Неограниченные возможности головного мозга реферат

Обновлено: 03.07.2024

Принято считать, хотя это никем не доказано, что человеческий мозг используется не более чем на 5 процентов. Но и этого КПД пока хватает для рождения гениальных идей, влекущих за собой великие открытия и достижения. А если использовать мозг на все 100 процентов? Возможно ли это? И какого прогресса тогда достигло бы человечество? Обсудим тему с доктором биологических наук, руководителем лаборатории развития нервной системы Института морфологии человека Сергеем Савельевым.

Горе от ума - это литературная выдумка

Вы согласились бы жить вечно при условии, что ваша жизнь продолжалась бы в неразумном состоянии?

Сергей Савельев: Конечно, нет. Это неинтересно. Хотя некоторые люди рождаются и умирают, не приходя в сознание, как было написано в анамнезе у одного из генеральных секретарей коммунистической партии. Жил и умер, не приходя в сознание. Конечно, это шутка. Но есть растения, которые живут тысячи лет. Спросите у них, наверное, им это нравится. Что касается человеческой эволюции, то это не что иное, как эволюция мозга, и больше ничего. Потому что во всем остальном мы сделаны никудышно. Как говорил знаменитый офтальмолог Гельмгольц, если бы Господь Бог поручил мне сделать глаза, я бы сделал их в сто раз лучше. Это касается и всех остальных человеческих органов.

Что такое горе от ума в физиологическом проявлении этого, скажем так, недуга?

Сергей Савельев: Горя от ума как его трактует обыватель или в том смысле, какой вкладывал в это понятие великий русский писатель, - такого горя не бывает. Если человек достаточно умен, то он понимает принципы и механизмы мира, в котором живет, и не станет, как Чацкий, "метать бисер перед свиньями". Горе от ума - это литературная выдумка. Человек, понимающий, что происходит, во-первых, не предъявляет к окружающим излишне высоких требований, а, во-вторых, бессовестно пользуется своими знаниями.

Хорошо, спрошу так: чрезмерная нагрузка на мозг может иметь для человека негативные последствия?

Сергей Савельев: Существует наивное мнение, что человеческий мозг беспределен в своих физиологических возможностях. На самом же деле он в них сильно ограничен. Есть четкие физиологические пределы. Скорость метаболизма нельзя повысить бесконечно. Когда человек умственно не активен, то есть когда, например, читает "Российскую газету" на диване перед сном, он потребляет примерно девять процентов всей энергии организма. А если чтение его чем-то возбуждает и подогревает, действует как перец в пище, то он начинает задумываться, и расходы энергии в этом случае достигают двадцати пяти процентов от всей энергии организма. Это очень большие расходы и очень тяжелые. Человеческий организм сопротивляется им. Поэтому мы ленивы и нелюбопытны. А между тем творчество требует как раз тех самых двадцати пяти процентов.

В мозгах все устроено так, что вход - рубль, выход - три

Значит, ради здоровья умственную энергию нужно экономить?

Сергей Савельев: Это происходит помимо нашей воли. Человеческий мозг не приспособлен к большим энергетическим затратам. В режиме двадцатипятипроцентной активности он может просуществовать пару недель. А потом начинает развиваться так называемая энергетическая задолженность и то, что в старой медицине называлось нервным истощением. В мозгах все устроено так, что вход - рубль, выход - три. Если вы две недели кряду интеллектуально перенапрягаетесь, то потом должны шесть недель расслабляться и отдыхать, чтобы компенсировались мозговые затраты .

Вы хотите сказать, что интеллектуальные нагрузки вредят мозгу?

Сергей Савельев: Конечно, вредят, он же приспособлен не для интеллекта.

Я думал, вы скажете, что интеллектуальные нагрузки укрепляют мозг, как физические нагрузки укрепляют мышцы.

Сергей Савельев: Да ведь и с мышцами ничего такого не происходит. Не укрепляются они от физической нагрузки, а разрушаются. Вы сколько хотите прожить-то? Если вы хотите прожить сильным красивым физкультурником лет до пятидесяти, то, конечно, укрепляйте свои мышцы. Но любая мышца может сократиться один миллиард раз, а потом она умрет. Любая перенагрузка - это смерть. Это касается и мышц, и мозга. Смертность у профессиональных спортсменов в десять раз выше, чем у обычных людей. Причем от тяжелых заболеваний. Спорт - это не полезно.

А слабая нагрузка на мозг - это полезно?

Сергей Савельев: О, это мечта любого государя.

Разве мозговая пассивность не ведет к умственной деградации?

Сергей Савельев: Мир наполнен мистическими историями про мозг, но суть-то проста: мозг не хочет работать, потому что его работа требует энергетических затрат. В этом причина нашей праздности, лени и желания украсть, а не заработать.

Никогда не объяснишь, почему один видит то, чего не видит другой


Есть люди, обладающие феноменальными способностями. Например, умением за несколько секунд перемножить в уме два четырехзначных числа. Этому есть научное объяснение?

Сергей Савельев: Надо учиться в физико-математической школе, чтобы овладеть таким умением. Это несложно, есть хорошо известные приемы. Ну и кроме того, надо быть ограниченным во многих других областях, чтобы сосредоточенно демонстрировать такие фокусы. Ничего творческого или тем более гениального здесь нет. Истории известны люди, которые замечательно умножали цифры, особенно когда речь шла об их собственных деньгах. Но, к сожалению, эти люди ничего не произвели, кроме таких расчетов.

В человеческом мозге есть отделы, отвечающие за ту или иную одаренность, например, за музыкальную или шахматную?

Сергей Савельев: Конечно, есть. Вся поверхность мозга занята областями, которые структурно очень хорошо выявляются. Можно посмотреть на гистологические срезы. На этих гистологических срезах толщиной в несколько микрон, если порезать человеческий мозг, существуют поля и видны их границы. Каждое поле функционально приспособлено к той или иной функции. Скажем, к зрению, слуху, движению. И мозг состоит из таких полей. И он индивидуально изменчив. То есть каждое поле у разных людей разное. У одного человека, к примеру, у хорошего фотографа, оно в "зрительной" области может быть в три раза больше, чем у любого другого. А это миллиарды нейронов, миллиарды связей. Никогда не объяснишь, почему один видит то, чего не видит другой. То же самое и у музыканта или ученого. Наши индивидуальные возможности определены комбинацией этих полей, имеющих разные размеры. У кого какое-то поле большое, у того та или иная одаренность явственно выражена. А у кого некое поле маленькое, тому свои способности, допустим, к математике, уж извините, ничем не нарастить. Словом, наше поведение детерминировано размером полей коры мозга, а также подкорковых структур, которые отвечают за каждую функцию. Например, за музыкальную. Чтобы просто слышать, нужно иметь два десятка структур. Вероятность, что у одного человека все эти структуры будут достаточно большие, прямо скажем, невелика. Поэтому выдающихся музыкантов мало, а имитаторов полным-полно.

Разум - это абстрактное понятие

Как соотносятся между собой мозг и разум?

Сергей Савельев: Разум - это абстрактное понятие. То, что червь осознанно ползет от раствора соли к раствору еды, - это разум? С точки зрения психологов - да. Но физиология абстрактными понятиями не оперирует. Гениальность - да, есть такое понятие в физиологии. Уникальная комбинация размера структур мозга позволяет какому-то человеку писать гениальную музыку. А другой никогда гениальную музыку не напишет, потому что у него нет соответствующей комбинации структур. Мозг - это структурно детерминированное устройство, которое определяет индивидуальность и неповторимость каждого человека. По этой причине все люди разные. И эти способности не наследуются. На фоне талантливого родителя ребеночек может выглядеть полным бездарем. Что чаще всего и бывает.

Можно ли сказать, что разум является посредником между мозгом и телом?

Сергей Савельев: Нет. Разум вообще понятие не научное. В чем разум? Тыкать пальцем в клавиатуру компьютера? Нажимать на кнопки телефона? Считать до десяти?

Тем не менее есть понятие "разумные существа".

Сергей Савельев: Я не занимаюсь философией.

В любом случае разум - это физиологическое понятие.

Сергей Савельев: Для меня такого понятия не существует по той простой причине, что у него размыты границы. Разумом обладают все животные, у которых есть нервная система. И в этом смысле глупо утверждать, что человек - разумный, а остальные живые существа - неразумные. Человек является продуктом церебральной эволюции. Он может создавать то, чего не было в природе и обществе. Вот муравьи того, чего не было в обществе, создать не могут. И черви плоские, и даже обезьяны не могут создать того, чего не было в их сообществе. А человек может. Что является критерием человека? То, что он творчески создает нечто, до него в природе и обществе не созданное. И если мы договоримся, что разум - это способность создавать то, чего не было в природе и обществе, то такое понятие я принимаю. А если мы это не вводим, то получается размытое пустое определение, словоблудие для философов, основная задача которых объяснить, почему мы профукали свою жизнь так бездарно.

Европейцы прошли отрицательную эволюцию

Есть пределы развитию мозга?

Сергей Савельев: Те, кто задает такие вопросы, предполагают, что человеческий мозг законсервировался двести тысяч лет назад, и с тех пор эволюционных изменений не происходит.

Сергей Савельев: За двести тысяч лет, даже чуть меньше, примерно за сто тридцать пять тысяч, человеческий мозг уменьшился на двести пятьдесят граммов. Я имею в виду цивилизованную Европу. Потому что они отбирали конформистов и уничтожали творческих, самостоятельных людей.

Эволюция мозга была отрицательной?

Сергей Савельев: Для Европы - да. Европейцы прошли отрицательную эволюцию и высокую церебральную специализацию - многовековой искусственный отбор, очень жесткий, который уменьшил размер и массу их мозга в пользу конформизма и социальной адаптированности.

Разве конформизм и способность к социальной адаптации свойственны только европейцам?

Сергей Савельев: Да. Потому что они всегда очень тесно жили, и любой приказ какого-нибудь князя быстро доходил до всех. Смотришь, уже голову рубят крестьянину в соседней деревне. А в Африке это плохо действовало, и в России это плохо действовало, не получалось. Поэтому у нас полиморфизм сохранился больше, а у европейцев меньше. Чем больше полиморфизм, тем больше шансов для эволюционного прогресса.

Человеческий мозг работать не хочет, не любит и по возможности не будет никогда

Безграничные возможности мозга, если таковые имеются, несут в себе какие-то риски для человечества?

Сергей Савельев: Безграничных возможностей нет. Во-первых, есть ограничения энергетические. Во-вторых, человеческий мозг приспособлен для решения конкретных биологических задач и жестко сопротивляется любому нецелевому использованию. Поэтому он работать не хочет, не любит и по возможности не будет никогда.

Значит, лень имеет физиологическое обоснование?

Сергей Савельев: Конечно. Когда вы ленитесь и ничего не делаете, мозг потребляет девять процентов энергии. А когда начинаете думать - до двадцати пяти. И это катастрофа. Потому что когда вы ленитесь, у вас эндорфины, эти внутренние наркотики, выбрасываются в мозг и в результате вы мало того что бездельничайте, вы еще и кайф ловите. А когда вы, не дай бог, начинаете трудиться, мозг придумывает миллион способов, чтобы вас от этого отвадить. В итоге организм сопротивляется и, предвидя энергозатраты, просто криком кричит: "А что я буду делать завтра?! Где гарантия, что колбаса в холодильнике снова появится?!" То есть вы сопротивляетесь любому труду как нормальная обезьяна. И это вполне естественно.

Можно заставить работать ленивый мозг?

Сергей Савельев: Можно.

Сергей Савельев: Когда вас поставят в стрессовую ситуацию, требующую напряжения умственных сил. Но при первой возможности мозг будет вас обманывать. Даже мозг гения, который приспособлен для творчества, будет стараться увильнуть от работы. Гению проще имитировать свою гениальность, чем что-то создавать. Именно поэтому у гениев на двадцать работ лишь одна гениальная, остальное - подделки. Обезьянья порода неисправима, все время приходится прятать хвост.

Гениальность не надо искать у политиков

Мозг гения физически отличается от мозга обычного человека?

Сергей Савельев: Да, мозг гения весит больше. В свое время в России был создан Институт мозга, там изучали в том числе мозг Ленина, сравнивали его с мозгом Маяковского, других выдающихся людей. Оказалось, что у Ленина мозг был маленького размера и весил 1330 граммов. У Сталина примерно столько же. Что было, как теперь можно смело сказать, вполне ожидаемо. Вообще гениальность не надо искать у политиков. У нас есть биологическая инстинктивная форма поведения, называемая доминантностью. Свойственная политикам гипердоминантность, означающая стремление властвовать, управлять людьми и ходом истории, она является биологически обусловленной. А гениальность - это другое. Это способность к необычному. Стать гипердоминантом может любой бабуин. Поэтому в мозге Ленина ничего особенного не нашли, там очень посредственные параметры. Просто эта биологическая инстинктивная форма поведения - доминантность - она у него была гипертрофирована.

Мозг работает, даже когда мы спим

Это правда, что человеческий мозг используется не более чем на пять процентов?

Сергей Савельев: У того, кто так считает, он используется, видимо, на два. Это полная чушь насчет пяти процентов. Мозг работает весь. Это как оперативная память в компьютере: выключили - и все стерлось. Поэтому через шесть минут после отключения человека от кислорода и продуктов питания мозг начинает необратимо терять память и умирать. Он потребляет десять процентов всей энергии организма, даже когда мы спим. Именно из-за того что он всегда и весь работает.

Интеллектуальная нагрузка - это профилактика старения

Что такое старение мозга? От чего начинается старческая деменция?

Сергей Савельев: Старение мозга - это в первую очередь гибель нейронов. Сами нейроны уморить очень сложно. Но их количество исчерпаемо. Причем нейроны у человека начинают гибнуть еще в утробе матери. После пятидесяти лет они уже активно погибают, и за каждые последующие десять лет наш мозг теряет по тридцать граммов нейронов. Этот процесс продолжается до глубокой старости. И если головой не думать, не заставлять сосуды кровоснабжаться и кровоснабжать нейроны, то к восьмидесяти годам мозг может полегчать на 100 граммов, а то и больше. У людей, которые мозгами вообще не пользуются, такого рода ослабление идет еще быстрее. Интеллектуальные люди дольше сохраняют умственную потенцию.

Значит, интеллектуальная нагрузка необходима мозгу?

Сергей Савельев:Абсолютно. Это профилактика старения. Но кроссвордами и просмотрами телепрограммы "Что? Где? Когда?" старение мозга не замедлишь. Чтобы его замедлить, надо всякий раз решать проблему, которая раньше перед тобой не стояла. Игрой в шахматы можно только ускорить маразм, а не остановить его. Потому что шахматы - не столь уж интеллектуальное занятие. Это просто комбинаторика. К сожалению, многие путают творчество и комбинаторику. Комбинаторика - это когда из трех бумажек делают четвертую, а мозг при этом сачкует.

Обещает ли нам эволюция умственный прогресс?

Сергей Савельев: Нет, не обещает. Перспективы печальны: уменьшение размеров мозга из-за тотального конформизма и постоянной адаптации к среде, экспорт своей индивидуальности и способностей государству в обмен на экономию энергии. Когда мы договариваемся с государством или религией, мы им дарим свою творческую, интеллектуальную свободу. А они, в свою очередь, гарантируют нам пищу и размножение. Так что дальше все будет хуже и хуже. И если эта тенденция сохранится, то человеческий мозг может уменьшиться еще граммов на двести пятьдесят.

Выходит, эволюция идет в обратном направлении? Человечество не умнеет, а глупеет?

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Слайд 1. Я хочу представить Вашему вниманию проект по биологии «Возможности

Слайд 2. Цель проекта: познакомиться с возможностями человеческого мозга

Слайд3. Задачи:
- изучить строение мозга человека;
- познакомиться со сверхвозможностями человеческого мозга;
- собрать интересные факты об удивительных аномалиях мозга.

Слайд 4. Самым сложным органом человеческого организма является мозг. Гениальность его работы превосходит работу всех компьютерных систем вместе взятых. Человеческий мозг является своего рода командным пунктом для всего нашего организма. Он постоянно принимает поступающие сигналы от всех органов чувств, каковыми являются глаза, уши, язык, нос, кожа. И сразу же посылает ответные приказы для всех частей тела. Но самой непостижимой функцией мозга является способность мыслить и творить, учиться, мечтать и надеяться, печалиться и радоваться. Также мозг контролирует работу всех систем внутренних органов человека. Благодаря мозгу мы можем говорить, слышать, читать.

Слайд 5. Строение мозга

Возможности мозга нельзя рассматривать не зная его строения.

hello_html_50d9ea3f.jpg

Слайд 6. Скрытые возможности мозга человека

Существуют люди, которые обладают достаточно удивительными способностями мозга, недоступными обычному человеку.

Аномальная скорость счета и чтения

При чтении текста вслух зрелый человек способен воспроизвести не более 250–260 слов в минуту, а многие люди читают и того медленнее. Причем чем старше становится человек, тем больше снижается скорость его чтения. Подавляющее большинство взрослых не способны воспроизводить текст со скоростью более чем 180 слов в минуту. В отдельных случаях этот показатель может оказаться больше в несколько раз.

Рекордсменка из Украины. Личный рекорд скорости чтения киевлянка Ирочка Иваченко поставила уже в 16 лет. Он составил 163 333 слов в минуту. К тому же ей удалось полностью усвоить содержание прочитанного материала. Этот результат был зафиксирован официально и является до сих пор непреодоленным.

Возможность выучить большое количество иностранных языков

История хранит десятки имен выдающихся полиглотов. Их было немало среди князей Киевской Руси, среди ученых средних веков. Датский языковед Расмус Раек разговаривал на 230 языках. Немецкий лингвист Шютц — на 270, Вильгельм Гумбольдт — выдающийся немецкий ученый и государственный деятель — на 117 языках. Известный исследователь древней Трои Г. Шлиман знал около 60 языков. Русским языком, по его словам, он овладел за 6 недель.

Фотографическая память

Эйдети́зм - особый вид памяти, преимущественно на зрительные впечатления, позволяющий удерживать и воспроизводить в деталях образ воспринятого ранее предмета или явления.

Бонапарт Наполеон (1769 - 1821) – первый император Франции, талантливый военачальник, который обрел известность во время французской революции. Наполеон обладал необычайной памятью. Он мог запоминать бесчисленное количество людей, карты и расположение войск. Его талант позволял ему действовать оперативно и разрабатывать беспроигрышные стратегии, предугадывая действия противника на несколько шагов вперед.

Сергей Рахманинов (1873 - 1943) – выдающийся русский композитор, дирижер и один из величайших пианистов всех времен. Фотографическая память позволяла ему запоминать ноты с невероятной скоростью. Говорят, он мог без труда запомнить несколько отрывков из сложных музыкальных произведений.

Ясновидение

Под ясновидением понимается способность некоторых людей видеть события давно прошедшие, настоящие и даже будущие.

Пожалуй, самым знаменитым является Мишель Нострадамус. Нострадамус жил в XVI веке при дворе Марии Медичи и выполнял функции придворного лекаря и наставника будущей королевы Шотландии Марии Стюарт. Считают, что он предсказал своей воспитаннице трагическую судьбу вплоть до ее казни в 1587 году. Пророчества Нострадамуса простираются на период от XII столетия нашей эры до середины IV тысячелетия.

В наши дни одной из популярнейших ясновидящих была и остается Ванга. Эта болгарская ясновидящая и целительница, ослепнув после бури в 1923 году, обрела способность к предвидению. Она практиковала более 50 лет.

Уникальными способностями обладал Вольфганг Мессинг — читал мысли. Эти данные так и не были опровержены на момент его жизни.

Слайд 7. Исследования головного мозга указывают на довольно специфические аномалии развития органа. Специалисты выделяют случаи, которые достаточно тяжело объяснимы.

Известны удивительные аномалии:

Однако он до сих пор живет абсолютно нормально более 5 лет.

Однако этот человек не умер , единственное лечение травмы была обработка раны и наложение повязки. Он умудрился прожить ещё более 10 лет, сохранив все способности мозга.

Этот случай еще более удивительный. Яков Циперович за 30 лет ни разу не спал, практически не ел, а процессы старения полностью отсутствуют. Внешний вид человека абсолютно не изменился.

Выделение нейромедиатора в синаптическую щель

Наш мозг состоит из нервных клеток - нейронов. Нейроны постоянно общаются друг с другом, передавая от одного другому информацию, закодированную в виде химических молекул. Именно это позволяет мозгу ежедневно выполнять свои функции: обеспечивать двигательную активность, речь, процесс мышления, восприятие зрительной и слуховой информации, ее понимание и запоминание, управление работой органов и систем тела, и многие другие.

Химические цепочки

Все чувства и эмоции, которые испытывают люди, возникают путем химических изменений в головном мозге. Прилив радости, который человек ощущает после получения положительной оценки, выигрыша в лотерею или при встрече с любимым, происходит вследствие сложных химических процессов в головном мозге. Мы можем испытывать огромное количество эмоций, например таких, как печаль, горе, тревога, страх, изумление, отвращение, экстаз, умиление. Если мозг дает телу команду на осуществление какого-либо действия, например, сесть, повернуться или бежать, это также обусловлено химическими процессами. "Химический язык" нашей нервной системы состоит из отдельных "слов", роль которых исполняют нейромедиаторы (их еще называют нейротрансмиттерами).

Миллиарды нейронов мозга общаются, передавая друг другу сигналы через крошечные зазоры между ними. Эти зазоры называются нервными синапсами. Когда один нейрон получает информацию, он посылает в синапс химический сигнал в виде молекул нейромедиатора. Нейромедиатор преодолевает пространство синапса, направляясь к следующему нейрону, где он присоединяется - как лодка к причалу - к специально предназначенному для его "швартовки" на поверхности нейрона месту, которое называется химическим рецептором. Химическая молекула нейромедиатора будет принята только тем рецептором, который предназначен специально для нее. Это своего рода система "ключ и замок", где каждый ключ подходит только к своему замку. После того, как молекула нейромедиатора соединилась с рецептором на поверхности нового нейрона, этот нейрон получает сигнал либо к действию - и тогда начинает передавать сигналы другим нервным клеткам, - либо к остановке передачи тех или иных сигналов.

нервный синапс

Изменение нейротрансмиссии с помощью лекарств

Большое число неврологических расстройств - от эмоциональных нарушений, таких как депрессия, - до двигательных, таких как болезнь Паркинсона, связано с нарушениями работы определенных медиаторов головного мозга. Ученые создали большое количество лекарств, задачей которых является устранение этих нарушений и связанное с этим улучшение качества жизни людей. В то же самое время, многие вещества, вызывающие зависимость (алкоголь, никотин, наркотики), действуют, используя тот же самый механизм, изменяя баланс медиаторов в головном мозге. Люди испытывают приливы "хорошего самочувствия", когда начинают принимать эти вещества, но скоро нейроны в их мозге настолько адаптируются к повышенным количествам того или иного химического агента, что для того, чтобы самочувствие оставалось хорошим, требуется принимать все большие и большие дозы препарата. Мозг начинает "требовать" вещество для нормальной работы. Возникает химическая зависимость или аддикция.

Рассмотрим, что происходит при изменении уровней нейромедиаторов мозга на примере трех из них (серотонин, дофамин и гамма-аминомасляная кислота (ГАМК).

Серотонин

Многие исследования показывают, что низкий уровень серотонина в головном мозге приводит к депрессии, импульсивным и агрессивным формам поведения, насилию, и даже самоубийствам. Лекарственные вещества под названием антидепрессанты создают блок на пути обратного захвата серотонина, тем самым несколько увеличивая время его нахождения в пространстве синапса. Как итог, в целом увеличивается количество серотонина, участвующего в передаче сигналов с нейрона на нейрон, и депрессия со временем проходит.

Депрессия, социофобия, панические атаки, гиперактивность - только некоторые из нарушений, которые можно успешно излечивать, изменяя уровни медиатора в головном мозге. До того, как эти лекарства стали доступны, люди были обречены всю жизнь испытывать психические проблемы, а те, кто мог себе позволить психотерапию, длительное время работали с психиатром или психологом, пытаясь наладить работу своих чувств. Теперь мы знаем, что на многие расстройства работы головного мозга можно воздействовать с помощью лекарств, позволяя людям преодолевать трудности в эмоциональной и социальной жизни.

Сейчас специалисты обращают внимание на то, что мы перестали считать отрицательные эмоции нормальной частью жизни. Все чаще и чаще нам кажется, что тоска или трудности в социальном функционировании - это признак патологии, а значит нужно идти к психиатру и просить лекарство. Безусловно, люди, которые нуждаются в лечении у психиатра, есть. И, тем не менее, определенную часть пациентов, приходящих на прием к врачу, составляют те, кто не страдает никаким психическим расстройством. Такие люди должны проходить курсы терапии с психологами или психотерапевтами. Медикаментозное же лечение необходимо назначать только тогда, когда симптомы психического расстройства достаточно сильно вторгаются в привычную жизнь человека, серьезно нарушая ее. В большинстве случаев, несмотря на то, что лекарства могут помочь облегчить симптомы, более полное и длительное излечение может быть достигнуто только с помощью психотерапии, которая помогает изменить привычное поведение, которое, собственно, и приводит к болезни. Изменения чувств, возникновение различных, в том числе негативных, эмоций в ответ на перемены в жизни, а также жизненные испытания - это часть нормального функционирования человеческой психики. Поэтому не следует каждый раз, когда Вы испытываете печаль или испортили отношения с любимым человеком, требовать у врача назначения успокоительного. Этим Вы не только навредите себе, но и пропустите важный урок, который готова преподать Вам жизнь. И даже в случаях, когда симптомы приносят серьезные страдания или создают чрезмерные трудности, в дополнение к медикаментозному лечению необходима работа с психологом или психотерапия.

СДВГ

В последние годы ведутся бурные дискуссии вокруг психического расстройства, носящего название "синдром дефицита внимания с гиперактивностью" (СДВГ, ADHD). Это расстройство, как правило, диагностируется в детском возрасте. Таким детям очень сложно сохранять концентрацию внимания в течение длительного времени, они совершенно не могут сидеть, не двигаясь; они постоянно находятся в движении, импульсивны и чрезмерно активны. К сожалению, СДВГ диагностируют у все большего числа детей, и многие из них получают лекарства, увеличивающие деятельность медиатора дофамина. Это помогает ребенку быть готовым к работе, более внимательным и сосредоточенным, и поэтому более способным последовательно выполнять задания.

Большинству детей (70 - 80 процентов) с диагнозом СДВГ лечение, направленное на коррекцию обмена дофамина помогает. Однако некоторые специалисты опасаются, что иногда родители слишком поспешно обращаются к врачам, а доктора слишком часто ставят диагноз СДВГ. В итоге то, что просто является плохим поведением, рассматривается как психическая патология, и дети, которым не нужны медикаменты, начинают их получать. Ученые считают, что часть детей, получающих медикаментозное лечение, должны получать терапию у психологов, потому что именно такая помощь была бы для них гораздо более полезна. Однако, нет простого решения этой проблемы, и очевидно, дискуссии на эту тему будут вестись еще долго.

Наркотическое вещество, известное как "экстази" или МДМА, также изменяет уровень серотонина в мозге, но намного более радикально. Он заставляет выделяющие серотонин нейроны выплескивать все содержимое сразу, затапливая этим химикатом весь мозг, что, конечно, вызывает ощущение чрезвычайного счастья и гиперактивность (чрезмерную двигательную активность). Однако, за это приходится расплачиваться позже. После того как экстази израсходовал весь мозговой запас серотонина, включаются компенсаторные механизмы, быстро разрушающие избыток нейромедиатора в мозге. После того, как спустя несколько часов действие наркотика заканчивается, человек, вероятно, будет чувствовать себя подавленным. Этот период "депрессии" продлится до тех пор, пока мозг не сможет восполнить запасы и обеспечить нормальный уровень медиатора. Повторное использование на этом фоне экстази может привести к глубокой депрессии или другим проблемам, которые будут тянуться в течение долгого времени.

Дофамин

Дофамин - медиатор, который обеспечивает процессы контроля движений, эмоционального ответа, а также способность испытывать удовольствие и боль. При болезни Паркинсона выходят из строя нейроны, передающие дофамин, что вызывает прогрессирующую потерю контроля движений. Вещество под названием Леводопа, которое мозг может преобразовать в дофамин, часто помогает контролировать эти симптомы.

Ученые обнаружили, что люди с расстройством психики, известным как шизофрения, фактически чрезмерно чувствительны к дофамину в мозге. Как следствие, при лечении шизофрении используются лекарства, которые блокируют дофаминовые в головном мозге, таким образом, ограничивая воздействие этого нейромедиатора.

С другой стороны, вещества, известные как амфетамины, увеличивают уровень дофамина, заставляя нейроны его высвобождать, и препятствуя его обратному захвату. В некоторых странах врачи используют разумные дозы этих препаратов при лечении некоторых заболеваний, например, синдрома гиперактивности с дефицитом внимания. Тем не менее, иногда люди абсолютно необдуманно неправильно используют эти вещества, пытаясь обеспечить себе повышенный уровень бодрствования и способность решать любые задачи.

Гамма-аминомасляная кислота

Гамма-аминомасляная кислота, или ГАМК, является главным медиатором, чья роль заключается в передаче нейронам команды "стоп". Исследователи полагают, что определенные типы эпилепсии, которые характеризуются повторными припадками, затрагивающими сознание человека и его двигательную сферу, могут являться результатом снижения содержания ГАМК в головном мозге. Передающая система мозга, не имея адекватного "тормоза", входит в состояние перегрузки, когда десятки тысяч нейронов начинают сильно и одновременно посылать свои сигналы, что приводит к эпилептическому приступу. Ученые полагают, что за разрушение слишком большого количества ГАМК могут быть ответственны мозговые ферменты, в связи с чем появились лекарства, которые помогают остановить этот процесс. Время показало их эффективность в лечении не только эпилепсии, но и некоторых других нарушений работы мозга.

Гормоны

Химическое взаимодействие

Норадреналин - медиатор, который обеспечивает работу различных мозговых систем, связанных с активацией и бодрствованием, обеспечивающих бдительность и внимание, а также является переносчиком сигналов в симпатической нервной системе. В симпатической нервной системе норадреналин вызывает сужение кровеносных сосудов, подъем артериального давления, увеличивает частоту дыхания и сердцебиения. Норадреналин также работает как гормон, который выделяют надпочечники, расположенные с обеих сторон чуть выше почек. Результаты его выделения надпочечниками те же самые: спазм сосудов, подъем давления, ускорение работы сердца и учащение дыхания. Адреналин, норадреналин, а также другие гормоны, вырабатываемые надпочечниками, играют важную роль в ответе организма на стресс.


Компенсаторные реакции возникают в ответ на нарушение функций, структур, обменных процессов и являются реакцией целостного организма. Они направлены, прежде всего, на восстановление гармоничных, координированных взаимоотношений органов и систем
в интересах целостного организма; поддерживают и сохраняют равновесие организма со средой. В основе сложного механизма компенсации лежит перестройка функций организма, регулируемая центральной нервной системой (ЦНС).

Чем тяжелее дефект, тем большее количество систем организма включается в процесс компенсации. Наиболее сложные функциональные перестройки наблюдаются при нарушениях ЦНС, в том числе и анализаторов. Таким образом, степень сложности механизмов компенсаторных явлений находится в зависимости от тяжести дефекта.

Автоматизм включения компенсаторных функций не определяет сразу механизмы компенсации; так, при сложных нарушениях деятельности организма они формируются постепенно. Постепенность развития компенсаторных процессов проявляется в том, что они имеют определенные стадии становления, которые характеризуются особым составом и структурой динамических систем нервных связей и своеобразием протекания процессов возбуждения и торможения.

Материальным субстратом компенсаторных перестроек является центральная нервная система. Формирование механизмов компенсации подчинено законам высшей нервной деятельности. Современная теория компенсации рассматривает компенсаторные явления в свете рефлекторной теории И.П. Павлова. Эта теория, базирующаяся на трех основных принципах: причинность (детерминизм), единство анализа и синтеза и структурность.

Применительно к учению о компенсации нарушенных или утраченных функций принципы рефлекторной деятельности означают следующее:

Принцип причинности. Любой дефект неизбежно вызывает ответную реакцию организма, причем сила и характер этой реакции зависят не только от степени нарушения той или иной функции или органа, но и от состояния организма и тех условий, которые его окружают. Эта реакция имеет своим механизмом замыкание новых временных связей в коре больших полушарий головного мозга.

Так, известен случай, когда после четырехкратной операции по поводу опухоли мозга у 12-летнего ребенка была удалена большая часть левого полушария мозжечка. Сразу после каждой операции у ребенка возникали нарушения двигательной сферы, речи и других функций мозга. Однако довольно быстро эти нарушения компенсировались. Компенсаторные возможности мозга с возрастом уменьшаются, это обусловлено ослаблением лабильности в формировании новых функциональных связей.

Принцип единства анализа и синтеза. В процессе анализа и синтеза, внешних воздействии у человека образуется весьма сложная, по строению функциональная система анализаторов. Полное или частичное нарушение функций какого-либо анализатора приводит к определенным нарушениям этой системы, что отражается в первую очередь на аналитической деятельности. Включение компенсаторных функций приводит к перестройке сохранных анализаторов, благодаря чему способность к аналитико-синтетической деятельности сохраняется, хотя диапазон, уровень, степень и путь анализа суживаются.

В результате взамен утраченного способа образования временных нервных связей в нервной системе проторяются новые, обходные пути, формируются новые условно-рефлекторные нервные связи, восстанавливающие нарушившееся равновесие во взаимоотношениях организма и среды.

Таким образом, физиологический механизм компенсации основывается на нормальном функционировании сохранных систем. При этом включение механизмов компенсации происходит, безусловно-рефлекторным путем, автоматически, а дальнейшее развитие компенсаторных приспособлений есть деятельность условно рефлекторная.

Свойства ЦНС, обеспечивающие механизмы компенсации:

Полифункциональность и полисенсорность каждого из элементов нервной системы. Основная функция нервной системы заключается в сборе, переработке, хранении, воспроизведении и передаче информации с целью организации интеллектуальной, поведенческой деятельности, регуляции функционирования органов, систем органов и обеспечения их взаимодействия. Многие из перечисленных функций реализуются уже на нейронном уровне. Нейроны обладают способностью выполнять все информационные функции нервной системы: восприятие, обработку, хранение, многократное воспроизведение и передачу информации. В этом и заключается основной принцип функционирования нервной системы – принцип полифункциональности.

Полифункциональность присуща большинству структур ЦНС. Например, сенсомоторная кора способна воспринимать сигналы кожной, зрительной, слуховой и других видов рецепции. В ответ на эти сигналы в сенсомоторной коре формируются реакции, которые обычно возникают при нормальной деятельности коркового конца зрительного, слухового или других анализаторов. Следовательно, благодаря полифункциональности одна и та же функция может быть выполнена разными структурами мозга. Этот принципиальный момент свидетельствует о практически безграничных возможностях компенсации функции в ЦНС.

Свойства полифункциональности нервных центров тесно связаны со свойством полисенсорности нейронов. Полисенсорность – это способность одного нейрона реагировать на сигналы разных афферентных систем. Нейрофизиологи выделяют нейроны моносенсорные, реагирующие только на один вид сигналов, бисенсорные – реагирующие на два разных сигнала, например, некоторые нейроны зрительной коры могут реагировать на зрительные и слуховые раздражения. Наконец, в коре мозга имеются нейроны, которые реагируют на три и более вида сигналов. Эти нейроны называются полисенсорными.

Относительная специализация нейронов отдельных областей мозга и локализация функций в коре. Нейроны отдельных областей мозга способны реагировать только на одну характеристику сенсорного раздражения, например, на определенную частоту звука или только на один цвет. Такие нейроны называются мономодальными (моносенсорными). Они обладают высокой избирательностью и высокой чувствительностью к определенным видам раздражений, т.е. являются специализированными. Локализуются специализированные нейроны в зонах первичных проекций анализаторов. Такими зонами являются первичные области зрительной, слуховой, кожной и других зон коры.

Локализация функций в коре определяется, прежде всего, моносенсорными нейронами, имеющими наименьшие пороги чувствительности на свои адекватные раздражения. Однако рядом с этими нейронами всегда имеются полисенсорные нейроны, которые обеспечивают взаимодействие локальной структуры с другими структурами мозга, а тем самым – возможность образования временной связи, компенсацию нарушений функций своей структуры и структур, с нею связанных. Полимодальные нейроны обеспечивают внутрисистемную компенсацию нарушенных функций.

Параллельная (одновременная) обработка разно сенсорной информации. В коре мозга нет такой зоны, которая была бы связана с реализацией только одной функции. В разных отделах мозга имеется разное количество полисенсорных и полимодальных нейронов. Наибольшее количество таких нейронов находится в ассоциативных и во вторичных, третичных зонах коркового конца анализаторов. Значительная часть нейронов моторной коры (около 40 %) также является полисенсорной, они реагируют на раздражения кожи, на звук, свет.

Число полисенсорных нейронов в структурах мозга меняется в зависимости от функционального состояния нервной системы и от выполняемой в данный момент времени задачи. Так, в период обучения с участием зрительного и моторного анализаторов число полисенсорных нейронов в этих зонах коры возрастает. Следовательно, направленное обучение создает условия увеличения полисенсорных нейронов и, тем самым, компенсаторные возможности нервной системы возрастают.

Важно также, что некоторые нейроны коры мозга в результате обучения способны становиться полисенсорными, т.е. если до применения сочетания условного и безусловного стимулов нейрон реагировал только на безусловный стимул, то после ряда сочетаний этот нейрон становится способным реагировать и на условный стимул.

Полимодальность и полисенсорность позволяют нейрону одновременно воспринимать раздражения от разных анализаторов или, если от одного анализатора, то воспринимать одновременно сигналы с разными его характеристиками.

Структурная избыточность и функциональная надежность. Полифункциональность и полисенсорность связаны с другим свойством функционирования мозга – его надежностью. Надежность также обеспечивается такими механизмами, как избыточность, модульность, кооперативность.

Избыточность достигается разными способами. Наиболее распространенным является резервирование элементов. У человека в коре постоянно активны только доли процента нейронов, но их достаточно для поддержания тонуса коры, необходимого для реализации ее деятельности. При нарушении функционирования коры количество фоновоактивных нейронов в ней значительно увеличивается. Избыточность элементов в ЦНС обеспечивает сохранение функций ее структур даже при повреждении значительной их части.

Например, удаление значительной части зрительной коры не приводит к нарушениям зрения. Одно полушарное повреждение структур лимбической системы не вызывает специфических для нее клинических симптомов. Доказательством того, что нервная система имеет большие резервы, являются следующие примеры. Глазодвигательный нерв нормально реализует свои функции регуляции движений глазного яблока при сохранности в его ядре всего 45 % нейронов. Отводящий нерв нормально иннервирует свою мышцу при сохранности 38 % нейронов его ядра, а лицевой нерв выполняет свои функции всего при 10 %-ной сохранности числа нейронов, расположенных в ядре этого нерва.

Высокая надежность в нервной системе обусловлена также множеством связей ее структур, большим количеством синапсов на нейронах. Так, нейроны мозжечка имеют на своем теле и дендритах до 60 тыс. синапсов, пирамидные нейроны двигательной коры – до 10 тыс., альфа-мотонейроны спинного мозга – до 6 тыс. синапсов.

Резервирование проявляется множеством путей реализации сигнала; так, дублирующийся двигательный сигнал, идущий из коры к мотонейронам спинного мозга, может достигнуть их не только от пирамидных нейронов 4 поля коры, но и от добавочной моторной зоны, из других проекционных полей, из базальных ганглиев, красного ядра, ретикулярной формации и других структур. Следовательно, повреждение моторной коры не должно приводить к полному выпадению двигательной информации к мотонейронам спинного мозга.

Следовательно, помимо резервирования, надежность нервной системы достигается дублированием, что позволяет оперативно вводить, по мере надобности, дополнительные элементы, чтобы реализовать ту или иную функцию. Примером такого дублирования может служить многоканальная передача информации, например, в зрительном анализаторе.

Модульность – это принцип структурно-функциональной организации коры мозга, который заключается в том, что в одном нейронном модуле осуществляется локальная переработка информации от рецепторов одной модальности. Между дендритами этого пучка имеют место не только синаптические связи, но и электротонические контакты. Последние обеспечивают синхронность работы нейронов микромодуля, что повышает надежность передачи информации.

В зрительной коре имеет место чередование колонок, нейроны которых реагируют на зрительные стимулы либо только правого, либо только левого глаза. Следовательно, в зрительной коре обоих полушарий мозга имеются глазодоминантные колонки, т.е. колонки, реагирующие на стимуляцию одного глаза (А.Г. Литвак, 2017).

В слуховой коре выделяются колонки, способные дифференцировать сигналы, идущие от обоих ушей, и колонки, не способные к такой дифференциации.

В сенсомоторной коре рядом расположенные колонки выполняют разнонаправленные реакции: например, одни из них возбуждают мотонейроны спинного мозга, другие – тормозят их.

Модульный принцип структурно-функциональной организации работы мозга является проявлением кооперативного характера функционирования нейронов мозга.

Кооперативность создает возможность относительной взаимозаменяемости нейронов, и, тем самым, повышает надежность нервной деятельности. В результате функционирование системы становится мало зависящим от состояния отдельной нервной клетки.

Кооперативность дает возможность структуре выполнять функции, не присущие отдельным ее элементам. Так, отдельный нейрон мозга не способен к обучению, но, находясь в сети нейронов, он приобретает такую способность.

Способность к саморегуляции и самоорганизации. Саморегуляция – свойство структур нервной системы автоматически устанавливать и поддерживать на определенном уровне свое функционирование. Основным механизмом саморегуляции является механизм обратной связи. Обратная связь упорядочивает, суживает множество вариантов прохождения сигнала, создавая тормозное окружение пути возбуждения из неактивных нейронов.

Тесно связан с саморегуляцией нервной системы механизм ее самоорганизации. Самоорганизующиеся системы вообще имеют ряд особенностей, которые присущи и ЦНС: множество входов и выходов; высокий уровень сложности взаимодействия своих элементов; большое количество функционирующих элементов и т.д. Благодаря принципу самоорганизации компенсация функций в нервной системе обеспечивается формированием новых связей на основе включения в активность потенциальных синапсов, использованием накопленного опыта данного индивида.

Развитие нервной системы в онтогенезе приводит к непрерывному усложнению взаимодействия ее систем. Чем больше форм, видов, число условных рефлексов, организуемых в онтогенезе, тем больше связей устанавливается между структурами нервной системы.

Увеличение количества функциональных связей между структурами нервной системы имеет решающее значение, так как в этом случае возрастает число вариантов прохождения сигналов, значительно расширяются возможности компенсации нарушенных функции.

В функции самоорганизации немаловажно то, что нервная система, помимо возможности большого выбора путей для достижения цели, способна избирательно усиливать или ослаблять сигналы.

Так, при усилении сигнала, обеспечивается надежная передача информации при частичной морфологической сохранности структуры, а при ослаблении сигнала – появляется возможность снизить помеху, идущую от других источников. Так как нервная система способна к избирательной фильтрации нужного сигнала, то это позволяет ей, выделив нужный, но слабый сигнал, во-первых, прямо усилить его, а во-вторых, дать ему преимущество при прохождении к воспринимающей структуре за счет снижения силы ненужных, мешающих сигналов.

Принципы иерархичности, иррадиации и концентрация активности. Структурная локализация функций предполагает, что мозг имеет детерминированные пути, системы, реализующие проведение сигнала, организацию той или иной реакции и т.д. Однако помимо жестко детерминированных связей в мозгу реализуются функциональные связи, развивающиеся в онтогенезе. Чем более упрочены, закреплены связи между структурами мозга в процессе индивидуального развития, тем труднее использование компенсаторных возможностей при патологиях.

На основе принципа структурности реализуется механизм иерархичности. Он заключается не столько в соподчинении, сколько в организации компенсаторных процессов. Каждая вышележащая структура участвует в реализации функций нижележащей, но делает это тогда, когда нижележащая структура затрудняется в выполнении своих функций.

Структуры мозга при обучении, при дисфункции одной из них не локализуют возбуждение в своих границах, а позволяют ему широко распространяться по мозгу – принцип иррадиации.

Иррадиация состояния активности распространяется в другие структуры мозга как по прямым связям, так и по опосредованным путям. Возникновение иррадиации при гипофункции структуры, участвующей в реализации того или иного процесса, позволяет найти пути компенсации гипофункции и реализовать нужную реакцию.

Нахождение нового пути закрепляется по рефлекторному принципу и заканчивается концентрацией активности в определенных структурах, заинтересованных в выполнении реакции.

Принцип общего конечного пути. С концентрацией активности в определенных структурах мозга тесно связаны конвергентность и принцип общего конечного пути. Этот принцип реализуется на отдельном нейроне и на системном уровне. В первом случае информация в нейроне собирается на дендритах, соме нейрона, а передается преимущественно через аксон в нейроны других структур мозга. Через синапсы дендритов информация передается только на соседние нейроны.

Наличие общего конечного пути позволяет нервной системе иметь разные варианты достижения нужного эффекта через разные структуры, имеющие выход на один и тот же конечный путь.

Трудности компенсаций, отмечаемые в более старших возрастах, обусловлены не тем, что резервы мозга исчерпаны, а тем, что сформировано большое количество оптимальных путей реализации функций, которые хотя и задействуются в случае патологии, но из-за нее же и не могут быть реализованы. Чаще при патологии требуется формирование новых путей реализации той или иной функции.

Пластичность нервных центров и отдельных нейронов. В основе формирования новых путей, новых функций структуры мозга лежит принцип пластичности. Пластичность позволяет нервной системе под воздействием различных стимулов осуществлять реорганизацию связей для целей сохранения основной функции или для реализации новой функции.

Пластичность позволяет нервным центрам реализовать функции, которые ранее им не были присущи, но благодаря имеющимся и потенциальным связям эти центры становятся способными участвовать в компенсации нарушенных в других структурах функций. Полифункциональные структуры обладают большими возможностями пластичности. В связи с этим неспецифические системы мозга, ассоциативные структуры, вторичные зоны проекций анализаторов, как имеющие значительное число полифункциональных элементов, более способны к пластичности, чем зоны первичных проекций анализаторов. Четким примером пластичности нервных центров является классический опыт П.К. Анохина с изменением связей центров диафрагмального и плечевого нервов.

В этом опыте были перерезаны диафрагмальный и плечевой нервы и центральный конец диафрагмального нерва был присоединен к периферическому концу плечевого, и, наоборот, центральный конец плечевого нерва к периферическому диафрагмального. По истечении некоторого времени после операции у животного восстанавливались правильная регуляция дыхания и правильная последовательность произвольных движений. Следовательно, нервные центры перестроили свою функцию таким образом, как этого требовала периферическая мышечная система, с которой была установлена новая связь. На ранних этапах онтогенеза перестройки такого типа более совершенны и динамичны.

Рефлекторный принцип функционирования. Наиболее существенную роль в компенсации дисфункций структур мозга играет рефлекторный принцип его функционирования. Каждая новая рефлекторная связь между структурами мозга является новым его состоянием, позволяющим реализовывать требуемую в данный момент функцию.

В настоящее время взаимодействие полушарий головного мозга понимается как взаимодополняющее, взаимно компенсирующее в реализации различных функций центральной нервной системы. Несмотря на то, что каждое полушарие выполняет ряд специфичных для него функций, нужно иметь в виду, что любая функция мозга, выполняемая левым полушарием, может быть выполнена и правым полушарием. Речь идет только о том, насколько успешно, быстро, надежно, полно формируются рефлексы.

Читайте также: