Нанороботы в медицине реферат

Обновлено: 05.07.2024

Ученые утверждаю, что настанет тот день, когда с помощью нанотехнологий в кровяные клетки человека можно будет встраивать микроскопические датчики, предупреждающие о появление признаков радиационного излучения или развития болезни. Прогнозируемый срок реализации - 1-ая половина XXI века.

Действительно ли, нанотехнологии могут стать причиной конца света или это всего лишь богатая фантазия некоторых ученых?

Что такое нанотехнологии?

- изготовление электронных схем размером с молекулу (атом);

- разработка и изготовление машин;

- манипуляция атомами и молекулами.

Что такое наномедицина?

Перспективы развития

Все это может воплотиться в реальность примерно через 5-10 лет. А наночастицы ученые используют уже более 5 лет.

А сейчас, сенсоры тоньше человеческого волоса могут оказаться в 1000 раз чувствительнее стандартных анализов ДНК. Американские ученые, разработавшие эти наносенсоры, полагают, что врачи смогут проводить целый спектр различных анализов, пользуясь лишь одной каплей крови. Одним из преимуществ этой системы является возможность моментально пересылать результаты анализа на карманный компьютер. Исследователи полагают, что на разработку полностью функциональной модели наносенсора, которым смогут воспользоваться врачи в повседневной работе, понадобиться около пяти лет.

С помощью нанотехнологий медицина сможет не только с любой болезнью, но и предотвращать ее появление, сможет помогать адоптации человека в космосе.

Считается, что первостепенной опасностью для пациента будет некомпетентность лечащего врача. Но ведь ошибки могут происходить и в неожиданных случаях. Одним из непредвиденных случаев может быть взаимодействие между роботами при их столкновении. Такие неисправности трудно будет определить. Иллюстрацией такого случая может служить работа двух видов нанороботов А и В в организме человека. Если наноробот А будет удалять последствия работы робота В, то это приведет к повторной работе А, и этот процесс будет продолжаться до бесконечности, то есть нанороботы будут исправлять работу друг друга. Чтобы таких ситуаций не возникало лечащий врач должен постоянно следить за работой нанороботов и в случае чего перепрограммировать их. Поэтому квалификация врача является очень важным фактором.

Как известно, наша иммунная система реагирует на чужеродные тела. Поэтому размер наноробота будет играть важную роль при этом, так же как шероховатость поверхности и подвижность устройства. Утверждается что проблема биосовместимости не очень сложна. Выходом из этой проблемы будет создание роботов на основе алмазоидных материалов. Благодаря сильной поверхностной энергии и алмазоидной поверхности и сильной ее гладкости внешняя оболочка роботов будет химически инертной.

Нанотехнологии, применяемые в медицине в последнее время

Уже сейчас нанотехнологии применяются в медицине. Основными областями ее применения являются: технологии диагностики, лекарственные аппараты, протезирование и имплонтанты.

У кого-то боль исчезает совсем, у кого-то затихает. Через метод глубокой стимуляции мозга прошло около четырех десятков людей.

Многие коллеги Азиза говорят, что этот метод не эффективен и может иметь негативные последствия. Профессор же убежден, что метод действенен. Ни то ни другое сейчас не доказано. Мне кажется надо верить лишь сорока пациентам, которые избавились от невыносимой боли. И снова захотели жить. И если уже 8 лет этот метод практикуется и не сказывается негативно на здоровье больных, почему бы тогда не расширить его применение.

Еще одним революционным открытием является биочип - небольшая пластинка с нанесенными на нее в определенном порядке молекулами ДНК или белка, применяемые для биохимических анализов. Принцип работы биочипа прост. На пластиковую пластинку наносят определенные последовательности участков расщепленной ДНК. При анализе на чип помещают исследуемый материал. Если он содержит такую же гинетическую информацию, то они сцепливаются. В результате чего можно наблюдать. Преимуществом биочипов являются большое количество биологических тестов со значительной экономией исследуемого материала, реактивов, трудозатрат и время на проведение анализа.

Вывод

Ученые NASA говорят, что они успешно проводили испытания нанороботов на животных. Но стоит ли этому верить? Каждый решает это сам для себя. Лично я считаю, что использование, например, таких нанотехнологий как наносенсоры может иметь рискованный характер. Ведь любая даже самая простейшая система может давать сбои, что уж тогда говорить о таких передовых технологиях, как нанороботы? И кроме того надо учитывать индивидуальные физиологические особенности каждого человека.

И так, перспективы развития нанотехнологий велики. Утверждается, что в ближайшем будущем, с помощью них можно будет не только побороть любую физическую болезнь, но и предотвратить ее появление. Но вот о рисках ученые NASA ничего не говорят. Есть только бесчисленные статьи в желтой прессе о том, что люди под воздействием нанороботов станут неуправляемыми как зомби.

Упорядоченные одним образом, атомы составляют деревья и свежий воздух, а упорядоченные другим образом – золу и дым. Как уголь и алмаз, так и здоровая и раковая ткань состоит из одних и тех же атомов, но именно вариации в упорядочении атомов ведет к таким серьезным отличиям.

Задачи наномедицины

Среди основных перспектив применения нанотехнологий в медицине выделяют следующие направления:

1) Биологические чипы, помогающие проводить диагностику соматических и инфекционных заболеваний, в том числе видовую идентификацию возбудителей особо опасных инфекций и токсинов.

2) Наночастицы, использующиеся как лекарственные препараты нового поколения, а также как контейнеры для адресной доставки медикаментов.

3) Медицинские приборы, устраняющие дефекты в организме больного путем управляемых хирургических вмешательств на клеточном уровне.

4) Протезирование искусственно созданными органами

Робокровь

Несмотря на то, что создание медицинских нанороботов находится только в проектной стадии уже существует их классификация на респирациты, клоттнциты, нанороботы-фагоциты и васкулоиды.

Нанороботы-фагоциты – представляют собой искусственные иммунные клетки, способные частично или полностью взять на себя функцию защиты организма от вредоносных микроорганизмов и вирусов, а также для поиска раковых клеток. Также предполагается, что задачей нанороботов будет поиск радикалов и переработка их в нейтральные соединения, что может существенно уменьшить последствия радиационного поражения организма.

Клоттоциты – являются искусственными аналогами тромбоцитов. Задачей клоттоцитов является остановка внешних и внутренних кровотечений за минимальное время. Для этого клоттоциды будут доставлять к местам кровотечения нетоксичную полимерную сеть.

Как устроены медицинские нанороботы? Р. Фрайтас и К. Феникс предложили детально разработанные чертежи разных нанороботов. Далее будет рассмотрено описание устройства основных систем медицинского наноробота, предложенного главным аналитиком компании Nanotechnology News Network Юрием Свидиненко. Для нормального функционирования и возможности диагностирования и лечения наноробот должен обладать:

1) мощной двигательной системой для того, чтобы направленно перемещаться по кровеносной системе человека.

2) несколько типов различных сенсоров для мониторинга окружающей среды, навигации и коммуникации

3) нанороботу нужна транспортная система, доставляющая вещества от контейнера к наноманипуляторам.

4) для работы с пораженными структурами устройство должно быть оборудовано набором различных телескопических наноманипуляторов.

5) приемо-передающие устройства, позволяющие нанороботам связываться друг с другом а врачу, в случае необходимости, корректировать методику лечения.

6) генератор и источников энергии.

На основании выдвинутых требований Юрий Свидененко построил модель медицинского наноробота общего применения. В идеальном случае это устройство будет способно “ремонтировать” поврежденные клетки; производить диагностику и лечение раковых заболеваний и картографировать кровеносные сосуды, производить анализ ДНК с последующей ее корректировкой, уничтожать бактерии, вирусы, и т. п. На рисунках 1-2 представлен предполагаемый вид такого наноробота. Электромагнитные волны, которые смогут распространяться в теле человека не затухая, будут по длине волны сравнимы с нанороботом. Поэтому его антенны будут иметь вид диполей, выступающих за пределы корпуса.

Чтобы естественная иммунная система не “нападала” на робота, он должен быть сделан из биоинертного материала, например, углерода. Поэтому можно надеяться, что такое покрытие будет иметь очень низкую биологическую активность и внешняя оболочка роботов будет химически инертна.

Рис. 1 Наноробот обрабатывает поврежденную клетку в представлении художника

На рисунке 1 изображен наноробот, ремонтирующий клетку in vivo. “Отработав”, нанороботы покинут тело обычным биологическим путем, а часть из них может остаться в организме на постоянное “дежурство”.

Предполагается, что типичный медицинский наноробот должен обладать размерами от нескольких сотен нанометров до нескольких микрон, что позволит беспрепятственно двигаться по капиллярам. Конструкция наноботов еще не разработана и находится на стадии проектирования. Их порядок использования, время работы и механизмы ввода и вывода из организма будут зависеть от поставленной врачом цели. Проблема совместимости с организмом хозяина может решится путем подбора нетоксичных материалов и размеров наноробота. В качестве основных источников питания робота предполагается или использовать запасы глюкозы в теле человека или его электромагнитное поле. Такой робот может быль использован для локальной или даже комплексной диагностики и проведения лечения.

Диагностика таким способом предполагает:

1) Целевую доставку наноробота к исследуемому объекту, к которому трудно подобраться другом образом (например к гипоталамусу в головном мозге)

2) Проведение исследования на предмет наличия или концентрации интересующих веществ, молекул, и т.д.

3) Вывод робота из организма исследуемого с последующей передачей им накопленных данных в компьютер врача.

Лечение будет заключаться в следующем:

1) Введение и целевая доставка робота к исследуемому органу

2) Непосредственная деятельность робота над необходимым участком (введение лекарственных препаратов или других химических веществ).

3) Выведение нанороботов из организма пациента или их распад до нейтральных молекул.

Если повреждение слишком велико, наноробот должен будет проникнуть внутрь клетки (например, с помощью телескопических манипуляторов) и выпустить из своих “запасов” ферменты, запускающие механизм клеточного апоптоза. Если же повреждение клетки может быть устранимо - нанороботы делают инъекцию других ферментов, которые должны способствовать восстановлению гомеостаза клетки и ее возвращению к нормальной работе. Такие ферменты уже известны, но нужно создать механизм точечной доставки в интересующий объект.

Принцип работы наноробота

Общеизвестно, что необработанная ссадина опасна не столько потерей крови, сколько риском получить заражение. В кровь постоянно попадает небольшое количество болезнетворных микробов через раны на коже, деснах, во время хирургических операций, и т.д.. Эти чужеродные бактерии обычно уничтожаются в организме лейкоцитами (белыми кровяными тельцами), способными к фагоцитозу (захвату и перевариванию чужеродных белков), продукции иммуноглобулинов (формированию иммунитета к данной инфекции). Однако если количество болезнетворных бактерий велико то человек заболевает. В связи с этим комплекс нанороботов, способных быстро очищать кровь человека от патогенов при сравнительно небольшой концентрации, был бы весьма желательным помощником для человеческой иммунной системы. Таких нанороботов Фрайтас назвал микрофагоцитами, или искусственными иммунными клетками (см. рис. 2). Как работает микрофагоцит?

Рис 2. Медицинский наноробот общего применения

Рассмотрим конструкцию отдельных подсистем наноробота (см. рис. 3). Каким образом нанороботы будут взаимодействовать между собой? Возможно так же, как “общаются” друг с другом триллионы клеток в человеческом теле: посредством сложных молекул, находящихся на их внешних мембранах. Эти молекулы действуют как химические “сигнальные огни” для того, чтобы обратиться к другим клеткам, или как химические “ворота”, которые управляют входом в клетку из межклеточного пространства некоторых молекул (например, гормонов).

Для связи нанороботов друг с другом, а также для формирования навигационной системы полезно будет использовать еще один тип нанороботов – коммуноцитов, которые будут работать в виде ретранслирующих станций.

Рис. 3 Функциональные схемы наноробота Свидененко

А - Основные блоки медицинского наноробота, Б - Двигательная подсистема и подсистема заякоривания, В - Сенсорная и обрабатывающая подсистема, Г - Транспортная подсистема

Для анализа поступающей то сенсоров информации, а также для хранения программы работ необходимо использовать наноробота можно будет использовать высокопроизводительный нанокомпьютер.

Этот алгоритм, названный автором “перевари и выброси”, практически идентичен процессам переваривания и фагоцитоза, которые используют натуральные фагоциты. Однако искусственный процесс фагоцитоза будет намного быстрее и чище - продукты искусственных микрофагоцитов не будут содержать вредных для человека веществ, в отличие от биологически активных, выбрасываемых в кровь натуральными макрофагами после переработки патогенных микробов.

Одной из главных задач, решению которой призваны служить наномедицинские роботы, является достижение человеческого долголетия. Мы стареем и умираем оттого, что болеют и погибают клетки нашего тела, следовательно нарушаются механизмы гомеостаза, а благодаря молекулярным роботам, предотвращающим старение клеток, перестраивающим и “омолаживающим” ткани организма, можно будет достигнуть долголетия человека, вместе с тем существенно повысив качество жизни путем избавления от многих болезней. Что же касается проблемы выхода нанороботов из-под контроля и их безудержной саморепликации, то, по словам Фрайтаса, такая ситуация исключена, поскольку роботов будут делать за пределами организма, а потом вводить и выводить их по мере необходимости. Если же какой-то наноробот и останется внутри, то возможности самокопирования у него не будет: “Ни один серьезный ученый никогда не предложит ввести в организм репликаторов, – заявил Фрайтас. – Мы и так уже имеем вирусы, бактерии и других паразитов, которые могут копироваться внутри нас, и это достаточно неприятно. Зачем нам их еще больше?”

В заключение следует напомнить, что описанные наномедицинские проекты – пока что не более чем теория, нуждающаяся в детальном анализе, и для создания подобных медицинских нанороботов, по прогнозам самих ученых, потребуется еще как минимум 30-40 лет.

Список использованной литературы

1. Эттинджер Р. Перспективы бессмертия. – Мичиган, Оак Парк, 2002. – 152с.

2. Дрекслер Э. Машины созидания. – Калифорния. – 1996. – 183с..

3. Asirnov, I. The Chemicals of Life. - New York: New American Library, 1954.

4. Како Н., Яманэ Я. Датчики и микро-ЭВМ. – Л.: Энергоатомиздат.

Ленингр. Отделение. - 1986.

5. Граттан К.Т.В. Волоконно-оптические датчики и измерительные системы Датчики и системы. – 2001. - № 3. - С. 46-50.

6. Константинов А.В. Нанотехнологии в медицине Наука и Техника. - 2010. №3. - с. 75-79

7. Каттралл Роберт В. Химические сенсоры. – М.: Научный мир, 2000. – 57с.

8. Карубе И., Тёрнер Э., Уилсон Дж. Биосенсоры. - М.: Мир, 1992.

9. Seitz W.R. Fiber Optics Sensors Anal. Chem. 1984. Vol. 86, № 1. P. 16 A.

10. Алейников А.Ф., Цапенко М.П. О классификации датчиков Датчики и системы, 2000. - № 5. - С. 2-3.

Реферат - Нанороботы в медицине

Оглавление.
Введение.
Виртуальная 3D реальность для медицинских нанороботов.
Медицинский наноробот общего применения.
Заключение.
Список литературы.

Евстрапов А.А. Нанотехнологии в экологии и медицине. Курс лекций. Для УМКД Нанотехнологии в экологии

  • формат pdf
  • размер 2.81 МБ
  • добавлен 25 января 2011 г.

Год неизв. , 136 с. Автор - Евстрапов А. А. (Заведующий лабораторией "Информационно-измерительных био- и хемосенсорных микросистем" Института Аналитического Приборостроения РАН). Содержание: - Введение: Нанобиотехнология Тенденции развития аналитических приборов и систем для биологических и медицинских исследований Микро- и нанотехнологии при получении информации о биологических объектах на качественно новом уровне. Биологические материалы и би.

Каменек Л.К., Брынских Г.Т. и др. Введение в нанотехнологии. Химия

  • формат pdf
  • размер 13.84 МБ
  • добавлен 06 июня 2009 г.

Каталог новых разработок. Нанотехнологии в республике Башкортостан

  • формат pdf
  • размер 1.02 МБ
  • добавлен 08 апреля 2011 г.

Автор неизвестен. 2009г. 20с. Приведены новые разработки различных предприятий (г. Уфа) в области нанотехнологий. Приведены примеры применения новых материалов в медицине (имплантаты), для решения проблем электроэрозии, изготовления деталей ГТД, сплавов с память формы и др. Каталог хорошо иллюстрирован.

Мальцев П.П. (ред.) Наноматериалы. Нанотехнологии. Наносистемная Техника

  • формат djvu
  • размер 2.4 МБ
  • добавлен 22 октября 2010 г.

Мальцев П.П. Наноматериалы. Нанотехнолоrии. Наносистемная техника

  • формат pdf
  • размер 8.1 МБ
  • добавлен 20 июля 2011 г.

Новое как хорошо не забытое старое - о роли современной науки в развитии нанотехнологий

  • формат ppt
  • размер 9.11 МБ
  • добавлен 30 июня 2010 г.

Презентация. Содержание: Особенности наноразмерных материалов (основные причины специфического поведения нанообъектов, примеры). Исторические аспекты развития нанотехнологии (примеры изделий и технологий в истории развития человечества). Нанотехнология на современном этапе развития – как новая междисциплинарная область науки и техники (квантовые точки, нанопленки, нанокапсулы, наночастицы, дендримеры и др. ). Нанороботы и наномашины – грядущая эр.

Реферат - Нанотехнологии

  • формат doc
  • размер 376.5 КБ
  • добавлен 03 февраля 2012 г.

НТУ "ХПИ" Харьков, Украина, 2009, 25стр. Нанотехнология. Манипуляции наночастицами. Нанотехнологии сегодня. Наноустройства научатся самовоспроизведению. Биотехнологии, нанороботы. Нанотехнологии в металургии. Замена нефти и газа. Нанотехнолгии в военной промышленности. Нанотехнологии в Медицине.

Реферат Нанотехнологии в медицине: возможные риски и перспективы

  • формат rtf
  • размер 58.26 КБ
  • добавлен 30 марта 2011 г.

Сыч В.Ф., Дрождина В.П. и др. Введение в нанотехнологии. Биология

  • формат pdf
  • размер 14.95 МБ
  • добавлен 06 июня 2009 г.

Хартманн У. Очарование нанотехнологии

  • формат pdf
  • размер 25.22 МБ
  • добавлен 24 июля 2009 г.

Пер. с нем. - М.: БИНОМ .2008. 173 с. В книге в доступной форме излагаются вопросы, связанные с историческим развитием и современным применением нанотехнологии в различных областях - электронике, медицине, биотехнологии, точной механике и оптике, автомобильной индустрии, энергетике. Рассматриваются социоэкономические последствия и этические аспекты внедрения нанотехнологии в жизнь современного общества. Для студентов, преподавателей соответствующ.


Лекции


Лабораторные


Справочники


Эссе


Вопросы


Стандарты


Программы


Дипломные


Курсовые


Помогалки


Графические

Доступные файлы (1):

1.docx

Виртуальная 3D реальность для медицинских нанороботов……………..5


Введение
В ближайшие несколько десятилетий в производственной, биологической и медицинской сферах должна произойти революция. Причем довольно необычная, по современным обывательским меркам. Мы очень глубоко проникли в технологии. Ведь даже если говорить о сегодняшней ситуации - мы не видим, как течет электрический ток, но уже описали это явление множеством законов. Теперь ученые проникли гораздо глубже и добрались до нано-мира (одна милионная доля миллиметра). При этом точно также как применяется слово "робот" практически ко всему, что делается в современной технике, так и понятие "нанотехнологии" весьма размывчато.

Умы многих ученых мира заняты проектированием нано-роботов - устройств, которые смогут производить действия на атомном и молекулярном уровнях. Это дает очень большие перспективы.

Например, если будет изобретен робот-конструктор, способный на атомном уровне контролировать молекулы и производить новые материалы (например, делать воду или кислород), то мы сможем поставить любой производственный процесс на нано-уровень.

Нано-роботы-конструкторы интересны и для других сфер народного хозяйства, так как смогут производить продукты питания, топливо и прочие необходимые атрибуты для жизнедеятельности человека. Не стоит забывать и о том, что нано-роботы смогут и самовоспроизводиться, точно также, как и сейчас - у нас машины собирают другие машины. При этом человек пока не видит в этом опасности.

С точки зрения медицины, в большинстве случаев говорят о нано-роботах - дестракторах (уничтожителях). Если запустить таковых в человеческое тело и запрограммировать определенным способом, то можно без труда выделять и уничтожать вирусы и другие ненужные элементы. Таким образом, появляются мысли о том, что человек может стать бессмертным.

Нано-роботы-уничтожители интересны для экологов, которые видят за внедрением этих технологий возможности устранения неприятных последствий жизнедеятельности человека. Вот что нам могут дать нано-технологии. А так ли все это на самом деле?

^ Теория "разумной" среды обитания


  1. Это будет новый тип разума, а человек отойдет на второй план. Хотя, такая точка зрения достаточно спорна. Не так давно всемирным разумом называли интернет, хотя он стал ни чем иным как большим хранилищем данных.

  2. Так как нано-роботы смогут самовоспроизводиться, то это может повлечь за собой ряд проблем, особенно если произойдут сбои в программах.

  3. Разработав такую глобальную систему, человек сможет более эффективно покорять космос и завоевывать новые пространства. Представьте себе вариант, когда на какую-либо планету "высаживаются" миллиарды запрограммированных нано-роботов. 

  4. Одни отвечают за строительство, другие - за промышленность, а третьи - за адаптацию атмосферы.

Виртуальная 3D реальность для медицинских нанороботов

Какой человек не хотел бы жить если не вечно, то хотя бы достаточно долго – хотя бы лет 150-200, не впадая при этом в старческий маразм. Что, нет таких? Разумеется, нет, за вычетом сумасшедших, фанатиков и склонных к суициду, все люди не прочь продлить свою жизнь или хотя бы провести пенсионные годы без склероза, в здравом уме и памяти.

В данном реферате рассмотрим один из прикладных аспектов - применение нанороботов в медицине, или, в наномедицине. За последний десяток лет следует отметить значительный прогресс в миниатюризации медицинской техники: наряду с углублением теоретических исследований появилось достаточное количество практических разработок нанороботов, способных функционировать в качестве автономных и управляемых на расстоянии сенсоров, источников энергии, сборщиков и передатчиков собранной информации об организме человека.

И всё же наибольший практический эффект от применения нанороботов в медицине может иметь место к тому времени, когда учёные смогут создать сверхминиатюрные устройства размерами в несколько микрон – как их иногда называют, "молекулярные машины ", которые смогут свободно перемещаться внутри наших артерий, производя при этом диагностику и даже "ремонт" организма изнутри.

На практике создание микроскопических медицинских нанороботов сталкивается с множеством проблем, главной из которых порой оказывается 

даже не миниатюризация. Среди наиболее серьёзных можно выделить проблемы перемещения нанороботов по организму; вопросы идентификации нанороботами областей организма, за которыми требуется наблюдать или на которые требуется воздействие; наконец, набор действий наноробота в отношении организма, например, локальный впрыск лекарства, механическое воздействие и т.п.

В настоящее время разработка и производство медицинских "роботов-микроорганизмов" находится в зачаточном состоянии, однако учёные не сидят сложа руки и разрабатывают если не самих нанороботов, то хотя бы средства и инструменты, способные помочь им в этом непростом деле.
Рис.1. Схематичное изображение наноробота.

Группа учёных – Адриано Кавальканти (Adriano Cavalcanti), Биджан Ширинзаде (Bijan Shirinzadeh), Роберт Фрейтас (Robert Freitas, Jr.) и Тэг Хогг (Tad Hogg), из исследовательских групп Center for Automation in Nanobiotech и Robotics and Mechatronics Research Laboratory, Department of Mechanical Engineering, Monash University (Мельбурн, Австралия), а также Institute for Molecular Manufacturing и Hewlett-Packard Laboratories (Калифорния, США), 

представили 3D систему для моделирования и проектирования медицинских нанороботов.

Фактически, учёными впервые была разработана виртуальная реальность, получившая название ^ NCD (Nanorobot Control Design) , которая может применяться для изучения поведения виртуальных нанороботов, их взаимодействия с виртуальными биомолекулами, в виртуальных же артериях. На практике подобные системы 3D моделирования уже применялись - при разработке полупроводниковых наноструктур, при этом, применялись весьма успешно. Хотя, в наше время приставка "нано-" в отношении полупроводников становится явным излишеством – в то время как наиболее ходовыми техпроцессами становятся 65 нм и 45 нм, как-то излишне становится говорить про нанометры, т.к. масло масляное получается.

Так вот, виртуальная реальность в виде программного пакета NCD представляет собой систему тестирования трёхмерных прототипов медицинских нанороботов - механотронический симулятор нано-уровня (nanomechatronics), благодаря которому обрабатывается численная информация о физике процесса моделирования нанороботов. Кстати, механотроника (mechanotronics), или мехатроника (mechatronics) - слово японского происхождения и означает отрасль на стыке механики и электротехники, или, проще говоря, объединение механического устройства с миникомпьютером.

На практике платформа NCD позволяет визуально представить те процессы, которые происходят с нанороботом внутри человеческого тела. Правильная постановка задачи – как известно, половина дела. Благодаря использованию платформы NCD учёные надеются значительно ускорить процесс разработки и практического внедрения медицинских нанороботов. И на этом этапе как раз обнаруживаются все выше перечисленные сложности. К примеру, для медицинского наноробота одной из наиболее сложных задач является маневрирование в непосредственной близости от биомолекулы для 

идентификации типа этой биомолекулы – всё это в кровяной среде, где перемещается множество самых различных частиц, в самых непредсказуемых направлениях и с различной скоростью.

Рис.2. Схема строения сосуда с движущимся нанороботом.
Также не стоит забывать, что речь идёт о перемещениях в достаточно вязкой артериальной среде, где нанороботы постоянно "натыкаются" на белки и самые непредсказуемые частицы, перемещаемые общим током крови. Наконец, главное: представьте себе, что речь идёт не о какой-то магистральной трубе диаметром 2 метра, обсчёт турбулентностей в которой тоже, по большому счёту, непростая задачка; тут же разговор о "трубках" диаметром порядка 40 мкм!

Практическая демонстрация программного пакета NCD в режиме реального времени позволяет, к примеру, моделировать поведение наноробота, перед которым поставлена задача поиска белков в динамичной виртуальной среде с последующей идентификацией и переноса этих белков к специфическому "пункту выдачи лекарства". Что интересно отметить, даже на этом этапе разработки учёные имеют возможность задать несколько стратегий "поведения" наноробота и изучить каждую из них на предмет лучшей эффективности. Так, для выполнения задачи нанороботы могут использовать совершенно разные комплекты химических и температурных датчиков, а также разные траектории движения.
Рис.3. Наноробот идентифицирует белок.
Для демонстрации возможностей системы учёные моделировали несколько различных начальных условий тестирования, где нанороботы задействовали несколько различных способов идентификации белков в кровяных сосудах с изменяющимся по ходу эксперимента диаметром. Виртуальные эксперименты уже подтвердили такие прогнозы, как, например, лучшие результаты работы нанороботов при поиске цели в более узких сосудах; высокую степень эффективности поисков при использовании 

химических и термических биосенсоров в сочетании с хаотической (блуждающей) моделью передвижения.
Рис.4. 3D схема движения нанороботов в кровяном сосуде.
По словам учёных, наряду с процессами поиска и идентификации, система виртуального моделирования позволяет успешно использовать ряд интерактивных инструментов для разработки нанороботов – таких как методики контроля и управления нанороботом, общая концепция производства, дизайн силового привода (двигателя) и многое другое. Поскольку для разных элементов человеческого организма требуется разработка соответствующих специфических нанороботов, учёным приходится эмулировать самые разные процессы. В настоящее время с помощью системы NCD проведены виртуальные исследования нанороботов для лапароскопической хирургии (предоперационные исследования брюшинной полости оптическими приборами), сахарной болезни (диабета), раковых заболеваний, аневризма мозга, кардиологии, биозащиты от боевых отравляющих веществ и систем доставки лекарственных форм непосредственно к участку их активного действия. На данном этапе исследований также изучаются побочные эффекты, возникающие при применении химиотерапии для лечения болезни Альцгеймера.


Рис.5. Схема доставки нанороботов к участку их активного действия.
По словам участников проекта, успеха в разработке столь сложной виртуальной системы для моделирования поведения биологических нанороботов удалось добиться лишь благодаря взаимодействию специалистов в самых разных областях наук и технологий. Наряду с химиками, электронщиками, программистами, физиками, механиками, специалистами по фотонике и разработке новых материалов, к работе были привлечены лучшие фармацевты и медики. На следующих этапах также предполагается привлечение к работам специалистов по геномике (genomics) – отрасли молекулярной генетики, изучающей геномы.

Что касается наиболее ответственного момента таких предприятий – коммерциализации и последующего извлечения прибыли из системы трёхмерного моделирования поведения медицинских биороботов, на этот счёт учёные совершенно спокойны и уверены в успехе. Будет много заказчиков среди медицинских и фармацевтических предприятий, а в военной отрасли особенно.


2. Медицинский наноробот общего применения
Но! Когда же, на свет появятся эти самые нанороботы, которых пока что только "виртуализируют"? И есть ли хоть какая-то практическая отдача от таких исследований в настоящее время, а не на дальнюю перспективу? Есть, в настоящее время создан прототип медицинского наноробота общего применения.


  • Так как основная функция наноробота – передвижение по кровеносной системе человека, то он должен иметь мощную навигационную систему.

  • Устройству необходимо иметь несколько типов различных сенсоров для мониторинга окружающей среды, навигации, коммуникации и работы с отдельными молекулами.

  • 

  • Также нанороботу необходима мощная транспортная система, доставляющая отдельные атомы и молекулы от хранилищ к наноманипуляторам, и обратно.

  • Для работы с пораженными структурами устройство будет оборудовано набором телескопических наноманипуляторов разного применения.

  • Материал, из которого будет изготовлен наноробот – алмазоид или сапфироид. Это обеспечит биосовместимость человека и большого количества наномашин.

  • Также необходимо наличие приемо – передаточных устройств, позволяющих нанороботам связываться друг с другом.

  • И наконец, для удержания крупных объектов необходимы телескопические захваты.


Рис. 7. Медицинский наноробот общего применения из алмаза
Рис. 8. Объяснение его структуры


Ниже мы рассмотрим отдельные подсистемы наноробота (рис. 9, 10, 11).


Рис. 9. Двигательная подсистема и подсистема заякоривания

Рис.10. Сенсорная и обрабатывающая подсистема

. Рис.11. Транспортная подсистема

Для работы с внутриклеточными структурами нанороботу вовсе не обязательно целиком проникать внутрь клетки (можно повредить внутриклеточный цитоскелет). Зато телескопические наноманипуляторы предотвратят повреждение органелл и цитоскелета. Ниже приведены рисунки, изображающие наноробота в кровеносной системе и наноробота, ремонтирующего клетку in vivo (рис. 12, 13).
Рис. 12. Нанороботы в кровеносной системе
Рис. 13. Наноробот ремонтирует клетку

Для связи нанороботов друг с другом, а также для формирования навигационной системы полезно будет использовать еще один тип нанороботов – коммунноцитов, которые будут работать в виде усилительных станций.
Заключение
Перспективы развития нанотехнологий с помощью нанотехнологий очень велики.

И так, перспективы развития нанотехнологий велики. Утверждается, что в ближайшем будущем, с помощью них можно будет не только побороть любую физическую болезнь, но и предотвратить ее появление.

Как я поняла в процессе написания своей работы, нанотехнология является той областью науки, которая подвергается жесточайшей критике, прежде чем вводит какие-либо новшества.

Ученые NASA говорят, что они успешно проводили испытания нанороботов на животных. Но вот о рисках ничего не говорят.

Я думаю, что возможные риски будут сопоставимы с перспективами. Каждый решает это сам для себя.

Читайте также: