность0радиуса 8,25”.

”окружность“- дискретная информация, выделяющая определенную геометрическую0фигуру из всего разнообразия фигур;

значение “8,25” - непрерывная информация о радиусе0окружности, который может принимать бесчисленное множество значений.

Предоставление дискретной и непрерывной информации.

Для представления0непрерывной величины могут использоваться самые разнообразные физические процессы.

В рассмотренном выше примере весы0позволяют величину “масса тела” представить “длиной отрезка”, на который переместится указатель0весов (стрелка). В свою очередь, механическое перемещение можно преобразовать, например, в “напряжение электрического тока”. Для этого можно использовать0потенциометр, на который подается постоянное напряжение, например, 10 вольт, от источника питания. Движок потенциометра можно связать с указателем весов. В таком случае изменение массы тела от 0 до 50 граммов приведет к перемещению0движка в пределах длины потенциометра (от 0 до L миллиметров) и, следовательно, к изменению напряжения на его выходе от 0 до 10 вольт.

Как уже говорилось, дискретность - это случай, когда0объект или явление имеет конечное (счетное) число разнообразий. Чтобы выделить0конкретное из всего возможного, нужно каждому конкретному0дать оригинальное имя (иначе, перечислить). Эти имена и будут нести в себе информацию0об объектах, явлениях и т. п.

В качестве0имен часто используют целые числа 0, 1, 2. Так именуются (нумеруются) страницы книги, дома вдоль улицы, риски на шкалах измерительных приборов. С помощью чисел можно0перенумеровать все “разнообразия” реального мира. Именно такая цифровая форма0представления информации используется в ЭВМ.

В обыденной0жизни, тем не менее, цифровая форма представления информации0не всегда удобна. Первенство принадлежит слову! Традиционно информация0об объектах и явлениях окружающего0мира представляется в форме слов0и их последовательностей.

Основной0элемент в этой форме - слово. Слово - имя объекта, действия, свойства и т.п., с помощью которого выделяется именуемое0понятие в устной речи или в письменной форме.

Слова строятся из букв определенного0алфавита (например, А, Б, . , Я). Кроме букв используются0специальные символы - знаки препинания, математические символы +, -, знак интеграла, знак суммы и т.п. Все разнообразие используемых символов образует алфавит, на основе которого строятся самые разные объекты:

из букв - собственно слова,

из цифр, букв и математических символов - формулы и т.д.

И все эти объекты несут в себе информацию :

числа - информацию о значениях;

слова - информацию об именах и свойствах объектов;

формулы - информацию о зависимостях между величинами и т.д.

Эта информация (и это очевидно) имеет дискретную0природу и представляется в виде последовательности символов. О такой информации говорят как об особом виде дискретной0информации и называют этот вид0символьной информацией.

Наличие разных систем0письменности, в том числе таких, как иероглифическое письмо, доказывает, что одна и та же0информация может быть представлена0на основе самых разных наборов символов и самых разных правил использования символов при построении слов, фраз, текстов.

Из этого утверждения можно сделать следующий вывод:

Разные алфавиты обладают одинаковой “изобразительной возможностью”, т.е. с помощью одного алфавита можно представить всю0информацию, которую удалось представить на основе другого алфавита. Можно, например, ограничиться алфавитом из десяти цифр - 0, 1, . 9 и с использованием только этих символов записать текст любой книги или партитуру музыкального0произведения. При этом сужение алфавита до десяти символов не привело бы к каким-либо0потерям информации. Более того, можно использовать алфавит только из двух символов, например, символов 0 и 1. И его “изобразительная возможность” будет такой же.

Итак, символьная информация может представляться с использованием самых различных0алфавитов (наборов символов) без искажения содержания и смысла информации: при необходимости можно изменять форму0представления информации - вместо общепринятого алфавита использовать какой-либо другой, искусственный алфавит, например, двухбуквенный.

Кроме рассмотренных0существуют и другие формы представления дискретной информации. Например, чертежи и схемы содержат в себе графическую информацию.

Хотела бы она оказаться на месте женщины, навсегда разбившей сердце этакого Такыра. С одной стороны, она жалела Джулии, которой приходилось иметь дело, воображаемые – а может, и реальные – булыжники в ее окна, булыжники, снова и снова летящие при каждом исполнении песни. Но с другой стороны, Энн завидовала этой женщине. Кому не хотелось, заставить мужчину так страдать от страсти, настолько вывести его из себя, настолько вдохновить и воодушевить? Пусть ты сама не в состоянии сочинить такое, но быть источником, первопричиной… тоже приятно.

  • особенности непрерывной и дискретной информации. программное обеспечение "мониторинг сети"

Особенности непрерывной и дискретной информации ( реферат , курсовая , диплом , контрольная )

В зависимости от материальной формы носителя, информация бывает двух основных видов — аналоговая и дискретная. Аналоговая информация изменяется во времени непрерывно, а цифровая или дискретная — прерывисто, принимая значение логического нуля и логической единицы. Это упрощает ее хранение и создает возможность применять к ней дискретные схемы обработки с целью обеспечения освобождения от ошибок. Большинство ПЭВМ имеет дискретную (цифровую) форму представления информации, что и дает возможность быстрого и продуктивного развития как материальной базу ПЭВМ, так и методов обработки информации. Аналоговая информация — к примеру, голос человека — может быть преобразована в цифровую и надлежащим образом обработана, а затем, преобразована обратно, что, например, позволяет безголосым певцам прилично выступать на сцене, при этом их голос обрабатывается и преобразуется в мелодичный из корявого. Дискретная информация позволяет увеличивать объемы хранения, при уменьшении размеров носителей, и т. д.

В общем случае сигнал — это изменяющийся во времени процесс. Такой процесс может содержать различные характеристики (например, при передаче электрических сигналов могут изменяться напряжение и сила тока).

Природа большинства физических явлений такова, что они могут принимать различные значения в определенном интервале (температура воды, скорость автомобиля и т. д. ).

Непрерывный (аналоговый) способ представления информации — представление информации, в котором сигнал на выходе датчика будет меняться вслед за изменениями соответствующей физической величины.

Аналоговый способ представления информации имеет недостатки:

Точность представления информации определяется точностью измерительного прибора (например, точность числа, отображающего напряжение в электрической цепи, зависит от точности вольтметра). Наличие помех может сильно исказить представляемую информацию.

Дискретность (от лат. discretus — разделенный, прерывистый) — прерывность; противопоставляется непрерывности. Например, дискретное изменение величины во времени — это изменение, происходящее через определенные промежутки времени (скачками); система целых (в противоположность системе действительных чисел) является дискретной.

Дискретный сигнал — сигнал, параметр которого принимает последовательное во времени конечное число значений (при этом все они могут быть пронумерованы).

Цифровой способ представления информации — представление информации в дискретном виде.

Тем не менее, все не так просто. То, что фотографии в старых газетах дискретны, видят и соглашаются все. А в современном красочном глянцевом журнале? А распечатка картинки на лазерном принтере — она дискретна или непрерывна (все-таки, она состоит из частичек специального порошка, а они маленькие, но конечные по размеру; да и сама характеристика dpi — количество точек на единицу площади наводит на сомнения в непрерывности картинки, хотя глаз упорно не видит дискретности)? Если еще в этот момент вспомнить, что твердые тела состоят из мельчайших атомов, а глаз, воспринимающий изображение, имеет чувствительные маленькие палочки и колбочки, то все вообще станет туманным и неоднозначным.

Видимо, чтобы не запутаться совсем, надо принять правило, что в тех случаях, когда рассматривая величина имеет настолько большое количество значений, что мы не в состоянии их различить, то практически ее можно считать непрерывной.

Возможность дискретизации непрерывного сигнала с любой желаемой точностью (для возрастания точности достаточно уменьшить шаг) принципиально важна с точки зрения информатики. Компьютер — цифровая машина, т. е. внутреннее представление информации в нем дискретно. Дискретизация входной информации (если она непрерывна) позволяет сделать ее пригодной для компьютерной обработки. Существуют и другие вычислительные машины — аналоговые ЭВМ. Они используются обычно для решения задач специального характера и широкой публике практически не известны. Эти ЭВМ в принципе не нуждаются в дискретизации входной информации, так как ее внутренне представление у них непрерывно. В этом случае все наоборот — если внешняя информация дискретна, то ее перед использованием необходимо преобразовать в непрерывную.

Гост

ГОСТ

Формы представления информации

Информация представляет собой понятие довольно емкое, вмещающее в себя весь окружающий нас мир (это вещи, явления, история, литература, искусство и многое другое). Всю информацию можно представить в двух формах:

Познакомимся с ними более детально.

Физические величины, а точнее их значения, характеризуют объекты и явления. Например, человека могут характеризовать такие физические величины, как масса тела, рост, температура тела, давление и т.д. В качестве явления, например, природы можно рассмотреть ураган, который будет характеризоваться такими физическими величинами, как скорость ветра, температура воздуха, количество выпавших осадков.

Некоторые физические величины по своей природе таковы, что могут принимать любые значения в определенном диапазоне. Эти значения могут находиться достаточно близко друг от друга, но тем не менее они различаются, а количество же значений, которое может принимать величина, бесконечно велико.

Подобные величины называют непрерывными, соответственно информацию, которая выражается с помощью этих величин, также называют непрерывной.

Основным свойством данных величин является непрерывность, что говорит само за себя, т.е. это отсутствие разрывов, промежутков между значениями величины. Так, например, масса тела - непрерывная величина, которая принимает любые значения от 0 до бесконечности.

Помимо непрерывных величин существуют и другие, например, количество спортсменов на стадионе, количество атомов в молекуле и т.д. Подобные величины могут принимать только целые значения и не могут иметь дробных значений.

Величины, которые могут принимать не все возможные значения, а только вполне конкретные, называют дискретными. Дискретные величины характеризуются тем, что все их значения можно пронумеровать целыми числами.

Примерами дискретных величин являются:

  • геометрические фигуры;
  • буквы алфавита;
  • цвета радуги.

Таким образом, различие между двумя формами информации строится на принципиальном различии природы величин. В то же время непрерывная и дискретная информация могут использоваться одновременно для более полного представления сведений об объектах и явлениях.

Готовые работы на аналогичную тему

Попробуем разобраться, что может объединять непрерывные и дискретные величины.

Рассмотрим простой пример и опишем наши рассуждения, в качестве примера возьмем пружинные весы. Масса тела, которую можно измерить с их помощью, представляет собой непрерывную величину. В данном случае информация о массе содержится в длине отрезка, на которую переместился указатель весов под непосредственным действием массы тела. Длина отрезка также представляет собой непрерывную величину.

Для определения массы в весах традиционно используется градуированная шкала. Допустим, шкала используемых нами весов имеет диапазон от $0$ до $50$ г.

При этом масса будет характеризоваться одним из $51$ значений (дискретным набором значений), т.е. информация о непрерывной величине, массе тела, приобрела дискретную форму. Таким образом, любая непрерывная величина может быть представлена в дискретной форме. С механизмом такого преобразования мы познакомились.

Возникает вопрос, а можно ли по дискретному представлению восстановить непрерывную величину? Да, это действительно в определенной степени возможно, однако сделать это достаточно сложно, в результате восстанавливаемый образ может отличаться от подлинника.

Формы представления дискретной информации

Как уже отмечалось, дискретность - это ничто иное, как конечное число разнообразий, с помощью которых можно охарактеризовать объект или явление. Для выделения чего-то конкретного из всего возможного, необходимо этому конкретному присвоить индивидуальное имя, т.е. перечислить. В этих именах и будет заключаться смысл информации об объектах и явлениях.

В качестве имен можно использовать натуральные числа. Подобным образом нумеруются страницы книг, дома, деления на шкалах измерительных приборов. С помощью чисел можно пронумеровать все. Именно такая цифровая форма представления информации используется в ЭВМ.

В повседневной жизни цифровая форма представления информации не совсем практична. Традиционно информацию об объектах и явлениях окружающего мира мы представляем в форме слов и их последовательностей.

Слово является основным элементом в данной форме представления информации, с помощью него обозначаются имена объектов, действий, свойств и т.п.

Слова строятся из букв конкретного алфавита (например, русского). Помимо букв могут использоваться специальные символы: знаки препинания, математические символы и знаки и т.п. Разнообразные символы, которые мы используем, образуют алфавиты, на их основе, в свою очередь, можно построить различные объекты:

  • из цифр - числа;
  • из букв – слова;
  • из цифр, букв и математических символов - формулы и т.д.

Во всех этих объектах заключена информация:

  • в числах - информация о значениях;
  • в словах - информация об именах и свойствах объектов;
  • в формулах - информация о зависимостях между величинами.

Эта информация по своей природе дискретна и может быть представлена в виде последовательности символов. Такая информация представляет собой особый вид дискретной информации, который называют символьным.

В настоящее время существует множество разных систем письменности, с помощью которых одна и та же информация может быть представлена на основе самых разных наборов символов и самых разных правил использования символов при построении слов, фраз, текстов.

Следовательно, символьная информация может быть представлена с помощью различных алфавитов без искажения содержания и смысла информации.

Помимо приведенных выше существуют и другие формы представления дискретной информации. К ним можно отнести чертежи, схемы, содержащие графическую информацию.

Дискретизация информации

Обмен информацией в системах обработки информации происходит при помощи сигналов. В качестве носителей сигналов могут выступать любые физические величины, которые представляют собой функции времени или определенное пространственное распределение сигналов. Параметры передаваемых временных функций (частоты, амплитуды, фазы, длительности импульсов или пространственного распределения последовательных импульсов, точек на изображении, сочетаний цветов на экране и др.) являются информационными параметрами сигнала.

  1. Аналоговый (непрерывный). Параметры внутри определенного диапазона могут принимать любые значения и в любые моменты времени.
  2. Дискретный сигнал. Параметры могут принимать лишь определенные значения в дискретные моменты времени.

Непрерывные сигналы в системе координат (уровень и время) описывают с помощью непрерывных функций. Преобразование аналогового сигнала в дискретный связано с его дискретизацией по уровню и во времени.

Дискретные сигналы довольно таки просто хранить и обрабатывать, поскольку они мало подвергаются искажениям под влиянием помех, причем последние легко обнаружить. В связи с этим дискретные сигналы наиболее широко применяются, чем непрерывные.

Преобразование непрерывного информационного множества аналоговых сигналов в дискретное множество называется дискретизацией или квантованием по уровню.

Квантование по уровню широко применяется в цифровых автоматах, поскольку производится отображение всевозможных значений величины X на дискретную область, состоящую из величин X, уровней квантования.

При дискретизации по времени (квантование по времени) непрерывная по времени функция преобразовывается в функцию дискретного аргумента времени. Дискретизация непрерывных сигналов построена на принципе представления их в виде взвешенных сумм. Органы чувств человека не совершенны, и в связи с этим окружающий нас мир мы воспринимаем дискретно. Использование различных приборов, которые увеличивают чувствительность или разрешающую способность, принципиально ничего не дает, меняет лишь шаг дискретизации.


Ось значений функции можно разбить на отрезки с заданным шагом и отобразить каждый из выделенных отрезков из области определения функции в соответствующий отрезок из множества значений (рис. 1.4). В итоге получим конечное множество чисел, определяемых, например, по середине или одной из границ таких отрезков.

Возможность дискретизации непрерывного сигнала с любой желаемой точностью (для возрастания точности достаточно уменьшить шаг) принципиально важна с точки зрения информатики. Компьютер - цифровая машина, т. е- внутреннее представление информации в нем дискретно. Дискретизация входной информации (если она непрерывна) позволяет сделать ее пригодной для компьютерной обработки.

2.3. ЕДИНИЦЫ КОЛИЧЕСТВА ИНФОРМАЦИИ:
ВЕРОЯТНОСТНЫЙ И ОБЪЕМНЫЙ ПОДХОДЫ

Вероятностный подход

Рассмотрим в качестве примера опыт, связанный с бросанием правильной игральной .кости, имеющей N граней (наиболее распространенным является случай шестигранной кости: N = 6). Результаты данного опыта могут быть следующие: выпадение грани с одним из следующих знаков: 1,2. N.

Введем в рассмотрение численную величину, измеряющую неопределенность -энтропию (обозначим ее Н). Величины N и Н связаны между собой некоторой функциональной зависимостью:

а сама функция f является возрастающей, неотрицательной и определенной (в рассматриваемом нами примере) для N = 1, 2. 6.

Рассмотрим процедуру бросания кости более подробно:

1) готовимся бросить кость; исход опыта неизвестен, т.е. имеется некоторая неопределенность; обозначим ее H1;

2) кость брошена; информация об исходе данного опыта получена; обозначим количество этой информации через I;

I = H1 - H2 (1.2)

Следующим важным моментом является определение вида функции f в формуле (1.1). Если варьировать число граней N и число бросаний кости (обозначим эту величину через М), общее число исходов (векторов длины М, состоящих из знаков 1,2. N) будет равно N в степени М:

Так, в случае двух бросаний кости с шестью гранями имеем: Х = 6 2 = 36. Фактически каждый исход Х есть некоторая пара (X1, X2), где X1 и X2 - соответственно исходы первого и второго бросаний (общее число таких пар - X).

f(6 M ) = M ∙ f(6)

Данную формулу можно распространить и на случай любого N:

F(N M ) = M ∙ f(N) (1.4)

Прологарифмируем левую и правую части формулы (1.3): ln X = M ∙ ln N, М =ln X/1n M. Подставляем полученное для M значение в формулу (1.4):


Обозначив через К положительную константу , получим: f(X) = К ∙ lп Х, или, с учетом (1.1), H=K ∙ ln N. Обычно принимают К = 1 / ln 2. Таким образом

H = log2 N. (1.5)

Это - формула Хартли.


Та же формула (1.6) принимается за меру энтропии в случае, когда вероятности различных исходов опытанеравновероятны (т.е. Рi могут быть различны). Формула (1.6) называетсяформулой Шеннона.

Н = log2 34 ≈ 5 бит.

Однако, в словах русского языка (равно как и в словах других языков) различные буквы встречаются неодинаково часто. Ниже приведена табл. 1.3 вероятностей частоты употребления различных знаков русского алфавита, полученная на основе анализа очень больших по объему текстов.

Воспользуемся для подсчета Н формулой (1.6); Н ≈ 4,72 бит. Полученное значение Н, как и можно было предположить, меньше вычисленного ранее. Величина Н, вычисляемая по формуле (1.5), является максимальным количеством информации, которое могло бы приходиться на один знак.

Таблица 1.3. Частотность букв русского языка

i Символ Р(i) i Символ P(i) i Символ Р(i)
Пробел 0,175 0,028 Г 0.012
0,090 М 0,026 Ч 0,012
Е 0,072 Д 0,025 И 0,010
Ё 0,072 П 0,023 X 0,009
А 0,062 У 0,021 Ж 0,007
И 0,062 Я 0,018 Ю 0,006
Т 0,053 Ы 0,016 Ш 0.006
Н 0,053 З 0.016 Ц 0,004
С 0,045 Ь 0,014 Щ 0,003
Р 0,040 Ъ 0,014 Э 0,003
В 0,038 Б 0,014 Ф 0,002
Л 0,035

H = log2 27 ≈ 4,76 бит.

Как и в случае русского языка, частота появления тех или иных знаков не одинакова.

Если расположить все буквы данных языков в порядке убывания вероятностей, то получим следующие последовательности:

Рассмотрим алфавит, состоящий из двух знаков 0 и 1. Если считать, что со знаками 0 и 1 в двоичном алфавите связаны одинаковые вероятности их появления (Р(0) = Р(1) = 0,5), то количество информации на один знак при двоичном кодировании будет равно

H = 1оg2 2 = 1 бит.

Таким образом, количество информации (в битах), заключенное в двоичном слове, равно числу двоичных знаков в нем.

Объемный подход

В двоичной системе счисления знаки 0 и 1 будем называть битами (от английского выражения Binary digiTs - двоичные цифры). Отметим, что создатели компьютеров отдают предпочтение именно двоичной системе счисления потому, что в техническом устройстве наиболее просто реализовать два противоположных физических состояния: некоторый физический элемент, имеющий два различных состояния: намагниченность в двух противоположных направлениях; прибор, пропускающий или нет электрический ток; конденсатор, заряженный или незаряженный и т.п. В компьютере бит является наименьшей возможной единицей информации. Объем информации, записанной двоичными знаками в памяти компьютера или на внешнем носителе информации подсчитывается просто по количеству требуемых для такой записи двоичных символов. При этом, в частности, невозможно нецелое число битов (в отличие от вероятностного подхода).

Для удобства использования введены и более крупные, чем бит, единицы количества информации. Так, двоичное слово из восьми знаков содержит один, байт информации, 1024 байта образуют килобайт (кбайт), 1024 килобайта - мегабайт (Мбайт), а 1024 мегабайта - гигабайт (Гбайт).

В дальнейшем тексте данного учебника практически всегда количество информации понимается в объемном смысле.

Читайте также: