Нелинейные эффекты в оптическом волокне реферат

Обновлено: 05.07.2024

Замечательные характеристики волокон с очень низкими потерями привели к возможности создания широкополосных передающих систем дальнего действия. Необычайная протяженность этих систем позволяет исследовать нелинейные явления, возникающие при распространении излучения в световодах. Кроме большой длины взаимодействия для проявления нелинейности оказывается существенным наличие малого диаметра у сердцевины, что имеет место в одномодовых волоконных световодах, а также использование узкополосных одночастотных лазеров. В частности, произведение длины волокна на интенсивность где входная мощность, радиус сердцевины, может стать достаточно большим по сравнению с характерной интенсивностью при нелинейном распространении в пространственно-неограниченной среде. Таким образом, низкая нелинейная восприимчивость кварцевого стекла при относительно малой мощности компенсируется большой протяженностью волокна.

С одной стороны, нелинейные эффекты вредны и ограничивают передаваемую мощность в волоконных системах связи, а с другой, — их можно с выгодой использовать при создании специальных оптических приборов (например, волоконных лазеров на комбинационном

рассеянии [24]) или же для улучшения рабочего режима самого волокна (например, генерации солитонов).

Вспомним (см. гл. 2), что нелинейные оптические явления обычно описываются с помощью поляризуемости которую формально можно разложить в степенной ряд по напряженности электрического поля следующим образом (см. разд. 1.2.1):

Первый нелинейный член связанный, например, с генерацией второй гармоники, в стеклах равен нулю вследствие симметрии по отношению к инверсии, поэтому практически все нелинейные эффекты, имеющие место в стеклянных оптических волокнах, связаны с членом Эти эффекты можно грубо разбить на два класса, различающиеся тем, колеблется ли наведенная поляризация с частотой падающего поля или нет. Ко второму классу относятся вынужденное комбинационное рассеяние (ВКР), вынужденное рассеяние Мандельштама — Бриллюэна (ВРМБ) и четырехволновое смешение. К первому классу относятся так назвыаемые самоиндуцируемые эффекты, которые описываются, как будет показано в следующем разделе, с помощью нелинейного показателя преломления (оптический эффект Керра)

В данном разделе мы кратко рассмотрим ВКР и ВРМБ, поскольку именно эти явления накладывают ограничения на вводимую в волокно максимальную мощность. В следующем разделе мы изучим более подробно самоиндуцированные эффекты, которые можно описать с помощью некоторой общей теории:

Как ВКР, так и ВРМБ с классической точки зрения могут быть представлены как трехволновое взаимодействие между падающей волной (накачкой), сигнальной волной (стоксовой или мандельштам-бриллюэновской) и соответственно либо волной, связанной с колебательным возмущением молекул среды, либо звуковой волной [25]. В результате такого взаимодействия часть энергии, которая вначале содержится в волне накачки, постепенно преобразуется в сигнальную волну, распространяющуюся в случае ВКР в прямом и обратном направлениях, а в случае ВРМБ только в обратном направлении. В оптических линиях связи даже в отсутствие инжектируемого сигнального поля благодаря спонтанной эмиссии всегда существует слабый сигнал, который может быть значительно усилен за счет мощности волны накачки, несущей полезную информацию.

Оба процесса обычно характеризуются коэффициентами усиления слабого сигнала которые представляют собой

коэффициенты в экспоненте, характеризующей зависимость спектральной интенсивности сигнала на частоте от расстояния при условии, что поглощением интенсивности волны накачки пренебрегается. Соответствующие выражения для интенсивностей записываются в виде

Оба коэффициента усиления пропорциональны интенсивности накачки . Для ВКР мы имеем следующее выражение:

где разность между частотой волны накачки и стоксовой частотой (рис. 8.24) дается соотношением

где стоксово сечение на единицу объема в единичном частотном интервале, показатель преломления на частоте

Коэффициент усиления в случае ВРМБ существенно зависит от того, как соотносятся между собой ширина линии накачки и ширина линии спонтанного рассеяния Мандельштама — Бриллюэна (значение последней лежит в пределах для плавленого кварца в полосе пропускания оптического волокна). Например, если то при увеличении коэффициент усиления ВРМБ сигнала уменьшается в соответствии с отношением [26]. Всякий раз, когда выполняется это условие, ВКР (его порог, т. е. значение мощности накачки, при которой данный эффект становится заметным, лежит в области и выше) становится доминирующим

Рис. 8.24. Зависимость коэффициента усиления для ВКР от разностной частоты для плавленого кварца при длине волны накачки (Из работы Столена [24].).

нелинейным процессом. Если же в качестве источника накачки используется достаточно узкополосный лазер то доминирующим будет ВРМБ. В последнем случае максимальная входная мощность [26], передаваемая многокилометровым волокном, будет в сильной степени ограничена именно этим эффектом; в этом случае предельная входная мощность составит несколько милливатт. При превышении порога значительная часть интенсивности волны, распространяющейся вперед и представляющей собой волну накачки, преобразуется в распространяющуюся назад сигнальную волну.

Такие явления обусловлены нелинейным откликом вещества на увеличение интенсивности светового потока. В результате оптические характеристики среды (электронная поляризуемость, показатель преломления, коэффициент поглощения) становятся функциями напряженности электрического поля световой волны, так что поляризация среды начинает нелинейно зависеть от напряженности поля, а волны с различными частотами и направлениями распространения - оказывать влияние друг на друга.

Нелинейные явления в оптическом волокне усиливаются с ростом интенсивности поля, т. е. мощности потока, приходящейся на единицу площади поперечного сечения сердцевины волокна. Чтобы увеличить дальность и скорость передачи, стремятся уменьшить накопленную дисперсию кабеля, поэтому применяют одномодовое волокно, имеющее малый диаметр сердцевины (10 мкм и менее). Однако использование одномодового носителя, а также низкие оптические потери могут приводить к возникновению высокой плотности потока излучения на достаточно протяженных участках.

При анализе технологии WDM следует учитывать следующие явления: нелинейное преломление, вынужденное рассеяние света и четырехволновое смешение.

Нелинейное преломление вызвано зависимостью показателя преломления сердцевины волокна, а значит, и фазы выходного сигнала от интенсивности оптического сигнала. Когда мощность сигнала достаточно велика, ее колебания приводят к фазовой самомодуляции (ФСМ) и фазовой кросс-модуляции (ФКМ). В первом случае сигнал воздействует сам на себя, во втором - на сигнал в другом канале. Каждый из этих эффектов может создавать помехи, когда передача ведется с помощью фазовой манипуляции. Максимально допустимое значение канальной мощности, обусловленное ФСМ и ФКМ, обратно пропорционально числу мультиплексируемых каналов.

Вынужденное рассеяние света представляет собой рассеяние на элементарных возбуждениях среды, индуцированных рассеиваемой волной. Поскольку процесс рассеяния стимулируется самим рассеиваемым светом, рассеянное излучение характеризуется высокой степенью когерентности, узкими диаграммами направленности отдельных компонентов и интенсивностью, сопоставимой с интенсивностью падающего света. Таким образом, при возбуждении среды мощным световым источником происходит модуляция ее параметров, что приводит к амплитудной модуляции рассеянного света, а следовательно, к появлению в нем новых спектральных компонентов.

Самые важные виды рассматриваемого явления - вынужденное комбинационное рассеяние (ВКР), иногда называемое рамановским, и вынужденное рассеяние Мандельштама-Бриллюэна (ВРМБ). Комбинационное рассеяние связано с возбуждением новых колебательных и, в меньшей степени, вращательных энергетических уровней частиц среды, а ВРМБ - с появлением в среде гиперзвуковых волн.

Влияние ВКР невелико (менее 1 дБ на канал), если произведение суммарной мощности каналов на разность между частотами крайних каналов меньше 500 Вт·ГГц. Другими словами, данный эффект существен лишь для систем с сотнями каналов.

В отличие от ВКР, излучение, рассеянное по механизму Мандельштама-Бриллюэна, распространяется только в направлении, противоположном направлению падающего. Его интенсивность значительно выше, чем при ВКР; ВРМБ порождает перекрестные помехи, если разность несущих частот составляет 11 ГГц, а передача ведется в противоположных направлениях. Другое отличие от ВКР состоит в том, что максимально допустимая мощность канала не зависит от числа мультиплексируемых каналов и расстояния между ними. Ее типичное значение для высокоскоростных линий дальней связи равно 10 мВт. ВРМБ является единственным из описываемых нелинейных явлений, влияние которого зависит от скорости передачи. С ростом последней оно уменьшается, причем особенно быстро - при использовании фазовой манипуляции. Им можно пренебречь для импульсов короче 10 нс.

Четырехволновое смешение заключается в том, что при наличии двух попутных волн с частотами f 1 и f 2 (f 1 2 ) возникают еще две волны, с частотами 2f 1 - f 2 и 2f 2 - f 1 , распространяющиеся в том же направлении и усиливающиеся за счет исходных. Аналогичные процессы происходят и в том случае, когда имеются три (или больше) падающие волны. При этом должно быть обеспечено согласование значений частот и волновых векторов всех волн.

Данный вид нелинейности теснее других связан с параметрами системы: на него влияют не только длина волокна и площадь поперечного сечения его сердцевины, но и расстояние между соседними каналами и дисперсия. Изо всех рассмотренных явлений четырехволновое смешение имеет наибольшее значение для современных DWDM-систем.

Четырехволновое смешение можно устранить, выбрав неодинаковые разности частот между соседними каналами. Кроме того, данный эффект подавляется дисперсией, так как она нарушает согласование фаз. По этой причине волокно со смещенной дисперсией (Dispersion-Shifted Fiber, DSF), созданное в целях устранения хроматической дисперсии в диапазоне 15 5 0 нм, малопригодно для WDM с шагом 50 ГГц (0,4 нм) и меньше; вместо него используют специальные виды волокна (TrueWave, AllWave и др.).

В обычном одномодовом волокне со ступенчатым профилем показателя преломления четырехволновое смешение между каналами f 1 и f 2 отсутствует, если f 2 - f 1 > 20 ГГц. Максимально допустимая мощность канала в данном случае практически не зависит от числа мультиплексируемых каналов. Для обычного волокна при WDM с расстоянием между каналами 10 ГГц она равна нескольким милливаттам.

Необходимо отметить, что нелинейность среды играет в волоконно-оптической связи двоякую роль. С одной стороны, она ограничивает скорость и дальность передачи, с другой - может быть обращена во благо. Например, ВРМБ можно использовать для реализации режима ввода/вывода каналов. Кроме того, ФКМ и четырехволновое смешение применяются в волновых конверторах для переноса полезного сигнала с одной несущей длины волны на другую, а ВКР и ВРМБ - в волоконных лазерах и усилителях.

Реклама: Подготовка к в одинцово. Подготовка к школе одинцово Оливер клуб.

Выполнил:
Аспирант 2 года обучения
Лебедянцев М.В.
Проверил:
Горлов Н.И.

Новосибирск 2013 г.

1. Нелинейные оптические эффекты…………………………………………. 3
2. Фазоваясамомодуляция……………………………………………………..4
3. Вынужденное Рамановское рассеяние в стекловолокне…………………..5
4. Вынужденное рассеяние Брюэллена………………………………………..7
5. Четырехволновое смешение…………………………………………..……..8
6. Модуляционная нестабильность в стекловолокне………………………..10
7. Формирование солитона в волоконном световоде…………………. 11
8. Применение вынужденного рассеяния Рамана в волоконном световоде…12
9.Применение вынужденного рассеяния Брюэллена……………………….13
10. Возможности снижения нелинейных эффектов………………………. 13
10.1 Возможности снижения фазовой модуляции…………………………..13
10.2 Возможности снижения вынужденного Раманновского рассеяния….14
10.3 Возможности снижения Брюэлленовского рассеяния…………………14
10.4 Возможности снижения четырехволнового смешения………………..14
10.5 Возможности снижениямодуляционной нестабильности…………….15
10.6 Возможности снижения солитона……………………………………….16
Список литературы…………………………………………………………….17


1. Нелинейные оптические эффекты

С появлением оптических усилителей нелинейные эффекты в оптических волокнах стали одним из основных факторов, ограничивающих ретрансляционный участок волоконных линий передачи и их пропускную способность.
С ростом емкости ВОСП очевиднатенденция увеличения мощности сигнала. А нелинейные эффекты проявляются, как известно, только при достаточно больших мощностях света. Первоначально, согласно Rec. ITU-T G.622, величина мощности, вводимой в волокно, ограничивалась 17 дБм (на длине волны 1550 нм), а затем она была увеличена до 19 дБм. В настоящее время ряд компаний представили DWDM системы, в которых уровень мощности увеличен до 30дБм.
При малых мощностях взаимодействие света со средой пропорционально первой степени от мощности света, т.е. представляет собой линейный эффект. Хорошим примером линейного эффекта является поглощение света в волокне: количество поглощенной мощности прямо пропорционально мощности света распространяющейся в волокне. Нелинейные же эффекты пропорциональны более высоким степеням от мощности света, и ихвклад быстро увеличивается с ростом мощности.
Оптические волокна обладают двумя специфическими свойствами, которые обуславливают высокую эффективность протекания в них нелинейных процессов. Во-первых, свет сконцентрирован на малой площади вблизи сердцевины волокна. Во-вторых, такая высокая концентрация света сохраняется на всей многокилометровой длине волокна.
В волокне длина взаимодействияограничена тем, что интенсивность света уменьшается из-за потерь в волокне, и ее вклад в суммарный нелинейный эффект существенен только на начальном участке.


2. Фазовая самомодуляция

Когда выходной уровень источника света становится слишком большим, сигнал может модулировать свою собственную фазу. Как подразумевает само название, это явление является фазовой самомодуляцией (SPM – Self-PhaseModulation). Как показано на рис. 2, это приводит к уширению переданного импульса и временному расширению или сужению сигнала. Что происходит, расширение или сужение, зависит от знака (положительного или отрицательного) хроматической дисперсии. В результате происходит сдвиг фронта импульса в сторону длинных волн и сдвиг среза импульса в сторону коротких волн.
Эффекты ухудшения передачи
Как можноожидать, фазовая самомодуляция увеличивается с увеличением передаваемой мощности. Ее действие становится более деструктивным, как только увеличивается скорость передачи в канале и время нарастания импульса становится короче. Она также увеличивается при наличии отрицательной хроматической дисперсии.
На SPM не оказывает существенного влияния уменьшение шага между каналами в.

Вынужденное рассеивание Бриллюэна ( SBS Stimulated Brillouin Scattering ) устанавливает верхний предел на уровень оптической мощности, который может быть передан по оптическому волокну. При достаточно больших передаваемых мощностях могут возникнуть нелинейные процессы, изменяющие параметры материала. В результате возможно появление вынужденного рассеивание Мандельштама – Бриллюэна. Рассеяние Мандельштама – Бриллюэна (часто называют вынужденное рассеивание Бриллюэна) возникает за счёт колебаний молекулярных составляющих в основном на микронеоднородностях.

При превышении определенного уровня оптической мощности, именуемого порогом SBS, в ОВ возникает акустическая волна, под воздействием которой меняется величина индекса рефракции n. Изменения n вызывают рассеяние света, приводя к дополнительной генерации акустических волн. Таким образом, в случае с SBS в процесс вовлекаются акустические фононы – молекулярные вибрации. Происходит нелинейное взаимодействие интенсивной волны света, распространяющейся в прямом направлении, с первоначально слабой волной рассеянного назад света, а также с молекулярными колебаниями волокна или, ещё можно сказать, с тепловой упругой волной в кварцевой среде (за счёт явления электрострикции - изменение (сжатие) объёма диэлектрика под действием электрического поля). В результате такого взаимодействия в волокне возникают продольные волны показателя преломления, движущиеся со скоростью звука (акустические фононы) в сердцевине волокна. Часть энергии распространяющегося в прямом направлении сигнала, скажем с частотой f1, рассеивается на волнах показателя преломления назад со сдвигом частоты f2. Эта вторая волна называется волной Стокса- Stokes.

В металлах теплопроводность обусловлена, в основном, передачей энергии электронами проводимости. В кристаллических диэлектриках основную роль играет передача энергии связанных колебаний узлов решётки. В первом приближении этот процесс можно представить в виде распространения в кристалле набора гармонических упругих волн, имеющих различные частоты υ.

Электрон, движущийся в кристалле и взаимодействующий с другим электроном посредством решётки, переводит её в возбуждённое состояние. При переходе решётки в основное состояние излучается квант энергии звуковой частоты – фонон, который поглощается другим электроном.

Упругие волны в кристалле имеют квантовые свойства, проявляющиеся в том, что существует наименьшая порция – квант энергии волны с частотой υ. Это позволяет сопоставить волне с частотой υ квазичастицы – фононы, распространению которых со скоростью звука vсоответствует звуковая волна.

Фонон обладает энергией


υ, (1)

где h– постоянная Планка;

υ – частота упругих волн.

Таким образом, подобно тому, как квантование электромагнитного поля приводит к фотонам, квантование звукового поля приводит к фононам.

В процессе нелинейного рассеивания энергия передаётся от одной световой волны f1 к другой смещённой волне с более низкой частотой f2 (или низкой энергией), а потерянная энергия поглощается молекулярными колебаниями или фононами среды. При этом частотный сдвиг оптической несущей равен примерно 10…15 ГГц.

Следует отметить, что взаимодействие при имеет место в очень узкой полосе частот . Но если в световодах имеются неоднородности в виде изгибов, сжатия или растяжения, то спектр SBS может достигнуть 100…500 МГц. Этот эффект используется в бриллюэновской рефлектометрии, предназначенной для обнаружения механических воздействий на оптический кабель.

Явление нелинейного рассеяния возрастает с увеличением входной мощности и длины линии связи. Влияние нелинейных явлений растёт также с увеличением интенсивности света в волокне, которая при заданной мощности обратно пропорциональна площади сердцевины.

Таким образом, при превышении некоторого порога мощности нелинейные процессы приводят к переходу мощности первичных волн в излучение других волн. Рассеяние Бриллюэна в основном направлено в сторону, противоположную распространению электромагнитной энергии (рис. 1).

Отметим, что при малых оптических мощностях (до порога SBS см. рисунок 2) отраженная световая волна увеличивается прямо пропорционально уровню подводимой оптической мощности, то есть подчиняется Бриллюэновскому и Рэлеевскому законам рассеяния, и отличается друг от друга на постоянную величину, определяемую законом рассеяния Бриллюэна-Мандельштама (в основном зависит от эффективной площади ядра ОВ – Аэфф для данного материала). И только после превышения порога SBS наступает лавинный процесс увеличения мощности отраженной волны.

Типовое значение порога SBS для линии протяженностью в 10 км составляет 6…10 дБм. Выше этого уровня наблюдается значительное увеличение потерь ОВ, зависящих от уровня вводимой оптической мощности.


Рисунок 1 - Рассеяние Бриллюэна


Рисунок 2 – Порог SBS

Появляющаяся акустическая волна по своей природе является гиперзвуковой, и ее частотный спектр может располагаться до 10…13 ТГц (1013 Гц). Так, для λ=1550 нм скорость акустической волны в кварцевом ОВ составляет νа≈5,8 мм/мкс и Бриллюэновское частотное смещение fБ≈11 ГГц (~0,1 нм). Часто, для лучшего восприятия физики процесса, частотное Бриллюэновское смещение сравнивают с модуляцией светового потока акустической гиперзвуковой волной или эффектом Доплера. Графическое представление Бриллюэновского смещения приведено на рисунке 3. Выражение для пороговой мощности SBS PSBS записывается в виде:

рассеивание бриллюэн волокно импульс


(2)

где в – числовое значение между 1 и 2, зависящее от поляризационного состояния волны;

gB≈4,6*10-11 м/Вт – SBS усилительный коэффициент (зависит от типа ОВ);

ΔνLS– линейная (спектральная) ширина полосы лазерного источника;

ΔνВW≈20 МГц (на 1550 нм) – SBS полоса взаимодействия.


Рисунок 3 – Бриллюэновское смещение

Эффективная длина ОВ записывается в удобном традиционном логарифмическом виде:


(3)

Из выражения (1) видно, что порог SBS зависит от спектральной ширины лазерного источника колебаний. Выражение (1) для наихудшего случая (в = 1) при Lэфф=20 км (типовая усредненная величина) и эффективном диаметре модового пятна ОВ в 9,2 мкм может быть записано в удобном логарифмическом виде:


(4)

В результате Бриллюэновского рассеяния помимо эффекта снижения полезной мощности возникают и шумы (повышается относительная интенсивность шума – RIN), ухудшающие характеристики BER (вероятность возникновения ошибки). Всякое использование оптических усилителей понижает порог SBS. Порог SBS для системы PSBS.N, состоящей из N оптических усилителей, определяется простой зависимостью:


(5)

Обращаясь к (1) можно видеть, что порог SBS зависит от длины ОВ в ярко выраженной форме (рисунок 4). Это объясняется не только обратно-пропорциональной зависимостью порога SBS от эффективной длины ОВ, но и самой ее экспоненциальной зависимостью от физической длины ОВ (см. выражение 2). Для случая передачи импульсных сигналов важно отметить, что чем короче длина импульса, тем больше энергии необходимо для того, чтобы наступило Бриллюэновское рассеяние и, таким образом, тем меньше вероятность проявления этого эффекта при высоких скоростях передачи данных (рисунок 5).


Рисунок 4 – Зависимость порога SBS от параметров волокна


Рисунок 5 - Зависимость порога SBS от длительности импульса

Вынужденное рамановское рассеивание ( SRS – Stimulated Raman Scattering) или, как ещё его называют, вынужденное комбинационное рассеивание (ВКР), – также нелинейный эффект, который подобно бриллюэновскому рассеиванию может использоваться для преобразования части энергии из мощной волны накачки в слабую сигнальную волну. SRS по своему характеру проявления близко к SBS, но вызывается другими физическими явлениями.

Физическая причина явления вынужденного рассеивание Рамана состоит в том, что под действием света большой интенсивности (когда проходящая в нём оптическая мощность достигает некоторого порога) могут быть случаи, когда молекулы поглощают часть энергии проходящего излучения (часть энергии каждого фотона). В результате, если фотон имел частоту f1, то после столкновения с молекулой и передачи ей части энергии энергия фотона уменьшается. Так как энергия фотона равна E=hf1, где h – постоянная Планка, то уменьшается множитель f1, то есть частота излучения. Таким образом, после прохождения через такую среду излучение будет иметь две частоты f1 и f1-Δf. Вторая составляющая с более низкой частотой (стоксова компонента) будет заметной тогда, когда энергия исходного излучения достигает упомянутого выше порога, то есть когда будет достаточно большое количество фотонов. По определению Рамановское рассеяние - нелинейный эффект – спонтанное комбинационное рассеяние, которое связано с рассеянием света на колебаниях поляризованных молекул волокна (оптические фононы) под действием света большой интенсивности.

Одним из важных отличительных свойств SRS является большой частотный диапазон взаимодействия проходящего излучения с молекулами и атомами вещества. Для кварца он достигает десятков терагерц.

Поэтому можно сделать вывод, что SRS является частотно зависимым и проявляется более выражено на коротких волнах в сравнении с длинноволновыми (на более высоких частотах). Так, на рисунке 6 представлен типовой спектр 6-ти канальной DWDM системы (1550 нм) на входе ВОЛС, а на рисунке 7 иллюстрирует эффект SRS. Можно видеть, что коротковолновые каналы имеют много меньшую амплитуду в сравнении с длинноволновыми каналами, то есть наблюдается изменение амплитуд сигналов по каждому из каналов. При этом большему затуханию подвержены именно более коротковолновые (высокочастотные) каналы.


Рисунок 6 - Спектр 6-ти канальной DWDM системы


Рисунок 7 - Изменение амплитуд сигналов по каналам из-за SRS

Явления SBS и SRS проявляются в том, что оптический сигнал рассеивается и смещается в область более длинных волн (рисунок 8). Если при SBS спектр стимулированного излучения узкий (30… 60 МГц) и смещен в длинноволновую сторону на 10…11 ГГц, то при SRS спектр стимулированного излучения широкий (~7 ТГц или 55 нм) и смещен в длинноволновую сторону на величину порядка 10…13 ТГц.


Рисунок 8 – Смещение спектра при SBS и SRS

При схожести SBS и SRS, можно выделить несколько существенных отличий:

• SBS наблюдается только для встречной волны (рассеяние происходит только назад, по направлению к источнику сигнала). SRS же наблюдается как для встречных волн (Стоксово излучение с уровнем порядка -50…-60 дБ относительно интенсивности исходного излучения), так и для сонаправленных волн (антистоксово излучение с уровнем порядка -70…-80 дБ относительно основной волны). Стоксовая и антистоксовая волны располагаются частотно симметрично относительно основной передаваемой частоты излучения.

• При SRS спектр стимулированного излучения смещен относительно сильнее (разница примерно на три порядка), а ширина его намного больше (примерно на три порядка), чем при SBS.

• Пороговая мощность SRS намного больше (примерно на три порядка), чем SBS.

Формула для расчета минимального значения пороговой мощности SRS PSRS записывается в виде:


(6)

где KSRS – числовое значение, зависящее как от поляризационного состояния волны, так и еще от ряда факторов. Минимальное значение составляет 1. Типовое значение для большинства практических приложений KSRS= 2;

gR≈4,2*10-14 м/Вт – SRS усилительный коэффициент;

Аэфф - эффективная площадь ядра ОВ в м 2;

L эфф – эффективная длина ОВ.

Для современных ОВ порог SRS немногим превышает величину 30 дБм (1 Вт). В логарифмическом виде порог SRS удобно записать в виде:


(7)

где Dэфф – эффективный диаметр ОВ (при водится в справочных параметрах).

Таким образом, SRS, в отличие от SBS не ограничивает величину оптической мощности, вводимой в волокно. Порог SRS для системы PSRS.N, состоящей из N оптических усилителей, определяется простой зависимостью:


(8)

где N – число оптических каналов.

Тем не менее, при некоторой мощности исходного излучения возникают условия, когда на выходе световода вся энергия переходит в стоксову компоненту. Причём, рассеяние имеет преимущественное направление, совпадающее с направлением исходного излучения. Это явление играет важную роль в оптических системах, так как обеспечивает возможность усиления сигналов в широкой полосе частот.

Исследования показывают, что с одной стороны системные проектировщики стандартных ВОСП должны предпринимать меры по минимизации нежелательных эффектов нелинейности, с другой стороны отдельные нелинейные эффекты можно использовать для усиления оптических волн, для создания новой сущности - оптического солитона , обеспечивающего увеличение дальности неискаженного распространения светового импульса и высокоскоростную оптическую коммутацию.

Оптическая переходная помеха в системах WDM

Среди всех нелинейностей, рассмотренных в этом разделе, вынужденное рассеяние Бриллюэна ( SBS ) имеет наинизшую пороговую мощность. Было показано, что порог SBS может изменяться в зависимости от типа волокна и даже среди отдельных волокон. Как правило, он имеет порядок 5-10 мВт для узкополосных источников света с внешней модуляцией. Для лазеров с непосредственной модуляцией эта мощность может быть порядка 20-30 мВт. Порог SBS чувствителен к спектральной ширине источника излучения и уровню излучаемой мощности. Однако он не зависит от числа каналов WDM .

SBS ограничивает количество световой энергии, которое может быть передано по волокну. Переданная мощность достигает насыщения и резко нарастает мощность обратного рассеяния. Уровень входной мощности, подаваемой на волокно, при котором это резкое нарастание происходит, определяется как порог SBS и выражается формулой:

где g — означает коэффициент усиления Бриллюэна, А eff — эффективная площадь сердечника, K — постоянная, определяемая степенью свободы состояния поляризации (в рекомендации G .652, K = 2). Переменные и представляют спектральную ширину полосы Бриллюэна и источника накачки соответственно. L eff — обозначает эффективную длину, определяемую как

где  — коэффициент затухания волокна, a L — длина волокна.

Порог вынужденного рассеяния Бриллюэна для узкополосного источника света


Порог SBS зависит от ширины линии световой накачки . Если ширина линии световой накачки меньше, чем ширина полосы Бриллюэна, то пороговая мощность SBS можно оценить, используя следующее соотношение:

Рассеяние Мандельштама - Бриллюэна на генерируемой акустической волне

Вынужденное комбинационное рассеяние (Раман-эффект)

Вынужденное рассеяние Рамана ( SRS ) вызывает ухудшение сигнала только тогда, когда уровень оптической мощности оказывается высок. Его влияние чем-то похоже на рассеяние Бриллюэна, но излучение света сдвигается в область существенно более низких частот (между 10 и 15 ТГц) для 1550 нм окна. Кроме этого сдвинутая низкочастотная составляющая имеет значительно более широкую полосу, чем полоса Бриллюэна (около 7 ТГц). В системах WDM влияние этого типа рассеяния заключается в перераспределении мощности из коротковолновых в длинноволновые каналы. В этом случае это явление работает как рамановский усилитель и длинноволновые каналы усиливаются за счет коротковолновых каналов до тех пор, пока разница в длинах волн лежит в полосе частот рамановского усиления. Это явление может возникнуть в кварцевом волокне, где усиление может стать результатом использования шага между каналами 200 нм.

В конфигурации WDM больше всего обедняется самый коротковолновой канал, так как мощность из него может перекачиваться во многие каналы одновременно. Такое перераспределение мощности между каналами можно определить по характеристикам системы, так как оно зависит от характера расположения бит. Усиление происходит тогда, когда двоичные 1 присутствуют в обоих каналах одновременно. Такое усиление, зависящее от характера сигнала, ведет к увеличению флуктуации мощности, которая увеличивает уровень шума приемника и ухудшает его характеристики. Романовских перекрестных помех можно избежать, если мощности каналов сделать такими малыми, что рамановское усиление окажется незначительным на всей длине волокна. Особое внимание должно быть уделено SRS тогда, когда несколько усилителей включено последовательно друг с другом. Эти усилители добавляют шум, который теряет от рамановского рассеяния меньше, чем желаемый сигнал. В результате происходит ухудшение отношения сигнал/шум на удаленном конце у приемника.

SRS может возникнуть в системах, использующих как одномодовое, так и многомодовое волокно. Для того, чтобы наблюдать SRS при наличии только одного канала, без использования оптического усилителя, необходимо иметь уровень сигнала порядка +30 дБм или выше. Однако, коротковолновые сигналы систем WDM с большим шагом между каналами могут испытывать ухудшение отношения сигнал/шум, когда часть их мощности будет перекачиваться в длинноволновые каналы, благодаря явлению SRS . Это приводит к ограничению общей емкости системы, учитывая ограничения на общее число каналов WDM , их шага по сетке частот (длин волн), общей длины системы и средней входной мощности. Порог, при котором в многоканальной системе наблюдается ухудшение на 1 дБ, вызванное наличием рамановского усиления в волокне без сдвига дисперсии, может быть оценен из неравенства:

где — суммарная мощность всех каналов WDM (мВт), — полоса оптического спектра (нм), в которой распределены эти каналы, L eff — эффективная длина, выраженная в мегаметрах — Мм. SRS практически не вносит ухудшений в одноканальные системы. Однако оно может ограничить возможности систем WDM .

Спектры рассеяния Бриллюэна (а) и рассеяния Рамана (б)

Когда выходной уровень источника света становится слишком большим, сигнал может модулировать свою собственную фазу. Как подразумевает само название, это явление является фазовой самомодуляцией ( SPM ). Как показано на рис. 6.2, это приводит к уширению переданного импульса и временному расширению или сужению сигнала. Что происходит, расширение или сужение, зависит от знака (положительного или отрицательного) хроматической дисперсии. В результате происходит сдвиг фронта импульса в сторону длинных волн и сдвиг среза импульса в сторону коротких волн.

Механизм спектрального уширения за счет фазовой самомодуляции


Фазовая самомодуляция увеличивается с увеличением передаваемой мощности. Ее действие становится более деструктивным, как только увеличивается скорость передачи в канале и время нарастания импульса становится короче. Она также увеличивается при наличии отрицательной хроматической дисперсии.

На SPM не оказывает существенного влияния уменьшение шага между каналами в системах WDM или увеличение числа каналов. Влияние фазовой самомодуляции уменьшается, если хроматическая дисперсия нулевая или небольшая по величине, или при увеличении площади эффективной области оптоволокна.

В общем случае влияние SPM значительно лишь в системах с высоким значением накопленной дисперсии или в системах очень большой протяженности. Оптоволоконные системы, имеющие ограниченную накопленную дисперсию, могут не вызывать эффектов, характерных для SPM . В системах WDM с очень малым шагом между каналами, спектральное уширение, вносимое действием SPM , может также вызвать интерференцию между соседними каналами.

Для тех, кто пришел из радиосвязи, или беспроводной радиосвязи, четырехволновое смешение (ЧВС) напоминает нам продукты третьего порядка. Оно может полностью вывести из строя систему WDM . Оно появляется тогда, когда интенсивность лазерного сигнала достигает критического уровня. ЧВС заявляет о себе появлением побочных сигналов, некоторые из которых могут соответствовать частотам рабочих каналов. Всякий раз, когда три или более сигналов распространяются по волокну, можно ожидать возникновения четырехволнового смешения. Эти три световых сигнала: , , генерируют четвертый сигнал , подчиняющийся соотношению:

ЧВС может возникать даже в одноканальных системах между рабочим сигналом и составляющими ASE ОУ, а также между основной и боковыми модами. В случае двух сигналов, модуляция по интенсивности на частоте биений модулирует показатель преломления волокна и возбуждает фазовую модуляцию разностной частоты, которая (в свою очередь) создает две боковые полосы с частотами, порождаемыми этой разностью. В случае трех сигналов формируются больше составляющих из смеси суммарно-разностных частот большей амплитуды, некоторые из которых в точности соответствуют рабочим частотам соседних каналов, если шаг между каналами в системе одинаков. Две оптических волны, распространяющиеся вдоль волокна, генерируют ЧВС с высокой степенью эффективности, если согласуются фазовые сдвиги между частотами боковых полос и начальным сигналом. Для относительно низких оптических мощностей это означает, что

где — шаг между каналами по сетке частот, D — хроматическая дисперсия волокна (дисперсионный параметр), — центральная длина волны, L — длина волокна, с — скорость света в вакууме. Эффективность ЧВС также чувствительна к общей оптической мощности в волокне. Рассмотрим следующее: для двух сигналов с оптическими мощностями Р 1 и Р 2 максимальный коэффициент параметрического усиления для боковых полос, g max , может быть оценен так:

где g — нелинейный коэффициент Керра.


В системах WDM и, в особенности, DWDM , влияние ЧВС особенно разрушительно. В системах DWDM с числом каналов N общее число возникающих в результате действия ЧВС частот составляет

Например, четырехканальная система WDM формирует в результате 24 побочных канала, а восьмиканальная - 224 побочных канала, и т.д.

Особенно серьезные проблемы, благодаря ЧВС, возникают в системах, использующих волокно со сдвигом дисперсии. В противоположность этому, расположение оптического рабочего канала непосредственно в точке нулевой дисперсии (или около нее) может привести к очень существенному процессу формирования продуктов ЧВС на очень небольшой длине (десятки километров). При использовании волокна с ненулевой смещенной дисперсией типа (особенно если оно имеет большую площадь эффективной области) такой острой ситуации не наблюдается. Еще меньше ЧВС влияет на волокно без сдвига дисперсии, учитывая, что дисперсия здесь достаточно велика.

Уровень ЧВС чувствителен к следующим системным характеристикам:

- увеличению мощности в канале;

- увеличению числа каналов;

- уменьшению шага между каналами.

Так уровень ЧВС резко снижается в системах с шагом 200 ГГц, по сравнению с системами с шагом 100 ГГц.

ЧВС уменьшается с уменьшением абсолютной величины хроматической дисперсии.

Генерация боковых полос ЧВС может привести к значительному обеднению мощности рабочих каналов. Кроме того, когда комбинационные гармоники попадают на частоты рабочих каналов, то возникает параметрическая интерференция, которая может привести как к увеличению, так и уменьшению амплитуды рабочего импульса, в зависимости от фазовых соотношений рабочего сигнала и сигналов боковых полос.

Параметрические потери вызывают закрытие глазковой диаграммы на выходе приемника, приводя к ухудшению уровня ВЕК. Увеличение шага между несущими и хроматическая дисперсия уменьшают эффективность процессов ЧВС за счет разрушения фазовых соотношений между взаимодействующими волнами. Расположение частоты рабочего канала вблизи нуля дисперсии может привести к существенному формированию продуктов ЧВС на относительно короткой длине волокна (десятки километров). ЧВС также чувствительно к шагу между каналами.

В одноканальной системе, ЧВС может взаимодействовать между составляющими ASE -шума ОУ и рабочими каналами, а также между основной и боковыми модами оптического передатчика. Накопленный ASE -шум, благодаря действию эффекта Керра, добавляет фазовый шум несущей рабочего канала, вызывая, тем самым, расширение хвостов спектра сигнала.

Спектры оптических сигналов на выходе одномодового волокна со смещенной дисперсией DS (а) и одномодового волокна с ненулевой смещенной дисперсией NZDS (б)

Влияние дисперсии на емкость системы с учетом действия ЧВС


MI - частный случай ЧВС, где два фотона входного сигнала преобразуются в два фотона с различными частотами.


Спектр мощности импульса после распространения по отрезку волокна длиной 1 км

Ширина входного импульса - 100 пс, пиковая мощность 7 Вт. Боковые спектральные полосы появились в результате действия MI

Зависимость пороговой мощности в канале от количества каналов

Если бы можно было оградить себя от влияния дисперсии в ВОЛС и работать в окне прозрачности минимального затухания 1550 нм со скоростью 10 Гбит/с, то можно было бы увеличить расстояние между ретрансляторами до 1000 км. Влияние дисперсии на переданный импульс состоит в его уширении по мере того, как он распространяется по волокну. Солитон - это импульс, который не изменяет своей формы по мере того, как он распространяется по волокну. Он не уширяется под влиянием дисперсии и нелинейностей волокна.

Солитон формируется в результате установления баланса между нелинейностью и дисперсией. Нелинейности волокна противодействуют накапливанию дисперсии при распространении импульса по волокну.

Оптический солитон является результатом баланса между дисперсией групповых скоростей - ДГС ( GVD ) и фазовой самомодуляцией — ФСМ ( SPM ) (под групповой скоростью понимают скорость огибающей группы волн, имеющих близкие частоты; она может быть больше или меньше фазовой скорости волн). Рассматриваемые по отдельности, каждое из этих явлений ограничивает характеристики ВОСП. ДГС уширяет оптический импульс при его распространении по волокну, когда импульс первоначально частотно-модулирован нужным образом.

Солитоны должны поддерживать определенную обособленность один от другого при передаче информационного потока. Это предохраняет солитоны от взаимодействия.

Ограничения длины волокна или скорость передачи солитонной линии связи:

- Уширение солитонного импульса за счет потерь. Солитонный импульс должен поддерживать достаточно большую амплитуду. Если этого не происходит, солитонный импульс уширяется. Уменьшенная пиковая мощность ослабляет нелинейные эффекты, необходимые для противодействия влиянию ДГС. Использование волоконно-оптических усилителей (например, тиап EDFA ) может вернуть солитону необходимый уровень пиковой мощности.

- Шум усилителя. Усилители, необходимые для восстановления энергии солитона, добавляют шум, источником которого является усиленное спонтанное излучение ( ASE ).

- Дрожание фазы (джиттер) за счет линейных оптических усилителей. Джиггер является тем механизмом, который вносит отклонение позиции солитона от исходно предписанной позиции - в центре битового интервала. В идеальном случае все солитоны прибывают к приемнику на удаленном конце в центре предписанного им битового интервала. Отклонения от этого идеального положения могут вызвать взаимодействие солитонов.

Формирование фундаментального солитона может быть полезным, однако, солитоны другого порядка приводят к существенному ухудшению передаваемого сигнала. Следовательно, формирование солитонов более высокого порядка устанавливает предел максимальной мощности, которая может быть введена в волокно.

В системах WDM , и в особенности в системах DWDM , фазовая кросс-модуляция — ФКМ (ХРМ) будет постепенно расширять спектр сигнала, когда изменения оптической интенсивности приведут к изменениям, вызванным взаимодействием между соседними каналами. Количественная величина такого расширения, вносимого ФКМ, зависит от шага между каналами, потому что внесенные дисперсией дифференциальные групповые скорости будут вызывать дальнейшее отделение взаимодействующих импульсов при их движении по волокну. Как только спектральное расширение вносится ФКМ, сигнал испытывает большее временное уширение при его движении вдоль волокна, благодаря влиянию хроматической дисперсии. Уширение за счет ФКМ может привести к интерференции (взаимовлиянию) соседних каналов в системах WDM .

Уровнем ФКМ можно управлять путем надлежащего выбора разноса каналов в системах WDM / DWDM . В системах WDM только соседние каналы вносят значительный вклад в искажения сигнала, вызванного возникновением ФКМ. Отношение сигнал/шум центрального канала в системе, имеющей три канала, достигнет того же уровня, что и в системе с одним каналом, только при увеличении шага между каналами. В результате этого, влияние ФКМ может быть сделано ничтожно малым, если адекватно выбрать шаг между каналами. При моделировании системы с уровнем мощности в канале 5 мВт было показано, что шаг порядка 100 ГГц вполне достаточен, чтобы значительно уменьшить влияние ФКМ. Дополнительные ухудшения за счет дисперсии, вызванные наличием ФКМ, также могут быть управляемы при установке в системе через определенные интервалы модулей компенсации дисперсии.

Читайте также: