Многоразовые космические аппараты реферат

Обновлено: 07.07.2024

Космические аппараты специального назначения. Разнообразие научно-исследовательских аппаратов по массе, размерам, конструкции, типу используемых орбит, характеру оборудования и приборного оснащения. Аппараты для исследования природных ресурсов Земли.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 13.02.2017
Размер файла 984,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

космический аппарат исследование орбита

Конструкция космического аппарата может быть компактной (с постоянной конфигурацией при выводе на орбиту и в полёте), развёртываемой (конфигурация изменяется на орбите за счёт раскрытия отдельных элементов конструкции) и надувной (заданная форма на орбите обеспечивается за счёт наддува оболочки). Различают лёгкие космические аппараты с массой в пределах от нескольких килограмм до 5 тонн; средние до 15 тонн; тяжёлые -- до 50 тонн и сверхтяжёлые -- 50 тонн и более. По конструктивно-компоновочной основе космические аппараты бывают моноблочные, многоблочные и унифицированные. Конструкция моноблочного космического аппарата составляет единую и функционально неделимую базовую основу. Многоблочный космический аппарат выполнен из функциональных блоков (отсеков) и в конструктивном отношении допускает изменение назначения путём замены отдельных блоков (их наращивания) на Земле или на орбите. Базовая конструктивно-компоновочная основа унифицированного космического аппарата позволяет путём установки соответствующей аппаратуры создавать аппараты различного назначения.

Космические аппараты специального назначения

Специализированные космические аппараты решают одну или несколько задач прикладного характера в народно-хозяйственных (коммерческих) или военных целях, например, связи и управления, разведки, навигации и т.д.

Специализированные космические аппараты народно-хозяйственного (коммерческого) назначения служат для метеорологических наблюдений, связи и исследования природных ресурсов. Удельный вес этой группы к середине 70-х годов составил около 20% всех запускаемых космических аппаратов (исключая военные). Ежегодный экономический выигрыш от применения глобальной метеорологической системы, использующей космические аппараты и обеспечивающей двухнедельный прогноз, может составлять, по некоторым оценкам, около 15 миллиардов долларов.

3. Конструирование научной космической аппаратуры. М., 1976,

4. Ильин В.А , Кузмак Г.Е. Оптимальные перелеты космических аппаратов с двигателями большой тяги. M , 1976,

5. Одинцов В.А., Анучин В.М. Маневрирование в космосе. M , 1974;

6. Коровкин А.С. Системы управления космических аппаратов. М., 1972;

7. Космические траекторные измерения. M , 1969;

8. Инженерный справочник по космической технике. Изд 2-е. M , 1977.

9. Орбиты сотрудничества Международной связи СССР в исследовании и использовании космического пространства. М., 1975;

10. Пилотируемые космические корабли. Проектирование и испытания. Пер. с англ. М., 1968. А.М.Беляков, Е.Л.Палагин, Ф.Р.Ханцеверов.

Многоразовая космическая система — это космическая система многократного использования. Такая система может использовать совершенно различные средства выведения: одноразовые, многоразовые, одноступенчатые, многоступенчатые, самостоятельные либо объединенные конструктивно с орбитальными средствами – ракетами-носителями и другими.

Отдельные технические средства космического комплекса и отдельные элементы конструкции ракеты-носителя (ракетные блоки, ракетные двигатели) также могут быть спасаемыми и многократно использоваться.

Космический аппарат многоразового применения – это космический аппарат, использующийся более, чем один раз. Отличием от космического аппарата одноразового применения является возможность периодического восстановления ресурса систем и расходных материалов.

Цель данного реферата: ознакомиться с многоразовыми космическими системами как отечественного, так и зарубежного производства.

Задачи данного реферата:

1. Ознакомиться с историей создания многоразовых космических аппаратов;

2. Рассмотреть принцип действия многоразовых космических аппаратов;

3. Изучить основные космические аппараты многоразового действия.

История создания многоразовых космических систем


Рис.1. Схема ракетоплана конструкции Ойгена Зингера, 1929 г.

Выяснилось, что сделать капсульный корабль многоразовым на уровне технического развития тех лет практически невозможно. Дело в том, что баллистическая капсула входит в атмосферу на высокой скорости, поэтому поверхность такого космического корабля может нагреваться до 2 500—3 000 градусов. К слову, космический самолёт, который при спуске с орбиты выдерживает гораздо меньшие температуры (до 1600 градусов по Цельсию) и обладает высоким аэродинамическим качеством. Однако в 1950—1960-е годы необходимые для теплозащиты материалы ещё не были созданы. Однако грузоподъемность тогдашних ракет-носителей была ограниченна.

Но всё-таки идея использования многоразовых ракетно-космических аппаратов оказалась живучей. В конце 1960-х годов были накоплены знания в области новых конструкционных и теплозащитных материалов и гиперзвуковой аэродинамики. И уже в 1969 году NASA заключает первые контракты с США на исследование многоразовой транспортной космической системы Space Shuttle. По ожиданиям NASA, стоимость выведения на орбиту грузов не превысит 1 000 долларов за килограмм. К тому же, космический челнок должен был уметь возвращать на Землю и полезные грузы, что является более сложной задачей.

Отечественные многоразовые космические системы

Буран

  • выведение на орбиту космических аппаратов, космонавтов и грузов, обслуживание и возвращение на Землю;
  • проведение экспериментов и военно-прикладных исследований;
  • решение целевых задач в интересах науки, народного хозяйства и обороны;
  • комплексное противодействие мероприятиям вероятного противника по расширению использования космического пространства в военных целях.

Технические характеристики:

Стартовая масса — 105 т,

Высота корабля, стоящего на шасси, — более 16 м,

Размах крыла — около 24 м,

Объём кабины - свыше 70 м3,

Масса полезного груза - до 30 тонн при взлёте и до 20 тонн при посадке.

В носовой отсек Бурана вставлена герметичная цельносварная кабина для экипажа (до 10 человек), для проведения работ на орбите и большей части аппаратуры, для обеспечения полёта в составе ракетно-космического комплекса, автономного полёта на орбите, спуска и посадки. Буран имеет треугольное крыло с двойной стреловидностью, а также аэродинамические органы управления, работающие после возвращения в плотные слои атмосферы и при посадке — руль направления, элевоны и аэродинамический щиток.

Две группы двигателей для маневрирования размещены в конце хвостового отсека и передней части корпуса. Выполняется манёвр возврата или выхода на одновитковую траекторию. Впервые в практике двигателестроения была создана объединённая двигательная установка, включающая топливные баки окислителя и горючего со средствами заправки, термостатирования, наддува, забора жидкости в невесомости, аппаратурой системы управления и так далее.

При разработке программного обеспечения (ПО) для наземных систем космического корабля использовались технология структурного проектирования программ с использованием языка ДИПОЛЬ, а для решения задач моделирования использовался язык ЛАКС. ПО БЦВМ и Операционная Система (ОС) были написаны на языках ПРОЛ2 (по мотивам языка ПРОЛОГ) и Assembler/370. В разработке ПО было широко использована концепция R-технологии (R-машина и R-язык), с использованием системы автоматизации программирования и отладки САПО. Применение компьютерных технологий, разработанных СССР, позволило в короткие сроки разработать программные комплексы объёмом около 100 Мб. В случае отказов ракетных блоков первой и второй ступеней ракеты-носителя система управления орбитального корабля обеспечивает его аварийное возвращение на землю в автоматическом режиме.


В обеих странах проектируют и другие аппараты. На данный момент самым заметным примером проектов такого типа является частично многоразовый Falcon 9 от компании SpaceX с возвращаемой первой ступенью.

Сегодня поговорим о том, зачем подобные проекты разрабатывали, как они показали себя с точки зрения эффективности и какие перспективы у этого направления космонавтики.

Правительству предложили несколько проектов, но каждый из них стоил не менее пяти миллиардов долларов США, так что Ричард Никсон отверг их. Планы у НАСА были крайне амбициозные: проект подразумевал работу орбитальной станции, на которую, и с которой, челноки постоянно возили бы полезные грузы. Также челноки должны были запускать и возвращать спутники с орбиты, обслуживать и ремонтировать спутники на орбите, проводить пилотируемые миссии.

Финальные требования к кораблю выглядели так:

  • Грузовой отсек 4,5х18,2 метра
  • Возможность горизонтального маневра на 2000 км (маневр самолета в горизонтальной плоскости)
  • Грузоподъёмность 30 тонн на низкую околоземную орбиту, 18 тонн на полярную орбиту

Для запуска в космос шаттлы использовали два твердотопливных ракетных ускорителя и три собственных маршевых двигателя. Твердотопливные ракетные ускорители отделялись на высоте 45 километров, затем приводнялись в океан, ремонтировались и использовались повторно. Главные двигатели используют жидкий водород и кислород в подвесном топливном баке, который отбрасывался на высоте 113 километров, после чего частично сгорал в атмосфере.


Во время посадки произошло происшествие, которое показало, насколько умной получилась автоматическая система. На высоте 11 километров корабль совершил резкий манёвр и описал петлю с разворотом на 180 градусов — то есть сел, зайдя с другого конца посадочной полосы. Это решение автоматика приняла после получения данных о штормовом ветре, чтобы зайти по наиболее выгодной траектории.

К истории вы могли прикоснуться в 2011 году. Более того, тогда от этой истории люди даже куски обшивки и теплозащитного покрытия могли оторвать. В том году корабль доставили из Химок в Жуковский, чтобы реставрировать и представить на МАКСе через пару лет.

Аппарат совершил три полёта максимальной продолжительностью 674 суток. В данный момент он совершает четвёртый полёт, дата запуска — 20 мая 2015 года.


Орбитальный самолёт X-20 был способен после выхода на суборбитальную траекторию нырнуть в атмосферу до высоты 40-60 километров с целью сделать фото или сбросить бомбу, после чего вернуться в космос на подъёмной силе от крыльев.

Проект закрыли в 1963 году в пользу гражданской программы Gemini и военного проекта орбитальной станции MOL.



Ракеты-носители Titan для вывода X-20 на орбиту



Макет X-20



БОР-4



БОР-4

Грузовая версия корабля по планам конструкторов сможет доставлять на Международную космическую станцию до 5,5 тонн, а возвращать до 1,75 тонны.



Летательный аппарат HL-20

Одним из самых заметных в СМИ на данный момент многоразовых проектов являются разработки SpaceX — транспортный корабль Dragon V2 и ракета-носитель Falcon 9.

Falcon 9 является частично возвращаемым аппаратом. Ракета-носитель состоит из двух ступеней, первая из которых имеет систему для возврата и вертикального приземления на посадочную площадку. Последний запуск не был удачным — 1 сентября 2016 года произошла авария.

Многоразовый пилотируемый корабль Dragon V2 сейчас готовят к тестированию на безопасность для астронавтов. В 2017 году планируют провести беспилотный запуск аппарата на ракете Falcon 9.



Многоразовый пилотируемый корабль Dragon V2

В рамках подготовки к полёту экспедиции на Марс в США разработали многоразовый космический корабль Orion. Сборку корабля завершили в 2014 году. Первый беспилотный полёт аппарата состоялся 5 декабря 2014 года и прошёл успешно. Теперь НАСА готовится к дальнейшим пускам, в том числе с экипажем.


Авиация, как правило, подразумевает многоразовое использование летательных аппаратов. Таким же свойством в будущем должны будут обладать и космические аппараты, но для этого предстоит решить ряд проблем, включая экономические. Каждый запуск многоразового корабля должен выходить дешевле, чем строительство одноразового. Необходимо использовать такие материалы и технологии, которые позволят повторно запускать аппараты после минимального ремонта, а в идеале — вообще без ремонта. Возможно, космические корабли в будущем станут обладать одновременно как характеристиками ракеты, так и самолёта.


В данной работе рассматриваются многоразовые космические корабли Спейс‑Шаттл (США) и Буран (СССР), сравниваются их технические характеристики, анализируются цели и задачи создания данных космических аппаратов, а также принимаются во внимание перспективы их развития.

Ключевые слова: космический корабль, многоразовый космический аппарат, Спейс-Шаттл, Буран, космонавтика

12 апреля 1961 года началась история пилотируемой космонавтики, ведь именно в этот день советский летчик-космонавт Юрий Гагарин совершил свой первый космический полет, который продлился 108 минут и навсегда вошел в историю освоения космоса. После легендарного полета Гагарина Ю. А. пилотируемая космонавтика активно развивалась, в результате чего стали возможны не только единичные краткосрочные полеты, но и постоянное пребывание экипажей космонавтов на орбите.

Создание космического корабля многоразового использования стало важным шагом для человечества в освоении космоса, поскольку появилась возможность с помощью шаттлов выполнять принципиально новые задачи, которые вставали перед учеными и военными.

При планировании космической деятельности на 1970-е гг. руководство NАSА было обеспокоено высокой стоимостью полетов в космос. По расчетам специалистов NАSА запуск многоразовых кораблей можно было осуществлять каждую неделю, в следствие чего стоимость запуска значительно снижалась и составляла 10 млн долларов (оказалась выше в 50 раз, около 450 млн долл).

Разработкой МТКК заинтересовались в СССР. Советские военные опасались, что с помощью такого сверхоружия американцы смогут нанести ядерный удар из космических глубин или похитить советские космические аппараты, однако, следует отметить, что шаттл создавался лишь для доставки на орбиту элементов системы ПРО (противоракетной обороны). В СССР стали задумываться над созданием отечественного корабля, который служил бы как военным (противодействие возможной агрессии со стороны США, нанесение контрударов), так и мирным целям (проведение научных работ, доставка грузов на орбиту и их возвращение на Землю).

По словам Валерия Бурдакова (д.т.н.), советского и российского учёного в области авиационно-космического машиностроения и энергетики, в середине 1970-х годов отставание СССР от США оценивалось в 15 лет. Советским ученым не хватало опыта работы с большими массами жидкого водорода, не было многоразовых жидкостных ракетных двигателей, крылатых космических аппаратов.

В 1970-е гг. советская экономика все больше отставала от экономики развитых стран по техническому и технологическому уровню, показателям эффективности, и, что более важно, СССР утрачивал преимущества в темпах экономического роста.

Необходимо также подчеркнуть отсутствие комплексного подхода к развитию космических средств и механизмов использования результатов, чрезмерная политизация, произвольное определение сроков выполнения космических проектов и, как следствие, их многократные переносы. Все это не способствовало совершенствованию космической деятельности и внедрению научных методов управления.

МТКК представляет собой летательный аппарат (ЛА), который состоит из разгонной ступени и воздушно-космического самолета (ВКС). Разгонная ступень (например, ракета-носитель) выводит ВКС на орбиту искусственного спутника земли. ВКС (орбитальная ступень) совершает требуемые операции в космическом пространстве и возвращается на Землю.

Во время полета в атмосфере управление космическим кораблем обеспечивалось рулем направления, элевонами и щитками (при заходе на посадку). Кроме того, в крыле находятся четыре воздушно-реактивных двигателя (ВРД), которые выдвигаются при заходе на посадку.

Отметим также, что многоразовые космические аппараты могут выступать инструментами для решения земных задач. Например, создание глобальной системы спутниковой радио- и телевизионной связи, проведение метеорологических, геодезических, картографических работ и т. д.

В настоящий момент рассматриваются варианты создания универсальной возвращаемой первой ступени с возможностью использования для различных космических кораблей. С помощью этой ступени на опорную орбиту будут доставляться 7–60 т полезной нагрузки [15].

Создание многоразовых космических кораблей и ракет-носителей стало следующим шагом землян в развитии космической техники. Это сделало возможным не тратить ресурсы на изготовление каждой новой ракеты-носителя или нового корабля взамен отлетавшего. Таким образом, эксплуатационные затраты ощутимо снижались за счет уменьшения на порядки количества многоразовых кораблей и ракет-носителей, а также создать задел для следующего шага — создания одноступенчатых многоразовых кораблей.

Основные термины (генерируются автоматически): корабль, аппарат, космический корабль, США, американский челнок, внешний топливный бак, космическое пространство, орбит, СССР, американский корабль.

Читайте также: