Научные методы познания в химии реферат

Обновлено: 05.07.2024

1. Научный метод — совокупность основных способов получения новых знаний и методов решения задач в рамках любой науки. Метод включает в себя способы исследования явлений, систематизацию, корректировку новых и полученных ранее знаний.

Важной стороной научного метода, его неотъемлемой частью для любой науки, является требование объективности, исключающее субъективное толкование результатов. Не должны приниматься на веру какие-либо утверждения, даже если они исходят от авторитетных учёных.

2. В науке выделяютсяметоды эмпирического и теоретическогопознания.

Эмпирический метод познания представляет собой специализированную форму практики, тесно связанную с экспериментом. Теоретическое познаниезаключается в отражении явлений и происходящих процессов внутренних связей и закономерностей, которые достигаются методами обработки данных, полученных от эмпирических знаний.

На теоретическом и эмпирическом уровнях научного познания используются следующие виды научных методов:

Методами, которые используются на обоих уровнях, являются:

- анализ – разложение единой системы на составные части и изучение их по отдельности;

- синтез – объединение в единую систему всех полученных результатов проведенного анализа, позволяющее расширить знание, сконструировать нечто новое;

- аналогия - это заключение о сходстве двух предметов в каком-либо признаке на основании установленного их сходства в других признаках;

- моделирование — это изучение объекта посредством моделей с переносом полученных знаний на оригинал. Предметное моделирование — создание моделей уменьшенных копий с определёнными дублирующими оригинальными свойствами. Мысленное моделирование — с использованием мысленных образов. Математическое моделирование – замена реальной системы на абстрактную, в результате чего задача превращается в математическую, поскольку состоит из набора конкретных математических объектов Знаковое или символическое — представляет собой использование формул, чертежей. Компьютерное моделирование — моделью является компьютерная программа.

В основе методов познания лежит единство его эмпирической и теоретической сторон. Они взаимосвязаны и обусловливают друг друга. Их разрыв, или преимущественное развитие одной за счет другой, закрывает путь к правильному познанию природы - теория становится беспредметной, а опыт – слепым.

Романтизм как литературное направление: В России романтизм, как литературное направление, впервые появился .

Примеры решений задач по астрономии: Фокусное расстояние объектива телескопа составляет 900 мм, а фокусное .

Задачи и функции аптечной организации: Аптеки классифицируют на обслуживающие население; они могут быть.

Предмет химии. Научные методы познания веществ и химических явлений. Роль экс­перимента и теории в химии. Химия – одна из фундаментальных естественных наук, знание которой необходимо для плодотворной творческой современного представителя любой специальности. Качество химических знаний приобретает особо важное значение в связи с необходимостью уменьшения энергозатрат, использования новых материалов и повышения надежности современной техники. Понимание химических законов помогает в решении экологических проблем. Изучение химии является частью задачи по формированию мировоззрения Человека.

Основной закон природы – закон вечности материи и ее движения. Химия изучает материальный мир и химическую форму движения материи.

Что же есть материя?

– механическая – физическая – химическая – биологическая

Известны две формы существования материи: вещество и поле. Вещество – материальное образование, состоящее из материальных частиц, имеющих собственную массу. Поле – материальная среда, в которой осуществляется взаимодействие частиц.

Химия изучает первую форму существования материи – вещество. Химия – наука о превращении веществ. Изучает состав и строение веществ, зависимость свойств веществ от их состава, строение и пути превращения одних веществ в другие. Явления, при которых из одних веществ образуются другие, называются химическими.

В развитии химии можно условно выделить следующие периоды:

III . Химическая революция 1748 г . – начало химии как науки . 1. Атомно-молекулярное учение М.В. Ломоносова. 2. Периодический закон и периодическая система элементов (1896 г.) Д.И. Менделеев.

Роль эксперимента и теории в химии. Моделирование химических процессов

Прежде чем приступить к любой работе и получить определённый результат, человек выбирает наиболее эффективные и доступные способы и приёмы выполнения её, инструмент и приспособления, которые можно использовать для этого, операции, которые необходимо совершить.

Различают 2 уровня научного познания: эмпирический (т.е. знания, полученные в результате опыта, опытного знания) и теоретический(познание сущности явлений, их внутренних связей).

Метод — это способ достижения какой-нибудь цели, решения конкретной задачи.

Есть методы, которые являются общими для всех наук. В то же время для каждой науки характерны свои методы.

Общенаучные методы: наблюдение, эксперимент, моделирование, прогнозирование.

Химические методы: химический эксперимент, анализ и синтез веществ.

Моделирование — процесс исследования реального мира с помощью создания абстрактных, графических и математических моделей.

Моделирование основано на изучении модели. Модель строится по подобию оригинала, на ней воспроизводят свойственные оригиналу процессы, и полученные сведения переносятся на моделируемый объект — оригинал.

в химии широко используются модели молекул, которые помогают понять их строение.

Вопрос Состав вещества. Химические элементы. Способы существования химических элементов: атомы, молекулы, ионы. Простые и сложные вещества. Классификация, состав и названия важнейших оксидов, кислот, оснований, солей. Вещества постоянного и переменного состава.

Атом — электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.Молекулой называют наименьшую электронейтральную частицу вещества, способную к самостоятельному существованию и обладающую его химическими свойствами. Молекула представляет собой систему взаимодействующих между собой атомов, образующих определённую структуру с помощью химических связей.

Химический элемент — совокупность атомов, характеризующихся одинаковым значением (величиной) заряда ядра. (Сейчас известно 115 хим. Элементов)

Ионами называют электрически заряженные частицы, возникающие при потере или присоединении электронов атомами или молекулами.

Катионами называют положительно заряженные ионы.

Анионами называют отрицательно заряженные ионы.

Вещество — любая совокупность атомов и молекул.

Свойства веществ (температуры плавления и кипения, плотность, цвет и т. д.) относятся к совокупности атомов или молекул.

По химическому составу неорганические вещества делят на простые и сложные.

Простыми называют вещества, которые образуют атомы одного и того же химического элемента (например, H2, O2).

Простые вещества делят на металлы и неметаллы.

Металлами называют простые вещества, которые обладают характерными металлическими свойствами, а именно высокой электро- и теплопроводностью и металлическим блеском.

Простые вещества, которые образуют атомы элементов-неметаллов, при нормальных условиях такими свойствами не обладают.

В периодической таблице Д.И. Менделеева неметаллы расположены в главных подгруппах справа вверху от условной диагонали, проведённой через бор и астат. В главных подгруппах слева от этой диагонали и во всех побочных подгруппах располагаются металлы.

Сложными называют вещества, которые состоят из атомов двух и более элементов (например, H2S, NO2).

Для выражения состава вещества используют различные химические формулы. При их написании используют общепринятые символы химических элементов. Символ элемента состоит из первой буквы или первой и одной из последующих букв латинского названия элемента, при этом первая буква всегда прописная, а вторая — строчная.

Названия и обозначения атомов совпадают с символами химических элементов. Например, О — атом кислорода, 2О — два атома кислорода, О2 — молекула кислорода, О3 — молекула озона.

Сложные вещества разделяют на условно электроположительную (катион) и условно электроотрицательную (анион) составляющие. В формуле сложного вещества вначале ставят катион, а затем — анион, например KBr, CuSO4. Названия сложного вещества читают справа налево, т. е. вначале называют его электроотрицательную составляющую в именительном падеже, а затем электроположительную в родительном падеже.

Для бинарных, т. е. состоящих из двух элементов соединений, действуют следующие правила. Если соединение состоит из металла и неметалла, то на первом месте всегда ставят металл (как более электроположительный элемент): K2S, BaCl2.

В формулах соединений, состоящих только из неметаллов, на первом месте всегда ставят элемент, находящийся левее в условном ряду неметаллов, построенном по их возрастающей электроотрицательности:

Например, IBr — бромид йода, CS2 — дисульфид углерода.

Формула молекулярная (брутто-формула) включает символы всех химических элементов, входящих в состав соединений. Около каждого символа ставят числовой индекс, показывающий, сколько атомов данного вида входит в состав соединения. Таким образом, молекулярная формула показывает качественный и количественный состав молекулы. Например, формула KNO3 показывает, что вещество состоит из 1 атома калия (индекс, равный 1, не ставится), 1 атома азота и 3 атомов кислорода.

Оксидами называют класс химических соединений, состоящий из какого-либо элемента и атома кислорода со степенью окисления –2.

Называют оксиды, руководствуясь следующими правилами:

1. Вначале указывают слово оксид, а затем в родительном падеже название второго элемента;

2. Если элемент может образовать несколько оксидов, то после названия элемента в скобках указывают его валентность;

3. При написании формул оксидов кислород всегда ставят на втором месте.

Примеры: K2O — оксид калия, N2O5 — оксид азота (V), CrO3 — оксид хрома (IV).

Для некоторых распространённых оксидов используют тривиальные названия, например CaO — негашеная известь, N2O — веселящий газ, CO — угарный газ, CO2 — углекислый газ.

Оксиды классифицируют так.

Низшими называют оксиды, в которых элемент проявляет низшую степень окисления, например MnO — оксид марганца (II).

Высшими называют оксиды, в которых элемент проявляет высшую степень окисления, например Mn2O7 — оксид марганца (VII).

Несолеобразующими, или безразличными, называют оксиды, не проявляющие ни основные, ни кислотные свойства, например N2O, NO, CO.

Солеобразующими называют группу кислотных, основных и амфотерных оксидов.

Основные оксиды образуют металлы в низших степенях окисления. Наиболее известные из них: Li2O, Na2O, K2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, Cu2O, Ag2O, HgO, CrO, FeO.

Амфотерными называют оксиды, которые проявляют как основные, так и кислотные свойства, в зависимости от другого реагента. Наиболее известные амфотерные оксиды Al2O3, Cr2O3, ZnO, BeO, PbO, SnO. Ряд оксидов, например CuО, Fe2O3, проявляет амфотерные свойства с преобладанием основных.

Основаниями называют класс химических соединений, которые состоят из катиона металла или иона аммония и одной или нескольких гидроксильных групп, способных к замещению на анионы.

Число гидроксильных групп определяет кислотность основания, например: NaOH — однокислотное, Mg(OH)2 — двухкислотное и т. д.

Щелочами называют растворимые в воде основания.

Сильные основания: гидроксиды щелочных и щёлочноземельных металлов LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH)2, Ca(OH)2, Sr(OH)2. Слабые основания: все нерастворимые в воде гидроксиды металлов и гидрат аммиака.

Называют основания следующим образом:

1. Вначале указывают слово гидроксид, а затем добавляют название металла в родительном падеже;

2. Если элемент может образовывать несколько оснований, то после его названия в круглых скобках римской цифрой указывают валентность: KOH — гидроксид калия, Fe(OH)2 — гидроксид железа (II), Fe(OH)3 — гидроксид железа (III);

3. При написании формул гидроксидов гидроксильную группу всегда ставят на втором месте.

4. Кислотами называют класс химических соединений, которые содержат в своём составе один или несколько катионов водорода, способных замещаться на атомы металлов, и анионов кислотных остатков.

5. Основностью кислоты называют число способных замещаться на металл атомов водорода в её молекуле. По основности кислоты делят на одно-, двух- и трёхосновные, например HBr, H2S и H3PO4 соответственно.

6. В зависимости от элементного состава кислоты делят на бескислородные и кислородные, например HBr и H2SO3. Кислотный остаток — это структурный элемент молекулы кислоты, который выступает как единое целое в ходе химических реакций.

7. В таблице 4 приведены формулы и названия наиболее распространенных кислот и их солей.

9. Сильные кислоты: HI, HBr, HCl, HClO3, HClO4, H2SO4, HNO3.

12. Кислородсодержащие кислоты и основания объединяют в общий класс гидроксидов.

13. Амфотерными называют гидроксиды, способные реагировать как с кислотами, так и с основаниями. Амфотерные гидроксиды: Al(OH)3, Cr(OH)3, Zn(OH)2, Pb(OH)2, Be(OH)2, Sn(OH)2. Некоторые гидроксиды, например Cu(OH)2, Fe(OH)3, проявляют амфотерные свойства с преобладанием основных.

3 вопрос Вещества постоянного и переменного состава. Смеси веществ. Различия между смесями и химическими соедине­ниями.


Вопрос

Предмет химии. Научные методы познания веществ и химических явлений. Роль экс­перимента и теории в химии. Химия – одна из фундаментальных естественных наук, знание которой необходимо для плодотворной творческой современного представителя любой специальности. Качество химических знаний приобретает особо важное значение в связи с необходимостью уменьшения энергозатрат, использования новых материалов и повышения надежности современной техники. Понимание химических законов помогает в решении экологических проблем. Изучение химии является частью задачи по формированию мировоззрения Человека.

Основной закон природы – закон вечности материи и ее движения. Химия изучает материальный мир и химическую форму движения материи.

Что же есть материя?

– механическая – физическая – химическая – биологическая

Известны две формы существования материи: вещество и поле. Вещество – материальное образование, состоящее из материальных частиц, имеющих собственную массу. Поле – материальная среда, в которой осуществляется взаимодействие частиц.

Химия изучает первую форму существования материи – вещество. Химия – наука о превращении веществ. Изучает состав и строение веществ, зависимость свойств веществ от их состава, строение и пути превращения одних веществ в другие. Явления, при которых из одних веществ образуются другие, называются химическими.

В развитии химии можно условно выделить следующие периоды:

III . Химическая революция 1748 г . – начало химии как науки . 1. Атомно-молекулярное учение М.В. Ломоносова. 2. Периодический закон и периодическая система элементов (1896 г.) Д.И. Менделеев.

Роль эксперимента и теории в химии. Моделирование химических процессов

Прежде чем приступить к любой работе и получить определённый результат, человек выбирает наиболее эффективные и доступные способы и приёмы выполнения её, инструмент и приспособления, которые можно использовать для этого, операции, которые необходимо совершить.

Различают 2 уровня научного познания: эмпирический (т.е. знания, полученные в результате опыта, опытного знания) и теоретический(познание сущности явлений, их внутренних связей).

Методы исследования в химии

А какие именно теоретические и экспериментальные методы исследования чаще всего используют в химии? В чём их особенности и отличия от других? Обо всё этом расскажем в статье, а также приведём примеры, как применяют методы исследования в химии.

Доверь свою работу кандидату наук!

Узнать стоимость бесплатно

Методы исследования в химии: определение и классификация

Методы исследования: определение понятия

Прежде чем мы рассмотрим, какие современные методы исследования используют в химии, давайте дадим научное определение этому понятию:

Методы исследования — это способы познания в научно-исследовательских работах, которые включают в себя специфические методики, приёмы и подходы. Все методы, используемые в процессе, составляют методологическую базу исследования.

Классификация современных методов исследования в химии

Химия — практическая наука. Именно поэтому большинство работ по этой научной дисциплине имеют экспериментально-аналитический характер. Соответственно большинство методов исследования веществ, соединений, реакций и явлений в химии относятся к эмпирическим.

Для удобства мы разделили самые популярные методы исследования на три большие группы:

  • общенаучные теоретические методы исследования в химии;
  • общенаучные эмпирические методы исследования в химии;
  • специальные методы исследования в химии.


Проводя химические опыты, соблюдайте правила безопасности

Первые две группы методов встречаются в методологиях других наук, а специальные, или узкоспециализированные — только в химических исследованиях.

В химии применяют разные методы, в том числе и междисциплинарные. Это методологические приёмы, которые решают задачи смежных наук. Например, физико-химический анализ подходит для физических, химических, биологических и даже исторических исследований.

Методы научного исследования в химии: описание

Чтобы выбрать методы, которые лучше всего помогут раскрыть тему вашего исследования, стоит разобраться, что они из себя представляют и для каких задач применяются.

Общенаучные теоретические методы исследования в химии

Самыми востребованными теоретическими методами в химии являются:

  • наблюдение;
  • описание;
  • моделирование;
  • абстрагирование.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы.

Метод наблюдения

Наблюдение — это внешнее изучение определённых химических явлений или веществ. Как правило, чтобы этот метод был эффективным, исследователь должен соблюдать следующие условия:

  • выбрать объект изучения;
  • определить цель и задачи;
  • выдвинуть возможную гипотезу.

Только соблюдая условия, можно получить чёткие результаты и не запутаться в большом количестве данных.

Пример: провести наблюдение за химической реакцией сульфита меди и хлорида натрия.

Метод описания

Метод описания в химии чаще всего дополняет другие методы. С его помощью перечисляют основные признаки веществ и изображают химически проведённые опыты.

Пример: описать состав комплексных химических соединений тетрафторобериллат (II) калия и тетрагидридоалюминат (III) лития.

Метод моделирования

В химии далеко не все химические реакции можно провести в лаборатории. Для сложных явлений используют метод моделирования. С его помощью создают модели, по которым проверяют выдвинутые гипотезы.

Применяют две группы моделей:

  1. Предметные — с их помощью изучают строение атомов, кристаллов и других веществ.
  2. Символьные — их используют, чтобы исследовать уравнения реакций и формулы химических элементов.

Пример: провести молекулярное моделирование структурного состава атома водорода.

Метод абстрагирования

Метод абстрагирования применяют, когда необходимо отбросить несущественные показатели и более подробно исследовать общие закономерности химических веществ и явлений.

Пример: изучить общие свойства неорганических веществ.

Существует метод, который является полной противоположностью абстрагированию. Это конкретизация. В его рамках изучают конкретные признаки веществ.

Общенаучные эмпирические методы исследования в химии

К методам экспериментальных исследований в химии относят:

  • эксперимент;
  • измерение;
  • анализ;
  • синтез.

Метод эксперимента

Чем отличается эксперимент от наблюдения? Тем, что экспериментальные опыты — это всегда активное воздействие на изучаемый материал. Эксперимент проводят в контролируемых условиях и используют для практической части исследования.

Пример: провести химические опыты, позволяющие очистить загрязненную поваренную соль.

Метод измерений

Без метода измерений в химической науке никуда. Ведь мало просто провести научный эксперимент и описать реакцию. Надо понимать, какие показатели измерять и как их сравнивать, чтобы делать правильные выводы.

Пример: измерить физико-химические показатели горючего.


Важный этап любого опыта — записать выполненные измерения

Метод анализа

Аналитические методы в современных исследованиях химии очень важны. Они помогают изучать химические вещества с разных сторон, специально проводить нужные реакции и получать обоснованные выводы.

Пример: провести сравнительный анализ методов получения бутандиола-1,4.

В химии существует большое количество различных видов анализа. Их можно смело отнести к следующей группе методов — специальных.

Существует даже целая отдельная отрасль — аналитическая химия, в которой существуют собственные методы исследования: методы разделения и концентрирования, метод испарения, гравиметрический анализ, титриметрический анализ, хроматографические методы и так далее.

Метод синтеза

Метод синтеза в химии помогает получать новые вещества в процессе химических реакций. Он также важен, как и анализ. Его часто применяют в качестве метода исследования в органической химии.

Пример: описать историю химического синтеза и его важное значение для науки.

Специальные методы исследования в химии

К специальным в химии относятся методы исследования, которые обладают практическим характером. Их применение связано с изучением количественного состава и химических свойств различных соединений.

Таких методов довольно много, но условно их можно разделить на три большие группы:

  • физические;
  • классические;
  • физико-химические.

Физические методы исследования в химии

Физические методы в химии — это методы исследования, которые изучают физические параметры химических веществ. Среди наиболее часто встречающихся физических методов можно назвать:

  • рефрактометрический метод — измеряет показатели преломления;
  • поляриметрический метод — исследует оптическое вращение в химических веществах;
  • флуориметрический метод — изучает интенсивность, с которой выделяется излучение.

Пример: определить, как изменилось излучение после воздействия на разные химические вещества.

Классические методы исследования в химии

Классические методы исследования помогают изучать химические растворы, газы, тела и другие элементы через различные виды реакций. Существует несколько разновидностей данных методических приёмов:

  • гравиметрический метод — служит для определения точного веса химических веществ;
  • титриметрический, или объёмный метод — измеряет точное количество реагентов;
  • газовый метод — позволяет измерять объём газов.

Пример: решить ряд химических уравнений, в ходе которых необходимо вычислить количество вещества, исходя из его объёма в газообразном состоянии.

Физико-химические методы исследования в химии

Физико-химические методы позволяют исследователю наблюдать и фиксировать, какие физические изменения происходят в веществах после того, как произошла химическая реакция. Среди них:

  • резонансные методы;
  • гигиенический метод.

Резонансные методы исследования в химии

Самые известные методологические приёмы в этой группе — это резонансные методы исследования в химии:

  • метод ядерного магнитного резонанса;
  • метод электронного парамагнитного резонанса.

Резонансные методы помогают изучить структурные и динамические изменения в молекулах, ионах и других элементах в различных химических фазах, например, в конденсированной или газообразной.

Пример: изучить, как распределяются электроны в молекулах с помощью резонансного метода исследования.


Магниторезонансный метод лежит в основе МРТ

Метод гигиенического исследования в химии

К физико-химическим методам также относится метод гигиенического исследования. Его применение связано с очень практическими целями:

  • оценить качество определённого вещества, чтобы выявить химические осадки и их предельно допустимые значения для гигиенической безопасности.

Пример: провести санитарно-химический анализ воды, позволяющий оценить уровень хлора, сульфата и хлорида в составе.

Как выбирать методы исследования в химии

Практически любое грамотное химическое исследование строится на пяти основных этапах:

  1. Наблюдение за объектом исследования и его свойствами.
  2. Изучение и обобщение полученных результатов.
  3. Выдвижение предварительной гипотезы.
  4. Организация и проведение экспериментальных опытов.
  5. Обоснование химической теории, выводы исследования.

Поэтому и методологию стоит составлять из методов, которые помогут на каждом этапе всесторонне изучить объект и получить конкретные результаты.

Например, выбирая физико-химические методы исследования в органической химии, не забывайте об основе — теоретическом наблюдении и анализе химических материалов, полученных экспериментально.

Мы разобрали некоторые методы исследований, которые применяют в органической и неорганической химии. Теперь у вас есть хороший инструментарий, чтобы провести свою исследовательскую работу. А если нет времени писать лабораторную, курсовую или диплом по химии самостоятельно, обращайтесь в студенческий сервис. Наши специалисты помогут определиться с методами исследования и сдать работу даже по самой сложной теме точно в срок.

Нажмите, чтобы узнать подробности

Предмет и методы познания

химической науки.

Однако же все эти попытки изгнать философию из сферы исследования природы потерпели неудачу. Действительно, общая методология науки, или теория развития науки – темы не для частных наук, а для философии, но последняя не ограничивается рассмотрением только таких предметов. У философии есть собственный подход к изучению окружающей нас вселенной, одним из аспектов которого является опора на достижения естественных наук. Переводя современные научные открытия на универсальный язык всеобщих понятий, философы не просто изучают физику, химию, биологию, а выделяют целые научные концепции и методологические формы. Таким образом, философия занимается теорией науки в рамках собственных, более широких природоведческих исследований, о чем уже говорилось ранее. Понятно, что философия химии уделяет особое влияние предмету и методам познания химической науки.

Объектом исследования химии, как и других естественных наук, выступает материальный мир в многообразии его внутренних связей и постоянной динамике развития. Вместе с тем, химия выделяет собственную область изучения указанного объекта, которая, в целом и представляет предмет познания химической науки. Еще в 19 веке Ш.Жерар, формируя данный предмет, писал, что химия занимается последовательными преобразованиями материи, она вникает в происхождения тел, исследует их прошедшее и будущее. Таким образом можно сказать. Что химию интересует в материальном мире особый вид процессов, сутью которых является не простое физическое перемещение объектов, а полное изменение различных материй, их трансформация и взаимопереход, что представляет собой основу всякого химического превращения.

Следует уточнить, что в свете новых научных данных под химическим превращением вещества понимается такое превращение, при котором происходит изменеие строения вещества, его состава, свойств в соответствии с особыми химическими закономерностями. Химические превращения происходят на атомном уровне и осуществляются в процессе специфических взаимодействий определенных структур частиц вещества. Химические превращения сопровождаются возникновением или перераспределением химически связей. Уже этим химические превращения значительно отличаются от других видов превращением материи (ядерных, геологических, биологических).

Говоря о химии, как о науке в ее связи с философией, необходимо указать на основные методы познания, применяемые в химии. Еще Д.И,Менделеев в свое время подчеркивал, что изучать в научном смысле значит:

1) не только добросовестно изображать или просто описывать, но и узнавать отношение изучаемого к тому, что известно;

2) измерять все то, что может подлежать измерению;

3) определять место изучаемого в системе известного, пользуясь как качественными, так и количественными методами;

4) находить закон;

5) составлять гипотезы о причинной связи между изучаемыми явлениями;

6) проверять следствия гипотезы опытом;

7) составлять теорию изучаемого.

Все это с необходимостью требует как наличия правильных методов исследования, так и умения пользоваться ими. Методы, применяемые в современной химии, делятся на общенаучные и специальные.

Общенаучные методы, такие как индукция, дедукция, абстрагирование, анализ, синтез, моделирование и эксперимент являются основой создания теории и представляют собой базис н учного исследования. Специальные методы, такие как метод рентгено-структурного анализа, метод валентных связей, расчеты молеклярных орбит носят вспомагательный характер и используются в дополнении к общенаучным методам.

Следует особо отметить, что общенаучные методы имеют своим основанием философию, поскольку именно в рамках философии были впервые подняты проблемы, связанные с познанием, разработаны формальная, а затем и позитивно-диалектическая логика, что стало базой развивающейся рациональной теории познания. И наше время философская гносеология является главным источником создания объясняющих концепций, касающихся любой формы человеческого познания.

Теперь перейдем к характеристике общенаучных методов исследования, применяемых в химии.

1.Индукция. В данном случае познания движется от частного, единичного – общему. На основе изучения отдельных химических явлений, имеющихся суждений и фактов делаются обобщающие умозаключения, устанавливаются общие свойства, существенные и закономерные связи веществ. Индуктивный метод опирается на опыт, наблюдение, накопление и анализ отдельных фактов. Индуктивный метод является основой эмпирических знаний.

Примером успешного применения индукции в химии можно считать открытие закона сохранения массы веществ М.В.Ломоносовым в процессе проверки опытов Бойля с обжигом металлов, а также выведение эмпирических правил постоянства состава, паев Прустом и Рихтером. Правил, ставших сопутствующими теориями стехиометрии на основе атомных представлений. Обычно индуктивным способом возможно установить количественные и другие внешнеположенные характеристики наблюдаемых явлений и процессов, данных исследователю в непосредственном чувственном восприятии. Индукцию можно определить также как накопление фактов наблюдения, анализ и систематизацию фактов и, наконец, обобщение полученных результатов с целью выведения объективных закономерностей.

2. Дедукция. Это способ логического рассуждения, идущий от общего (например, химический закон, постулат, правило) – к частному, то есть к отдельным химическим фактам.

Как метод дедукции прямо противоположна индукции, поскольку опора делается на творческое мышление, рождающее идеи, предположения, гипотезы и даже теории, - все это затем может быть сопоставлено с фактами и проверено экспериментально, в то время как при индуктивном методе все делается в обратном порядке. Дедукция в химии как и в других естественных науках не просто дополняет индукцию, а играет роль основы теоретическимх исследований. Создание законов невозможно без дедуктивных открытий, поскольку из наблюдений за явлениями невозможно вывести их сущность. В качестве примера стоит запомнить, что правила Пруста и Рихтера стали соответствующими теориями стехиометрии лишь всвязи с первыми успехами развития атомно-молекулярной теории. Надо было найти мысленный ответ на вопрос, к примеру, в чем причина действия правила постоянного состава, но такой ответ не вытекает из наблюдений за химическими реакциями, как не вытекает он и из самого обнаруженного правила. После трудов Декарта и, в особенности, Канта и Гегеля, философия пришла к выводу, что любые теории, в том числе научные логически не выводятся из эмпирических фактов и закономерностей, не являются их индуктивным обобщением, а надстраиваются над эмпирическим знанием в качестве описания особого рода реальности, как сферы идеальных объектов с системой собственных взаимосвязей. Теоретический уровень характеризует зрелость науки, хотя нельзя забывать и то, что истинная теория невозможна без своей эмпирической почвы, как форма неотделима от содержания и наоборот.

Понятно, что роль дедукции все время растет по мере развития химии как науки. Если первые этапы становления научной химии были отмечены прежде всего торжеством индуктивного метода, то с появлением атомно-молекулярной теории, органической химии дедуктивный метод становится все более популярным и востребованным.

3.Анализ и синтез. В процессе познания химических веществ и процессов важное место занимают методы анализа и синтеза. Объекты научного интереса при аналитическом исследовании расчленяются, затем выделяются их составные части, связи и стороны – для более подробного изучения. Анализ позволяет отделить всеобщее от единичного, необходимое от случайного, главное от второстепенного. На таких принципах основан целый раздел химической науки – аналитическая химия, где определение состава химического вещества решается при помощи качественного и количественного метода анализа.

Вместе с тем, анализ это лишь начало процесса познания, поскольку знание отдельных частей предмета еще не дает знания о предмете в целом. В научно-теоретической мысли давно утвердилось понятие о том, что целое не может быть сведено к механической сумме своих частей. В процессе синтеза происходит практическое или мысленное соединение составных частей изучаемого объекта, его свойств и связей, расчлененных в результате анализа, в новом качественном виде. В результате предмет выступает как неразрывное диалектическое единство частей и целого. Проходя через анализ и синтез, предмет исследования с необходимостью изменяется, становясь более различенным по содержанию, что находится в тесной взаимосвязи с ростом различенности нашего понимания изучаемого предмета во всех его свойствах, связях и качествах.

4.Научная абстракция. Одной из характерных особенностей современных наук и, в частности, химии является широкое использование метода научной абстракции. Абстрагирование предполагает мысленное отвлечение от ряда второстепенных, несущественных свойств и связей, а также – сторон исследуемого предмета при выделении одного общего, существенного признака, свойства или отношения. Полученное в результате таких действий понятие называется абстракцией. В химии научными абстракциями выступают такие важные понятия как кислота, элемент, спирт, гомологический ряд, валентность, химическое строение. Метод научной абстракции особенно необходим при мысленном поиске сущностей и законов.

5.Модеолирование. В тесной связи с абстрагированием находится метод моделирования, который также широко используется в современной науке. Моделирование представляет собой особый вид эксперимента, нередко мысленного. В химии метод моделирования используется относительно давно. Например, химическая символика, первые формулы соединений Берцелиуса реально представляли собой знаковые модели, отражающие состав соединения, а также стехиометрические отношения между элементами. Развитие теории химического строения позволило создать модель молекулы в виде структурной формулы, выражающей уже и порядок связи атомов. В последние годы всвязи с постоянным развитием компьютерных технологий роль метода моделирования значительно возросла.

Остается подчеркнуть, что грамотность по части научной методологии должна быть составной частью профессиональной культуры современного специалиста-химика.

Читайте также: