Назначение и общие характеристики шасси реферат

Обновлено: 04.07.2024

Введение…………………………………………………………………………. 3
Шасси для легкого класса (полная масса до 7,5 т) ……………………………4
Шасси среднего класса (полная масса от 7,5 т до 14 т) ……………………… 5
Шасси тяжелого класса (полная масса свыше 14 т) ………………………… 8
Тенденции производства специальных шасси для пожарных автомобилей ..11
Литература ……………………………………………………………………. 12ВВЕДЕНИЕ
Пожарный автомобиль по своей сложности может быть отнесен к большим техническим системам, которые характеризуются значительным числом взаимодействующих друг с другом составных элементов, все параметры и показатели которых тесно связаны между собой.

Как большая техническая система, пожарный автомобиль (ПА) состоит из ряда подсистем различных уровней сложности. Подсистемами 1-го уровнясложности являются базовые шасси и пожарная надстройка, определяющие назначение и функциональные возможности ПА.

На более низких уровнях сложности в качестве подсистем рассматриваются группы агрегатов, характеризующие эффективность функционирования ПА: двигатель, трансмиссия, ходовая часть (элементы шасси); насосная установка, подъемное устройство, емкость для средств тушения (элементы надстройки).

Структурносхема подсистем различных уровней сложности выглядит достаточно представительно, однако важнейшим ее элементом является базовое шасси ПА. Именно шасси во многом определяет качественный уровень ПА: создать современное изделие на устаревшем, с невысокими значениями базовых параметров шасси невозможно, сколь бы совершенной ни была пожарная надстройка, поскольку все параметры взаимосвязаны. Поэтомувыбор шасси является одним из наиболее ответственных этапов создания пожарного автомобиля.

Можно выделить два основных направления создания ПА в современных условиях [1]:
а) применение серийных (коммерческих) шасси с незначительными доработками, необходимыми для установки пожарной надстройки;

б) создание специального шасси для ПА с использованием агрегатов, узлов и механизмов ряда базовых шасси(или специально созданных), которые, будучи собраны воедино, позволяют получить автомобиль с новыми свойствами и параметрами, отсутствующими у базовых моделей или их модификаций.

На специальных шасси устанавливают, как правило, пожарные надстройки с более высокими тактико-техническими показателями по сравнению со стандартными образцами.

Рассмотрим мировую практику создания автомобильных шасси,которые используются при производстве ПА различных классов.
Под классами понимаются группы ПА, объединенные по величине полной массы. Согласно европейским нормам EN 1846, все транспортные средства пожарной охраны объединены по классам следующим образом [2]:

 легкие ПА с полной массой до 7,5 т (L-класс);
 средние ПА с полной массой от 7,5 до 14 т (М-класс);
 тяжелые ПА с полной массойболее 14 т (S-класс);

Шасси, используемые для создания этих пожарных автомобилей, имеют существенные отличия по конструкции, техническому исполнению, уровню эргономической проработки и другим показателям.


ШАССИ ДЛЯ ПА ЛЕГКОГО КЛАССА (полная масса до 7,5 т)

Легкие грузовики - наиболее распространенный класс грузовых автомобилей за рубежом. Их производством в мире занято свыше 30 автомобильныхкомпаний. Только в Европе годовой объем их продаж превышает 1,2 млн. единиц, а в США - свыше 6,5 млн. (более 40 % от общего количества всех проданных автомобилей).

Используют легкие шасси для создания на их базе специализированных автомобилей и последующей коммерческой эксплуатации, преимущественно в городских условиях. Как база для создания ПА такие шасси получили ограниченное распространение.

Чтобыориентироваться в многообразии легких грузовиков, можно условно разделить их на четыре группы, ограничивающиеся назначением, полной массой и вместимостью.

К первой группе можно отнести микрогрузовички (в основном японского производства) с полной массой до 1,5 т. В большинстве своем они унифицированы с легковыми автомобилями класса "микро". Мощность двигателя - до 65 л.с.

Шасси самолета предназначено для стоянки и передвижения по земле. Оно обычно снабжается амортизаторами, поглощающими энергию ударов при посадке самолета и при передвижении его по земле, и тормозами, обеспечивающими торможение самолета при пробеге и рулении. Помимо колесного шасси, самолеты могут быть оборудованы лыжами, поплавками (гидросамолеты), гусеницами (самолеты повышенной проходимости).

Сравнительная оценка различных схем шасси

Для устойчивого положения самолета на земле необходимы минимум три опоры. В зависимости от расположения главных и вспомогательных опор относительно центра тяжести самолета различают следующие основные схемы: с хвостовой опорой, с передней опорой и велосипедного типа. Самолеты, оснащенные шасси с хвостовой опорой, имеют главные опоры впереди центра тяжести самолета, расположенные симметрично относительно его продольной оси, а хвостовую опору — позади центра тяжести (рис. 72, а).

У самолета, оснащенного шасси с передней опорой, главные опоры (ноги) расположены позади центра тяжести самолета симметрично относительно его продольной оси; передняя опора расположена в плоскости симметрии самолета, впереди центра тяжести (рис. 72, б).

У самолетов с шасси велосипедного типа обычно центр тяжести находится примерно на равном расстоянии от колес или колесных тележек, которые располагаются в продольной плоскости самолета одно позади другого (рис. 72, в). Боковые опоры, расположенные на концах крыла, ударную нагрузку при посадке и взлете не воспринимают.


Шасси велосипедного типа применяются на скоростных самолетах, поскольку убирать шасси в тонкие крылья стало невозможным (шасси убирается в фюзеляж, а небольшие боковые опоры — в крыло).

Наибольшее распространение на современных самолетах получило трехопорное шасси с носовой опорой, что объясняется рядом преимуществ, которые получает самолет, оснащенный таким шасси.

К достоинствам указанной схемы шасси относятся:

горизонтальное положение оси фюзеляжа обеспечивает хороший обзор экипажу, создает удобства для пассажиров, облегчает загрузку самолета тяжелыми грузами, позволяет размещать реактивные двигатели горизонтально, при этом газовая струя не разрушает покрытия аэродрома; обеспечивает самолету хорошую устойчивость при пробеге и разбеге.

Основные части и силовые схемы шасси

Основными частями ноги шасси являются: колеса (на главных опорах обычно тормозные), лыжи или гусеницы, амортизатор, боковые, задние или передние подкосы, замки, запирающие ногу в


выпущенном или убранном положенин, подъемник, обеспечивающий уборку и выпуск ноги.

Шасси неубирающегося типа, в настоящее время применяемое редко, подъемника и замков не имеет.

По конструктивно-силовым схемам шасси можно разделить на ферменные, балочные и ферменно-балочные.

Конструкцию ферменного шасси (рис. 75) образует пространственная ферма, к которой крепится ось колес. Стержни фермы, в число которых входит и амортизационная стойка, воспринимают усилия сжатия и растяжения. Несмотря на малый вес и конструктивную простоту, ферменное шасси в настоящее время применяется редко и только на самолетах малых скоростей, так как уборка та


кого шасси чрезвычайно затруднена.

Балочное шасси (рис. 76) представляет собой консольную балку с верхним концом, заделанным в конструкцию крыла или фюзеляжа. На нижнем конце балки крепится колесо или лыжа. Стойка шасси под действием силы реакции земли работает па сжатие и изгиб. Максимальный изгибающий момент будет в узле крепления, поэтому узел крепления стойки к самолету должен быть достаточно мощным.

Ферменно-балочное шасси (рис. 77) состоит из одной (одностоечное) или двух (двухстоечное) консольных балок, подкрепленных подкосами. Установка подкосов разгружает стойку от изгибающих моментов, боковой подкос — от момента, создаваемого боковой силой, а передний или задний — от момента силы, направленной вдоль оси самолета.

В современной авиации ферменно-балочные шасси получили наибольшее распространение.

Для самолетов с большим полетным весом серьезной проблемой становится проблема уменьшения удельной нагрузки на грунт, так как проходимость самолета по грунту обратно пропорциональна удельному давлению на опорную поверхность шасси. С увеличением числа колес шасси опорная поверхность увеличивается. Поэтому широкое применение получили шасси со спаренным креплением колес на тележке. Наибольшее распространение получили многоколесные тележки с числом колес от четырех до восьми и более. Встречаются самолеты, которые для увеличения проходимости шасси имеют несколько колес, расположенных вдоль фюзеляжа в один или два ряда.

Широкое применение в последние годы получило шасси с рычажной подвеской колес. У такого шасси ось колеса располагается не непосредственно на амортизационной стойке, а на конце вильчатого рычага (см. рис. 76), который к жесткой стойке прикреплен шарнирно.

Шасси самолета

С подвижной деталью амортизатора (его штоком) вильчатый рычаг соединяется также шарнирно с помощью шатуна. Благодаря шарнирному соединению амортизатор воспринимает только осевые нагрузки и изгиб штока амортизатора таким образом исключается. Рычажная подвеска позволяет амортизировать не только вертикальные, но и горизонтальные силы. За счет рычажной подвески можно значительно уменьшить потребный ход амортизатора и уменьшить высоту стоек шасси.

Шасси самолета может быть убирающимся в полете и неубираюшимся. Очевидно, что конструкция убирающегося шасси значительно сложнее неубирающегося, первое имеет также больший вес за счет механизмов подъема и выпуска как самих шасси, так и створок отсеков и люков, предназначенных для убранного шасси, замков и сигнализации убранного и выпущенного положений. В то же время аэродинамическое сопротивление самолета, совершающего полет с убранным шасси, уменьшается на 20—35% но сравнению с самолетом, шасси которого не убирается. Считают, что для самолетов, у которых удельная нагрузка на крыло превышает 100 кГ/м 2 , выгодно применять убирающееся шасси.

Шасси можно убрать в крыло, гондолы двигателей и в фюзеляж. Иногда для уборки главных ног шасси используются специальные гондолы, расположенные на крыле.

Подкосы и фермы шасси

Лобовые и боковые нагрузки, действующие на ногу шасси, а также скручивающие моменты, которые возникают при разворотах самолета на земле, воспринимаются узлами крепления стойки к самолету и подкосами или фермами.

Фермы свариваются или собираются на болтах из стальных труб и реже из профилей. К фермам присоединяются узлы крепления к фюзеляжу или крылу, амортизационным стойкам, а в некоторых случаях — узлы для крепления подъемников, обеспечивающих уборку и выпуск шасси.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Сцепление. Сцепление служит для передачи крутящего момента, кратковременного отсоединения двигателя от ведущих колес и плавного их соединения. Обычно сцепление используется при переключении передач и для плавного трогания автомобиля с места. В ступенчатых трансмиссиях применяют фрикционные сцепления, в которых крутящий момент передается за счет силы трения (рис. 10.1). Механизм сцепления… Читать ещё >

Шасси автомобиля. Устройство автомобилей категорий b и c ( реферат , курсовая , диплом , контрольная )

ТРАНСМИССИЯ АВТОМОБИЛЯ

Общие сведения

Трансмиссия предназначена для передачи крутящего момента от двигателя к ведущим колесам, изменения его величины и частоты вращения в необходимых пределах. Крутящий момент, развиваемый двигателем, сравнительно невелик и изменяется в небольшом диапазоне. Максимальная величина его может достигать 100 Н-м для двигателей легковых, и 400—500 Н-м для двигателей грузовых автомобилей. Частота вращения коленчатого вала составляет несколько тысяч оборотов в минуту. Для движения автомобиля к ведущему колесу необходимо подвести момент в несколько тысяч Н-м. Частота же вращения ведущих колес может составлять несколько десятков оборотов в минуту.

По виду передаваемой энергии трансмиссии подразделяются на механические, гидравлические, электрические, а по способу изменения крутящего момента — на ступенчатые, бесступенчатые и комбинированные. Электрические трансмиссии применяются на электромобилях, троллейбусах и автомобилях большой грузоподъемности (БелАЗ). Гидравлические трансмиссии в сочетании с механической (гидромеханическая трансмиссия) применяются на отечественных легковых автомобилях высокого класса и некоторых моделях автобусов. Большинство же отечественных легковых и грузовых автомобилей имеют механические ступенчатые трансмиссии.

В состав ступенчатой механической трансмиссии могут входить следующие элементы: сцепление; коробка передач; раздаточная коробка, промежуточные передачи; главная передача; дифференциал; конечные передачи; ведущие валы или полуоси. Каждый элемент трансмиссии передает крутящий момент и выполняет свои, присущие только ему, функции. Если узел трансмиссии изменяет частоту вращения, то он характеризуется передаточным числом. Передаточное число — это отношение частоты вращения ведомого вала к частоте вращения ведущего. Поскольку в состав трансмиссии входят несколько узлов, изменяющих частоту вращения, то общее передаточное число трансмиссии будет равно произведению передаточных чисел всех этих узлов. При изменении частоты вращения крутящий момент изменяется в обратной зависимости. С увеличением частоты вращения величина передаваемого крутящего момента уменьшается и, наоборот, при уменьшении частоты вращения крутящий момент увеличивается.

Изменяют частоту вращения в трансмиссии коробка передач, раздаточная коробка, главная передача, конечная передача. Таким образом, общее передаточное число трансмиссии можно записать в виде произведения.

Шасси автомобиля. Устройство автомобилей категорий b и c.

где iTp — общее передаточное число трансмиссии; tK п — передаточное число коробки передач; ip K — передаточное число раздаточной коробки; irn — передаточное число главной передачи; iK0H п — передаточное число конечной передачи ["https://referat.bookap.info", 15].

У изучаемых автомобилей трансмиссия отличается как по составу, так и по расположению отдельных узлов.

В трансмиссию грузовогоавтомобиля ЗИЛ-5301 входят сцепление, коробка передач, карданная передача, главная передача, дифференциал и полуоси. Трансмиссия переднеприводных автомобилей ВАЗ- 2108, ВАЗ-2109, ВАЗ-2110 и их модификаций имеет много общего и конструктивно выполнена в одном агрегате. Она состоит из сцепления, коробки передач, главной передачи, дифференциала и приводов передних колес.

Сцепление. Сцепление служит для передачи крутящего момента, кратковременного отсоединения двигателя от ведущих колес и плавного их соединения. Обычно сцепление используется при переключении передач и для плавного трогания автомобиля с места. В ступенчатых трансмиссиях применяют фрикционные сцепления, в которых крутящий момент передается за счет силы трения (рис. 10.1). Механизм сцепления устанавливается на маховике двигателя, а управление осуществляется за счет привода из кабины. Ведущими деталями сцепления являются сам маховик 1 двигателя, нажимной дискЗ с нажимными пружинами 4, размещенные в кожухе 12, жестко закрепленном на маховике. На кожухе установлены отжимные рычаги 11, шарнирно соединенные с нажимным диском. К ведомым относится диск 2, установленный на шлицы ведущего вала 8 коробки передач. К приводу относятся отводка с подшипником 10, вилка 5, тяга 6 и педаль 7.

Функционально любой автомобиль можно рассматривать, как совокупность пассажирского и грузового отсеков, а также всех механизмов и конструкций, позволяющих транспортному средству передвигаться, то есть кузова и шасси.


Исторически сложилось выделение двигателя в самостоятельную единицу, к шасси не относящуюся, хотя структурно он тоже всегда упоминается в его составе.

Функции шасси в машине

Исходя из основного предназначения автомобиля, шасси должно выполнять следующие задачи:

  • принимать крутящий момент от двигателя, преобразовывать его до нужной величины и передавать на ведущие колёса;
  • обеспечивать максимальное гашение ударов и толчков от неровностей дороги, сохраняя от перегрузок пассажиров, груз и механизмы автомобиля;
  • задавать направление движения, стабильность и безопасность на любых дорогах;
  • выполнять служебное, экстренное и стояночное торможение;
  • придавать дополнительную прочность и жёсткость кузову.

Некоторые элементы шасси могут монтироваться внутри кузова, сохраняя при этом свою функциональную автономность.

Устройство и конструкция

В соответствии с выполняемыми функциями шасси состоит из отдельных систем:

  • Трансмиссия, куда относятся коробка передач, раздаточная коробка, система приводов и карданных валов, редукторы ведущих мостов, полуоси;
  • Подвеска с упругими элементами, демпферами (амортизаторами), направляющим аппаратом;
  • Колёса и ступичные узлы;
  • Рулевое управление, куда входят руль, колонка, усилители, рулевой редуктор (рейка), рулевая трапеция и поворотные кулаки; , достаточно сложно устроенная по соображениям эффективности и безопасности.

Конструктивно узлы шасси могут быть скомпонованы вокруг рамы автомобиля или, при её отсутствии, вокруг нижних элементов силовой структуры несущего кузова.


Для повышения комфорта и улучшения управляемости часто на машины устанавливаются передний и задний подрамники. Это прочные пространственные конструкции, к которым крепятся детали подвесок и трансмиссии, а сами они монтируются на кузове.

Так кузов избавляется от многих нежелательных сил, которые прикладывались бы к нему со стороны дороги и силового агрегата.

Большое значение компоновка шасси имеет и для технологичности процессов сборки и ремонта автомобилей. Вместо того, чтобы производить все работы вокруг объёмного и тяжёлого кузова, производится предварительная сборка всех элементов на раме или подрамниках, после чего полученные крупные модули соединяются с кузовом.

Такой подход имеет и свои недостатки, поскольку детали подрамников начинают в свою очередь мешать при сборочно-разборочных операциях. Но преимуществ больше, поэтому подрамники присутствуют почти на всех современных автомобилях.


Трансмиссия

Через трансмиссию проходит путь крутящего момента от коленчатого вала двигателя к ведущим колёсам. При этом он меняется в широком диапазоне, в зависимости от выбираемого водителем или автоматически суммарного передаточного числа трансмиссии.

Это число означает отношение оборотов двигателя к частоте вращения колёс. Ровно во столько же раз, во сколько скорость вращения вала двигателя больше, чем валов на выходе трансмиссии, возрастает крутящий момент.

Это очень важно для реализации всей мощности мотора, поскольку она зависит от частоты вращения вала, но при этом может потребоваться на любой скорости.

В состав классической механической трансмиссии могут входить:

  • Сцепление , предназначенное для рассоединения двигателя, всех прочих узлов и плавного их подключения;
  • Коробка передач , непосредственно меняющая общее передаточное число, а значит скорость и крутящий момент;
  • Раздаточная коробка , используется на полноприводных автомобилях, с её помощью вращение распределяется по разным осям;
  • Карданные валы и привода с шарнирами равных угловых скоростей (ШРУС), связывающие между собой узлы трансмиссии и ступицы колёс;
  • Главные передачи , где крутящий момент дополнительно умножается, а вращение разворачивается от продольного направления на поперечное;
  • Дифференциалы , позволяющие осям и колёсам на одной оси вращаться с разной скоростью.


Трансмиссия в авто с передним приводом.


Трансмиссия в авто с задним приводом.

Чаще всего используется механическая трансмиссия с ручной или автоматической коробкой, но возможно применение гидравлических и электрических трансмиссий, например на гибридных и особо большегрузных автомобилях.

Классификация

Шасси может быть рамного типа или собранным на основе несущего кузова. Рамы, в свою очередь, подразделяются на:

  • Лестничного типа в виде двух лонжеронов, соединённых силовыми поперечинами;
  • Объёмная, представляющая собой пространственную конструкцию, к которой крепятся навесные детали кузова;
  • Хребтовая, когда все нагрузки принимает на себя мощная труба по центру автомобиля, на которую и навешиваются элементы трансмиссии и подвески, часто внутри неё проходят карданные валы;
  • Интегрированная, то есть включённая в силовую структуру несущего кузова для принятия на себя основной доли всех нагрузок, но не отделяемая от деталей кузова;
  • Распределённая, с отдельными передними и задними подрамниками, соединёнными несущим днищем автомобиля со встроенными лонжеронами и поперечинами.

Применение рам ограничено тяжёлыми автомобилями, грузовиками, а также полноприводными машинами высокой проходимости, где важна прочность и способность постоянно противостоять изгибающим нагрузкам.

Иногда от кузова наоборот требуется высокая жёсткость, тогда используется пространственная рама, например в автоспорте.

Во всех прочих случаях использование отдельной рамы нежелательно, поскольку это увеличивает массу и стоимость машины. Тогда в автомобилях применяется несущий кузов.

Силовая структура, часто из высокопрочных сортов стали, образует каркас кузова, выполняя требования по прочности и безопасности, но в условиях постоянных ударных и скручивающих нагрузок ослабевает из-за усталости металла. Но для дорожных автомобилей это не так важно, зато конструкция получается лёгкой и жёсткой.

Шасси грузовых автомобилей

Практически всегда грузовики строятся на шасси с рамой лестничного типа. Два массивных лонжерона вдоль автомобиля, обычно переменного сечения, обеспечивают независимое размещение кабины с двигателем и грузовой платформы или сцепного устройства для полуприцепа.


Для тяжёлого грузовика именно такой подход очень важен. В кузове, а здесь это означает именно грузовую платформу, размещается очень большая масса, погасить колебания которой с помощью только подвески невозможно.

Плоская рама же обеспечивает гибкость и податливость, груз обретает некоторую свободу и его перемещения в такт неровностям дороги не достигают разрушающих нагрузок. Сама же рама выполнена из упругой стали, восстанавливающей свою исходную форму после снятия напряжения.

Кроме того, рамная конструкция позволяет выполнить шасси грузовика функционально завершённой конструкцией. На нём располагаются двигатель, трансмиссия, подвески и тормоза.

Остаётся навесить на раму любой кузов из предусмотренной линейки, будь то бортовой грузовик, фургон, цистерна или седельный магистральный тягач.

Так же достаточно легко решаются вопросы с изменением количества мостов, размеров, типов кабин и дополнительного оборудования. Модульность конструкции позволяет снизить себестоимость автомобилей.

Вплоть до поставки голых шасси специализированным фирмам для постройки уникальных автомобилей в единичном производстве.

Достоинства и недостатки

Концепция разделения автомобильного конструктива на шасси и кузов имеет свои преимущества:

  • возможность территориального разделения кузовных цехов и производителей шасси, с выделением сборочных производств;
  • дешевизна расширения номенклатуры автомобилей на единой платформе, вплоть до построения разных марок машин на одном шасси;
  • проведение рестайлинга моделей без дополнительных затрат на разработку нового шасси;
  • минимальные затраты на проведение крупных ремонтов;
  • вынесение мелкосерийного производства за рамки крупных предприятий.

Недостатками будут неизбежные затраты из-за невозможности дублирования функций кузова и шасси одними и теми же узлами:

  • некоторое увеличение общей массы автомобиля;
  • трудности с распределением массы по осям;
  • повышение центра тяжести автомобиля и ухудшение управляемости;
  • невозможность перекомпоновки узлов при создании модификаций.

По этим причинам чёткое разделение шасси и кузова не используется в дорогих спортивных и представительских автомобилях, где главными являются их потребительские характеристики, а не вопросы оптимизации производства.

Так же поступают и при конструировании самых дешёвых бюджетных автомобилей, где модели быстро обновляются, а номенклатура модификаций минимальна, гораздо важнее малая масса, то есть общее количество затраченных материалов и деталей.

Читайте также: