Надмолекулярные структуры полимеров реферат

Обновлено: 04.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Школа №41

Тема: Полимеры

Выполнила: Гилева Мария

2000/2001 учебный год

Полимеры - высокомолекулярные соединения, вещества с большой молекулярной массой (от нескольких тысяч до нескольких миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, целлюлоза, крахмал, каучук и другие органические вещества.

Историческая справка.

Термин “полимерия” был введен в науку И.Берцелиусом в 1833 г. для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствует современным представлениям о полимерах. “Истинные” полимеры к тому времени еще не были известны.

Химия полимеров возникла в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука.

С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер.

Классификация.

По происхождению полимеры делятся на природные (биополимеры), и синтетические. Природные образуются в результате жизнедеятельности растений и животных и содержатся в древесине, шерсти, коже. Это целлюлоза, крахмал, белки, нуклеиновые кислоты, природные смолы. Синтетические полимеры – это полимеры, искусственно созданные человеком, например, полиэтилен и полипропилен.

Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи (линейные полимеры, например натуральный каучук); цепи с разветвлением (разветвленные полимеры, например амилопектин), и сложные пространственные структуры. Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например, целлюлоза). Линейные и разветвленные цепи можно превратить в трехмерные действием химических агентов, света, и радиации, а также путем вулканизации.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, периодически чередующихся, то такие полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные повторяющиеся последовательности, называются стереоблоксополимерами.

В зависимости от состава главной цепи полимеры делят на гомоцепные, основные цепи которых построены из одинаковых атомов и гетероцепные, в основной цепи которых содержатся атомы различных элементов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен. Примеры гетероцепных полимеров – полиэфиры, полиамиды, белки, некоторые кремнийорганические полимеры. Внутри этих групп полимеры подразделяются на классы в соответствии с принятыми в химической науке принципами.

Так, если в основную или боковые цепи входят металлы, сера, фосфор, кремний и др., полимеры относятся к элементоорганическим соединениям.

Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

Полимерные материалы также делятся на три группы: пластические массы, каучуки и химические волокна.

Физические и химические свойства. Характерные реакции.

Линейные полимеры обладают специфическими физико- механическими и химическими свойствами. Важнейшие из этих свойств: способность образовывать высокопрочные волокна и пленки, упругость, высокая вязкость растворов. Эти свойства обусловлены высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным и сетчатым структурам эти свойства ослабевают.

Линейные ВМС могут иметь как кристаллическую, так и аморфную (стеклообразную) структуру. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур Надмолекулярные структуры в аморфных полимерах менее выражены, чем в кристаллических.

Разветвленные и трехмерные полимеры, как правило, являются аморфными. Они могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязко-текучем. Полимеры с низкой температурой перехода из стеклообразного в эластичное состояние называются эластомерами, с высокой - пластиками. При нагревании аморфные полимеры переходят в эластическое состояние подобно каучуку, резине, и другим эластомерам. При действии высоких температур, окислителей, кислот и щелочей, полимеры разлагаются, образуя газообразные, жидкие, и твердые соединения.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (так называемое сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы. Скорость реакции макромолекул с низкомолекулярными веществами часто зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям.

Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

В зависимости от строения макромолекул свойства полимеров могут меняться в очень широких пределах.

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. Они могут быть выделены из растительного и животного сырья. Большое число полимеров получают синтетическим путем на основе простейших соединений природного происхождения путем реакций полимеризации, поликонденсации, и химических превращений. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров, содержащих кратные углеродные связи или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных), Гетероцепные полимеры получают полимеризацией и поликонденсацией мономеров, содержащих кратные связи углерода с другим элементом (например, С=О, С=N, N=С=О) или непрочные гетероциклические группировки.

Схема реакций полимеризации и поликонденсации приведена на рис.1:

Рис.1 Реакции образования полимеров: а) – полимеризация, б) - поликонденсация

Физическая структура полимерных веществ (тел), обусловленная различными видами упорядочения во взаимном расположении макромолекул в этих телах, называется надмолекулярной структурой, приводящей к образованию плоских и пространственных агрегатов различной степени сложности. Строение агрегатов зависит от химического состава мономерных звеньев, числа и размера атомов и групп в обрамлении цепей, природы применяемого катализатора и других внешних условий (температура, давление, среда синтеза и др.). В ряде случаев агрегаты первичного порядка объединяются в образования второго, третьего, четвертого порядков. Чем сложнее химическое строение макромолекул, чем разнообразнее условия синтеза (в том числе вариации состава сырья, рецептуры и технологического режима), переработки и хранения, тем сложнее и разнообразнее надмолекулярные структуры в нем и менее однородны его свойства. Поэтому в деталях надмолекулярная структура одного и того же полимера может различаться даже в пределах сменных производственных партий, а она определяет комплекс физико-механических свойств, скорость и механизм химических и физико-химических процессов при их переработке в конечные изделия (при этом и изделия, полученные из разных партий полимера, также могут различаться по качеству или другим свойствам).

Монокристалл, как и кристаллит, состоит из элементарных ячеек с единой ориентацией осей, но с высокой степенью упорядоченности (малой дефектностью). Различают монокристаллы пластинчатые, фибриллярные и глобулярные. Пластинчатые монокристаллы состоят из тонких пластинок (ламелей) и получаются для многих полимеров при кристаллизации из очень разбавленных (0,01–0,1%) растворов. Фибриллы являются агрегатами из параллельно упакованных практически бездефектных цепей (биополимеры). Глобулярные монокристаллы также бездефектны (модификаты биополимеров).

Сферолиты — это поликристаллические структуры, обладающие симметрией относительно центра, из которого и начинается рост структуры путем соединения ламелей одинаковой ориентации, микрофибрилл и т. п. Дефектность сферолитов существенно больше по сравнению с монокристаллами (для некоторых полимеров она достигает 50–80 %). По пространственному строению сферолиты бывают радиальные и кольцевые, а при высокой степени кристаллизации они, соприкасаясь, образуют сплошные сферолитные ленты и клубки.

Все типы надмолекулярных структур полимеров, начиная со структур ближнего порядка (домены, кластеры) и кончая совершенными монокристаллами, в которых реализуется трехмерный дальний порядок, формируются в основном под влиянием теплового движения. При наложении внешних деформирующих напряжений надмолекулярная структура будет изменяться и полимер будет переходить в ориентированное состояние, при котором оси макромолекул и надмолекулярных образований будут располагаться вдоль осей ориентации (примеры: волокна хлопка, льна, шерсть, сухожилия, мышцы, шелковые нити, полимеры, получаемые в поле постоянного тока, и т. п.). Надмолекулярные структуры можно подвергнуть модификации под воздействием физических напряжений, температурно-временных режимов, природы растворителя, введением в систему малых и больших количеств добавок (наполнителей) при сохранении химического строения макромолекул. При этом меняются и прочностные характеристики полимера.

Надмолекулярная структура

Надмолекул я рная структ у ра полимеров, физическая структура полимерных тел, обусловленная различными видами упорядочения макромолекул. У полимеров в аморфном состоянии существует ближний порядок в расположениях макромолекул, который в соответствии с их большими размерами и меньшей подвижностью должен проявляться в значительно больших объёмах и сохраняться намного дольше, чем в аморфных низкомолекулярных веществах. Сопоставление роевого строения жидкостей со структурой аморфных полимерных тел привело советских учёных В. А. Каргина, А. И. Китайгородского и Г. Л. Слонимского к предположению, что простейшими формами надмолекулярных структур в аморфном состоянии полимеров являются глобулярные или фибриллярные (пачечные) агрегаты макромолекул, представляющие собой длительно живущие флуктуационные образования большого размера. Эти простейшие образования, для возникновения которых достаточно действия даже слабых (ван-дер-ваальсовых) сил, при наличии в макромолекулах сильно взаимодействующих (например, ионных) групп способны агрегироваться в более сложные, пока мало изученные формы надмолекулярных структур. При переходе от стеклообразного состояния через высокоэластическое к вязкотекучему надмолекулярная структура аморфных полимеров становится менее выраженной и более подвижной.

У полимеров в кристаллическом состоянии агрегация макромолекул приводит к образованию разных типов кристаллитов, которые представляют собой одну из простейших форм надмолекулярных структур. В свою очередь, кристаллиты объединяются в более сложные формы надмолекулярных структур (например, фибриллы, сферолиты, сростки сферолитов в виде лент и пластин). Прямое их наблюдение во многих случаях возможно при помощи электронной и световой микроскопии.

Различия в надмолекулярных структурах заметно влияют на физические свойства полимера, которые поэтому не определяются одним лишь его химическим строением. Направленное изменение надмолекулярных структур, достигаемое температурными, механическими и др. воздействиями, существенно влияет на комплекс свойств полимерного тела и широко применяется в промышленности (изготовление высокопрочных волокон и плёнок, модифицирование пластмасс). Изменение надмолекулярных структур полимерных изделий при эксплуатации — одна из причин их старения.

Молекулярное строение, т.е. химический состав и способ соединения атомов в молекулу, однозначно не определяет поведение полимерного материала, построенного из макромолекул. Свойства полимеров, особенно в кристаллическом фазовом состоянии, зависят от их надмолекулярной структуры, т.е. способа упаковки макромолекул в пространственно выделенных элементах, размера и формы таких элементов и их взаимного расположения в пространстве. Другими словами, под надмолекулярной структурой понимают сложные агрегаты из большого числа макромолекул, образующиеся в результате действия межмолекулярных сил.

Для полимеров типичны твердое и жидкое агрегатные состояния, характеризующиеся колебательным и вращательным движением частиц и небольшими расстояниями между частицами. В газообразном состоянии полимеры не бывают, т.к. для того, чтобы раздвинуть макромолекулы на большие расстояния, необходимо преодолеть сильные межмолекулярные взаимодействия цепных макромолекул, требующие энергий, сравнимых с энергиями химических связей в полимерной цепи, т.е. произойдет деструкция полимера.

Кристаллическое фазовое состояние характеризуется дальним трехмерным порядком на расстояниях 1000Ǻ. Это состояние отличается анизотропией свойств, скачками свойств на границе раздела фаз. В кристаллических полимерах практически всегда имеется доля аморфной фазы, часто встречаются дефекты, дислокации. Трудности в получении кристаллов полимеров и особенности кристаллического состояния макромолекул связаны с разнообразием надмолекуляных структур, существующих еще в аморфном состоянии.

Надмолекулярная структура аморфных полимеров

Наиболее полное представление о процессах образования надмолекулярных структур и их типичных форм можно получить в том случае, если проследить весь процесс структурообразования. Существуют два пути образования структур. Если макромолекулы достаточны гибкие, то они могут сворачивать сферические частицы (клубки), так называемые глобулы.

Взаимное расположение отдельных участков цепной макромолекулы внутри такой глобулы, как правило, беспорядочно, и почти любой полимер, переведенный в форму глобул, находится в аморфном состоянии. Например, полиэтилен, полиамиды.

В очень разбавленных растворах подавляющее большинство полимеров находится в виде таких клубков. Наиболее общим способом получения полимеров в глобулярном состоянии является испарение растворителей из растворов при возможно низких температурах. В глобулярном состоянии находятся и макромолекулы ряда белков. Глобулярное строение выгодно только для переноса полимерного вещества в растворенном состоянии, это очень важно для биологических процессов. Для всех остальных случаев оно означает потерю основных свойств, связанных с линейным цепным строением макромолекулы.

Способность глобулярных полимеров к образованию более сложных структур весьма ограничена. Если полимер монодисперсен, т.е. все его макромолекулы одинаковы, то глобулы укладываются с образованием структуры с плотной упаковкой шаров. Так образуются одиночные кристалы глобулярных белков. Например, вирус табачной мозаики.

Глобулы образуются в результате превышения силы внутримолекулярного взаимодействия над силами межмолекулярного взаимодействия.

Кроме того, для перехода от вытянутой формы к глобулярной, молекулярная цепь должна обладать достаточно высокой гибкостью для того, чтобы она могла свернуться.

Если полимер находится в высокоэластичном состоянии, то отдельные глобумерные частицы могут сливаться в одну частицу большего размера. Возникают глобулы, содержащие больше (десяти, сотни, тысячи) частиц. Этот процесс заканчивается или расслоением системы, или стабилизацией образовавшихся больших глобул, вследствие покрытия их поверхности примесями или перестройкой их в линейные структуры. Аналогичные процессы происходят и при полимеризации. В зависимости от условий проведения полимеризации могут быть термодинамически более выгодными те или иные конформации. Поэтому из одного и того же полимера можно получить множество различных по физическим структурам полимеров, крайними типами которых будут глобулярный и фибриллярный.

Известно, что существуют отдельные развернутые линейные цепи полимерных веществ. Развернутые макромолекулярные цепи образуют линейные агрегаты - пачки цепей. Типичной особенностью этих образований является то, что длины их значительно превосходят длину отдельных цепей. В каждую из таких пачек входят десятки, сотни отдельных макромолекул. Эти пачки цепей являются независимые структурными элементами, из которых строятся затем более сложные структуры.

Читайте также: