Микотоксины в пищевых продуктах реферат

Обновлено: 05.07.2024

Пищевые продукты могут загрязняться не только бактериальными токсинами, но и токсинами плесневых грибов (микотоксинами).

Из особо опасных загрязнителей, регистрируемых в естественных условиях, выделяют группу микотоксинов - метаболитов микроскопических грибов, отличающихся высокой токсичностью, многие из которых обладают мутагенными, тератогенными и канцерогенными свойствами. В настоящее время известно более 250 видов плесневых грибов, продуцирующих около 100 токсических соединений, являющихся причиной алиментарных токсикозов (микотоксикозов) у человека и животных.

Плесневые грибы поражают продукты как растительного, так и животного происхождения на любом этапе их получения, транспортирования и хранения, в производственных и домашних условиях. Несвоевременная уборка урожая или недостаточная сушка его до хранения, хранение и транспортирование продуктов при недостаточной их защите от увлажнения приводят к размножению микромицетов и образованию в пищевых продуктах токсических веществ.

Микотоксины могут попадать в организм человека также через пищевые продукты - с мясом и молоком животных, которым скармливали корма, загрязненные плесневыми грибами.

Размножаясь на пищевых продуктах, многие плесневые грибы не только загрязняют их токсинами, но и ухудшают органолептические свойства этих продуктов, снижают пищевую ценность, приводят к порче, делают их непригодными для технологической переработки. Использование в животноводстве кормов, пораженных грибами, ведет к гибели или заболеванию скота и птицы.

Среди микотоксинов токсическими и канцерогенными свойствами выделяются афлатоксины, охратоксины, патулин, трихотецены и зеараленон.

3.2.1. Токсиколого-гигиеническая характеристика афлатоксинов.

Термин афлатоксины относится к группе близких соединений, продуцируемых микроскопическими грибами Aspergillus flavus и A. Parasiticus.

К семейству афлатаксинов относится более 20 соединений, 4 из которых - основные: два соединения, которые испускают голубое свечение при ультрафиолетовом облучении - афлатоксины В1 и В2, и два соединения, которые при облучении испускают зеленое свечение - афлатоксины G1 и G2.

Остальные - их производные или метаболиты. Наиболее токсичные и широко распространенные афлатоксины - В1.

Афлотоксин М1 является метаболитом афлатоксина В1 и выделяется с молоком у животных после употребления зараженного корма. Он является самым токсичным из метаболитов афлатоксина В1, его токсичность близка к токсичности самого афлатоксина В1.

По своей химической структуре афлатоксины являются фурокумаринами, обладают способностью сильно флюоресцировать при воздействии ультрафиолетового излучения, что лежит в основе практически всех физико-химических методов их обнаружения; эти соединения слаборастворимы в воде, но хорошо растворимы в органических растворителях, чувствительны к воздействию света и воздуха. В чистом виде афлатоксины нестабильны.

Несмотря на это, афлатоксины термостабильны и сохраняют токсичность при большинстве видов обработки пищевых продуктов. Полное разрушение афлатоксинов может быть достигнуто лишь путем их обработки аммиаком или гипохлоритом натрия.

Афлатоксины впервые были обнаружены в семенах арахиса (земляного ореха) и получаемых из них продуктах. Часто источником афлатоксинов является зерно кукурузы, проса, риса, пшеницы, ячменя, орехи-фисташки, миндаль, другие орехи, бобы какао и кофе, некоторые овощи и фрукты, а также семена хлопчатника и других масличных растений. Афлатоксины обнаруживают в небольших количествах в молоке, мясе, яйцах.

Влияние температуры. Грибы Aspergillus развиваются и образуют токсины на различных естественных субстратах (продовольственное сырье, пищевые продукты, корма) практически повсеместно. Они относятся к мезофиллам, оптимальная температура токсинообразования 27-30 °С, но могут развиваться в широком диапазоне температур от 6-8 ° до 44-46 °С.

Влажность имеет значение для синтеза афлатоксинов влажность пищевого продукта и атмосферного воздуха. Максимальный синтез токсинов происходит при влажности свыше 18 % для продуктов, богатых крахмалом, и свыше 9-10 % для продуктов с высоким содержанием липидов. Максимальное накопление афлатоксинов отмечается при относительной влажности атмосферного воздуха 97-98 %, а при - ниже 85 % синтез афлатоксинов прекращается.

рН среды. Для токсинообразования благоприятной является рН 5-6.

Накопление афлатоксина при благоприятных условиях отмечается на вторые сутки роста грибов, на 10 сутки - максимальная концентрация, а затем снижается. Афлатоксины при попадании в организм человека вызывает афлатоксикоз, который может быть острым, хроническим и иметь отдаленные последствия.

Главным органом мишенью для афлатоксина является печень.

Афлатоксины характеризуются широким спектром токсического действия: гепатотоксическое, гепатоканцерогенное (вызывают первичный рак печени), нейротоксическое (поражение ЦНС, параличи, судороги), мутагенное (генные и хромосомные мутации), тератогенное, иммунодепрессивное, гонадотоксическое, эмбриотоксическое, повышение проницаемости сосудов.

Канцерогенные свойства у афлатоксинов значительно больше, чем у бенз(а)пирена (в 100 раз).

Афлатоксикоз поражает человека, млекопитающих, птиц, рыб, насекомых, микроорганизмы и растения. Все животные подразделяются на 3 группы по отношению к афлатоксинам:

1 - очень чувствительные (домашние животные);

2 - чувствительные (крупный рогатый скот, домашние птицы);

3 - устойчивые (мыши и др.).

К афлатоксинам чувствительны молодые животные и самцы.

На течение афлатоксикоза существенное влияние оказывает характер питания. К усилителям действия афлатоксина на человека относится: дефицит белка в питании, полиненасыщенных жирных кислот и витамина А.

Основным в профилактике афлатоксикозов является:

1) предупреждение развития плесневых грибов и токсиноообразования на пищевых продуктах; применение и соблюдение правил современной агротехники, своевременная уборка урожая; соблюдение режимов хранения; закладка на хранение доброкачественной продукции; культивирование устойчивых сортов культур к микотоксинам; использование кормов для животных, не содержащих плесневых грибов и т.д.;

2) заплесневелые продукты не должны использоваться в питании, эти продукты бракуются целиком или в исключительных случаях, должны четко ограничены очаги плесени. Но токсины проникают вглубь продукта, в то время как мицелий расположен на поверхности;

3) использование заплесневелого сырья для производства пищевых продуктов запрещается;

4) использование для упаковки пищевых продуктов тары (мешков) с элементами плесени запрещается, так как присутствующие там споры могут переноситься в технологический процесс;

5) строгое соблюдение условий хранения и сроков реализации для потенциально опасных продуктов;

6) использование технологий, снижающих уровень афлатоксина: для получения муки - мокрый помол; из забракованного зерна следует производить муку высшего сорта или пищевой крахмал; изготовление хлебобулочных изделий, где используются дрожжи; использование рафинации растительных масел;

7) использование детоксикации афлатоксина: механический прием (сортировка зерна); физическая обработка (в условиях добавления поваренной соли, длительное кипячение в большом объеме воды, варка риса 1:2 разрушает афлатоксин на 5 %, а если 1:8 - на 40 %); облучение ультрафиолетовыми лучами (разрушение на 70 %); термообработка под давлением; химическая обработка растворами окислителей, сильных кислот и щелочей.

8) контроль за содержанием афлатоксина в продуктах и сырье.

Гигиеническое нормирование афлатоксина:

Предельно допустимые концентрации афлатоксина В1 в растительных пищевых продуктах составляют не более 0,005 мг/кг. Зерно, мука, крупы, хлеб, хлебобулочные изделия, макароны, сахаристые и мучные кондитерские изделия, какао, кофе, орехи, семена масличных культур, масла растительные нерафинированные, маргарин, кондитерские жиры, майонез.

В молоке и молочных продуктах афлатоксина В1 - 0,001 мг/кг, М1 - 0,0005 мг/кг.

В продуктах детского и профилактического питания афлатоксины не допускаются.

3.2.2. Токсиколого-гигиеническая характеристика трихотеценов.

Этот класс микотоксинов вырабатывается различными видами микроскопических грибов Fusarium. Известно более 40 трихотеценовых метаболитов (ТТМТ), наиболее изучены 4 загрязнителя: Т-2 токсин, вомитоксин, ниваленом, диацетоксиноскрипенол. Грибы рода Fusarium в естественных условиях интенсивно накапливают токсины при повышенной влажности и пониженной температуре.

Вомитоксин (дезоксиниваленол) максимально продуцируется при температуре 25-27 °С, причем максимум достигается на 40-й день роста гриба. При 19,5 °С токсинообразование прекращается.

На токсинообразование влияет химический состав среды культивирования. Существенно ускоряют синтез токсинов наличие углеводов, азота, некоторых аминокислот и минеральных веществ.

Токсины трихотеценового ряда могут вызывать специфические заболевания - фузариотоксикозы, опасные для человека и животных (гибель скота).

Токсические действия Т-2 токсина и вомитоксина: повреждение кожи и слизистой вплоть до некроза, геморрагический синдром (кровоизлияния), изменение состава крови, анемия, лейкемия, повреждение иммунной системы, терротогенное действие (уродства плода), канцерогенное действие.

Главной мишенью для Т-2 токсина является кроветворные органы (костный мозг, селезёнка, лимфоидная ткань).

Профилактика: проведение правильной агротехники, соблюдение условий хранения зерна, лабораторный контроль.

Второе заболевание - алиментарная токсическая алейкия - отмечалось в СССР во время второй мировой войны при использовании в пищу перезимовавшего под снегом зерна. Болезнь вызывалась токсигенными штаммами микрогрибов F. Sporotrichiella var, выделявшими в зерно ядовитые Т-2 токсин и НТ-2 токсин. Наиболее токсичны перезимовавшие под снегом просо и гречиха, менее опасны пшеница, рожь и ячмень. Зерно, сохранившее всхожесть, не вызывает отравления, так как в первую очередь грибами и токсинами поражается зародыш. Влажное зерно, зимовавшее в бунтах, также может стать ядовитым. Болезнь поражает как людей, так и сельскохозяйственных животных. Характеризуется заболевание поражением миндалин, затрагивает кроветворные органы (кровоизлияния, кровотечения) и почки, развивается алейкия - снижается количество лейкоцитов, а эритроцитов - повышается.

Профилактика: уборка урожая осенью, запрещается использовать перезимовавшее зерно для выпечки хлеба и т.п., предупреждение плесневения зерна при хранении, лабораторный контроль.

Нормирование трихотеценов:

Зерно продовольственное, в том числе пшеница, рожь, овес, ячмень, гречиха, рис, кукуруза, сорго и тритекале должно содержать Т-2 токсин не более 0,1 мг/кг, дезоксиниваленол в пшенице не более 0,7 мг/кг, в ячмене не более 1 мг/кг.

Крупа, толокно, хлопья, мука пшеничная, ячменная содержание Т-2 токсина не более 0,1 мг/кг, дезоксиниваленола в продуктах переработки из пшеницы не более 0,7 мг/кг, а из ячменя не более 1 мг/кг.

Мучные кондитерские изделия содержание дезоксиниваленола не более 0,7 мг/кг.

3.2.3. Токсиколого-гигиеническая характеристика эрготоксинов

Эрготоксины - основные действующие вещества из плодовых тел (склероциев) паразитического гриба спорыньи. Этот гриб поражает более 150 видов дикорастущих и культурных злаков, главным образом, рожь, а также пшеницу, овес, ячмень и др. Эрготоксины обладают выраженной биологической активностью. Под их действием наступает спазм гладкой мускулатуры кровеносных сосудов, снижаются эффекты от адреналина и серотонина, развиваются галлюцинации, стимулируется дыхательный центр. Дегидрированные производные алкалоидов спорыньи - дигидроэрготоксин и дигидроэрготамин - обладают альфа-адреноблокирующей активностью и вызывают снижение артериального давления.

Отравления возникают при попадании в пищеварительную систему склероциев спорыньи (вместе с зерном, мукой, печеным хлебом). При содержании в зерне более 2 % по массе склероциев возможно развитие массовых отравлений. В процессе выпечки хлеба из муки, загрязненной эрготоксинами, их содержание в пшеничном хлебе падает почти до нуля, а в ржаном - на 85 %. При длительном хранении муки с измельченными склероциями в течение не менее 2-х лет содержание в ней эрготоксинов значительно снижается.

В продовольственном зерне примесь склероциев спорыньи не допускается; в фуражном - допускается не более 0,05 мг/кг.

3.2.4. Токсиколого-гигиеническая характеристика зеараленона

Микроскопические грибы рода Fusarium помимо ТТМТ могут продуцировать и другие микотоксины, среди которых наибольшее практическое значение имеет зеараленон.

Зеараленон обладает сине-зеленой флюоресценцией в ультрафиолетовом свете.

Основным продуцентом зеараленона являет F. Graminearum. Максимальное токсинообразование наблюдается при культивировании F. graminearum на зерновых субстратах (рис, пшеница, кукуруза). При этом инкубация проводится в два этапа: сначала две недели и при 22-25 °С, а затем 8 недель при 15 °С. При влажности зерна ниже 25 % токсинообразование резко снижается.

Установлено, что зеараленон обнаруживается в зерне, в частности в кукурузе, пшенице, ячмене, овсе, сорго, кунжуте, а также кукурузном силосе, масле, крахмале, если они произведены из кукурузы, содержащей микотоксин.

Токсичность зеараленона заключается в развитии тяжелого гиперэстрогенизма у домашнего скота и мутагенном действии на организм человека.

Предельно допустимая концентрация зеараленона в зерне, зерновых продуктах, орехах, семенах масличных растений, жирах, маслах, белковых изолятах - 1 мг/кг; в продуктах детского и диетического питания его присутствие не допускается.

3.2.5. Токсиколого-гигиеническая характеристика патулина

Патулин был впервые выделен в 1943 г. из культуры Penicillium patulum как антибиотик.

Обнаружение у патулина высокой токсичности, мутагенных и канцерогенных свойств, а также выявление его в качестве загрязнителя пищевых продуктов заставляет отнести патулин к особо опасным микотоксинам.

Продуценты патулина поражают преимущественно фрукты и некоторые овощи. Токсин обнаруживается в яблоках, грушах, абрикосах, персиках, черешне, винограде, бананах, клубнике, голубике, бруснике, облепихе, томатах, а также фруктовых соках, компотах, пюре и джемах. Чаще, чем другие плоды, патулином загрязняются яблоки. Следует подчеркнуть, что патулин концентрируется в основном в подгнившей части яблока, в то время как в неповрежденной часто определяется только около 1 % общего количества токсинов.

Однако в томатах независимо от размеров подгнившего участка патулин распределяется равномерно по всей ткани. Экспериментально доказано, что цитрусовые и некоторые овощные культуры (картофель, лук, редис, редька, баклажаны, цветная капуста, тыква и хрен) обладают естественной резистентностью к заражению продуцентами патулина.

Максимальное токсинообразование наблюдается обычно при температуре 21-30 °С.

Патулин оказывает мутагенное действие на организм человека и животного - изменение генетической информации, тератогенное действие, приводящее к появлению уродств и отклонениям развитии молодого организма, и некротическое действие, вызывающее гибель клеток.

Предельно допустимая концентрация патулина в фруктовых и овощных соках, пюре, составляет не более 0,05 мг/кг; в продуктах детского и диетического питания присутствие следов патулина не допускается.

Проверил: Лихачева Елена Ивановна– Кандидат технических наук, доцент.

1. ПУТИ ПОПАДАНИЯ В СЫРЬЕ И ПИЩЕВЫЕ ПРОДУКТЫ 4

2. ОПАСНОСТЬ ДЛЯ ЗДОРОВЬЯ 5

3. ДОПУСТИМЫЕ УРОВНИ СОДЕРЖАНИЯ 8

4. МЕРЫ ПРОФИЛАКТИКИ 10

БИБЛИОГРАФИЧЕСКИЙ СПИСОК 14

Одной из главных физиологических потребностей у любого живого организма является питание, от которого зависят важные биохимические механизмы обмена веществ, рост и развитие клеток. Для сохранения здоровья человека продукты питания должны быть безопасны.

Цель работы: рассмотреть микотоксины как загрязнители пищевого сырья и продуктов питания.

1) установить пути попадания микотоксинов в сырье и готовые пищевые продукты;

2) проанализировать опасность наличия микотоксинов для здоровья человека и животных;

3) определить допустимые уровни содержания микотоксинов в пищевом сырье и продуктах питания;

4) узнать, какие меры профилактики применяют для предотвращения отравлений микотоксинами, как снизить, или не допустить их попадание в продукты.

1 ПУТИ ПОПАДАНИЯ В СЫРЬЕ И ПИЩЕВЫЕ ПРОДУКТЫ

Микотоксины — это продукты жизнедеятельности микроскопических грибов (плесеней). Плесневые грибы поражают продукты как растительного, так и животного происхождения. Несвоевременная уборка урожая или недостаточная сушка его до хранения, хранение и транспортирование продуктов при недостаточной их защите от увлажнения приводят к размножению плесеней и образованию в пищевых продуктах токсических веществ. Зерно злаковых культур поражается во время вегетации растений, в снопах и зернохранилищах, особенно в дождливую погоду.

Плесневые грибы, при наличии благоприятных условий размножаются, образуют колонии, повышая концентрацию микотоксинов. Благоприятными условиями для размножения плесневых грибов являются наличие питательной среды, теплое (20–30º С), затемненное, слабопроветриваемое место с высоким уровнем влажности (некоторые штаммы плесневых грибов могут развиваться при влажности 60%, большая часть плесеней развивается при влажности 75-80% и выше).

Основным источником загрязнения продуктов спорами плесени является воздух производственных помещений. При высокой влажности споры микроскопических грибков быстро начинают прорастать. Плесневые грибы очень устойчивы во внешней среде, как все спорообразующие культуры[5].

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Введение Микотоксины - наиболее опасные для здоровья человека и животных природные экотоксиканты. Они повсеместно распространены, могут загрязнять продукты питания и корма на всех стадиях производства, хранения, транспортировки и реализации. Исследования, которые проводились как отечественными, так и зарубежными учеными, показывают высокую частоту и степень пораженности пищевых продуктов и кормов на всех континентах. На сегодняшний день выделено около 250 видов микроскопических грибов, которые продуцируют около 200 микотоксинов, из них немало вызывают алиментарные токсикозы животных и человека. Значительное количество микотоксинов обладают имуннодепрессивными, мутагенными, аллергенными, тератогенными свойствами, способствуют снижению общей резистентности организма, развивитию инфекционных и незаразных болезней. Наличие микотоксинов в кормах приводит к ухудшению продуктивности, репродуктивности и иммунного состояния животных. Наибольший интерес из известных на сегодняшний день микроскопических грибов представляют грибы из рода Fusarium и Aspergillus, в частности F.sporotrichiella, A.flavus, F. graminearum, A.parasiticus, которые выделяют опасные для животных и человека микотоксины: Т-2 токсин, афлатоксины В1, В2, Gl, G2, Ml, зеараленон.

Распространение микроскопических грибов, продуцирующих микотоксины недостаточно выяснено, что делает затруднительным прогнозирование возникновения того или иного микотоксикоза, разработку профилактических и лечебных мероприятий.

Целью данной курсовой работы является изучить распространения микроскопических грибов и наиболее вероятных микотоксикозов животных и человека. Рассмотреть их химические и физико-химические свойства, органолептические показатели, классификацию, методы анализа за основными показателями качества, биотехнологическую способность получения.

Микотоксины - это продукты жизнедеятельности (метаболиты) микроскопических грибов (плесеней), которые часто поражают кормовые растения в периоды их вегетации и хранения.

Микотоксины являются природными загрязнителями зерна злаковых, бобовых, семян подсолнечника, а также овощей и фруктов. Они могут образовываться при хранении во многих пищевых продуктах, под действием развивающихся в них микроскопических грибов.

Микотоксины чаще всего синтезируются несовершенными грибами (отдел Fungi imperfecti) родов Fusarium, Aspergillus, Myrothecium, Stachybotrys, Trichoderma, Trichothecium, Penicillium и др.

Большинство грибов являются аэробными организмами (то есть использующими кислород для дыхания). Они обнаруживаются почти повсеместно в чрезвычайно малых количествах и, в большинстве своём, являются микроорганизмами. Они потребляют органические вещества, где только позволяют влажность и температура, внутри и вне помещений.

Где позволяют условия, грибы, размножаясь, образуют колонии, повышая концентрацию микотоксинов. Некоторые грибы продуцируют опасные токсины только при определённых уровнях влажности, температуры и содержании кислорода в воздухе.

Наличие микотоксинов в кормах приводит к ухудшению продуктивности, репродуктивности и иммунного состояния животных. Микотоксины отличаются по химическому строению, токсичности и механизму действия. Общим признаком всех микотоксинов является токсичность большей частью для животных. Наиболее часто используется классификация микотоксинов по молекулярному строению, согласно которой различают афлатоксины, трихотеценовые микотоксины, охратоксины, фумонизин, зеараленон и его производные, монилиформин, фузарохроманон, алкалоиды спорыньи, циклопиазоновую кислоту, патулин, цитринин и т. п

Прикрепленные файлы: 1 файл

бжд.3.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Выполнил: Студент 09-Т-6

Наличие микотоксинов в кормах приводит к ухудшению продуктивности, репродуктивности и иммунного состояния животных. Микотоксины отличаются по химическому строению, токсичности и механизму действия. Общим признаком всех микотоксинов является токсичность большей частью для животных. Наиболее часто используется классификация микотоксинов по молекулярному строению, согласно которой различают афлатоксины, трихотеценовые микотоксины, охратоксины, фумонизин, зеараленон и его производные, монилиформин, фузарохроманон, алкалоиды спорыньи, циклопиазоновую кислоту, патулин, цитринин и т. п.

Трихотеценовые микотоксины синтезируются грибами родов Fusarium, Cephalosporium, Myrothecium, Stachybotrys, Trichoderma и Trichothecium; содержат 12,13-эпоксисесквитерпеноидный остаток (трихотекан); известно около 100 трихотеценовых микотоксинов.

В основе механизма токсичнеского действия лежит способность ингибировать синтез белка.

Агаритин - микотоксин некоторых агариковых грибов (Agaricales), в том числе и шампиньона двуспорового.

Афлатоксины - микотоксины, которые вырабатывают грибы Aspergillus flavus и Aspergillus parasiticus. Они являются загрязнителями арахиса, кукурузы и других зерновых и масличных культур; характеризуются сильным гепатоканцерогенным действием.

Охратоксин вырабатывается грибами родов Aspergillus и Penicillium. Они содержат остаток изокумарина, соединенный пептидной связью с L-аланином. Обладают выраженным нефротоксическим и тератогенным действием

Зеараленон синтезируется грибами из рода Fusarium (F. graminearum, F. tricinctum); относится к лактонам резорциловой кислоты; характеризуется анаболическим и эстрогенным действием.

Фумонизин вырабатывается грибами Fusarium moniliforme и F. proliferatum; содержат диэфир пропан-1,2,3-трикарбоновой кислоты и 2-амино-12,16-диметил-3,5,10, 14,15-пентагидроксиэйкозана; загрязняют кукурузу и продукты ее переработки; вызывают уменьшение в сыворотке крови комплекса сфинголипидов при одновременном увеличении сфингозина и сфинганина.

Монилиформин — микотоксин, вырабатываемый некоторыми видами рода Fusarium (F. moniliforme, F. acuminatum, F. avenaceum, F. Oxysporum и др.); представляет собой смесь K- и Na-солей 3-окси-3-циклобутен-1,2-диона; необратимо ингибирует пируватдегидрогеназный комплекс.

Фузарохроманон — микотоксин, который содержится в грибах вида Fusarium equiseti; вызывает большеберцовую дисхондроплазию у кур и индеек и увеличивает смертность куриных эмбрионов.

Аурофузарин относится к димерным нафтохинонам; вырабатывается грибами рода Fusarium; вызывает у кур синдром ухудшения качества яйца.

Патулин — микотоксин, вырабатываемый различными плесневыми грибками из родов Penicillium и Aspergillus и обладающий выраженными токсическими и мутагенными свойствами. В высоких концентрациях патулин обнаруживается в продуктах переработки фруктов и овощей.

Патулин действует как антибиотик широкого спектра действия и проверен на эффективность при общих простудных заболеваниях. Однако эффективность никогда не проверялась на практике и, из-за незначительной токсичности, его использование в медицинских целях не рассматривается по причине его раздражающего действия на желудок и способности вызывать тошноту и рвоту

Симптомы патулин-токсикоза включают геморрагии в желудочно-кишечном тракте крупного рогатого скота (телят). В 1954 году в Японии патулин привел к смерти 100 коров, которые потребляли контаминированный корм.

Смертельная доза патулина для крыс составляет 15 мг/кг тела и 25 мг/кг после подкожной инъекции. При этом смерть была связана с отеком легких. В хронических исследованиях при низких дозировках какого-либо эффекта не наблюдалось. Установлена иммунотоксичность и нейротоксичность патулина. В некоторых исследования установлена генотоксичность, например, что он повреждает ДНК или хромосомы в краткосрочных опытах. Однако эти исследования были проведены на бактериях или на маммилярных культурах клеток с дозами, которые несущественны для человека.

Основываясь на продолжительных исследованиях на крысах и мышах по исследованию репродукции и канцерогенности, JECFA установила условно переносимую дозу недельного потребления патулина на уровне 7 мкг/кг массы тела.

1.2. Скрининг – методы определения микотоксинов

Современные методы обнаружения и определения содержания микотоксинов в пищевых продуктах и кормах включают скрининг – методы, количественные аналитические и биологические методы.

Скрининг – методы отличаются быстротой и удобны для проведения серийных анализов, позволяют быстро и надежно разделять загрязненные и незагрязненные образцы. К ним относятся такие широко распространенные методы как метод тонкослойной хроматографии для одновременного определения до 30 различных микотоксинов, флуоресцентный метод определения зерна, загрязненного афлотоксинами, миниколоночный метод и некоторые другие. Методы тонкослойной хроматографии основаны на различии скоростей перемещения компонентов анализируемой смеси в плоском тонком слое сорбента при движении растворителя (элюента). Растворитель перемещается под действием капиллярных или гравитационных сил. Разница между этими методами заключается лишь в способе формирования рабочего слоя. В ТСХ слой сорбента наносят на поддерживающую подложку (пластинку, пленку). Разделение в ТСХ осуществляется вследствие многократного пересечения молекулами веществ границы фаз твердая — жидкая или жидкая — жидкая, т.е. вследствие многократного распределения вещества между подвижной и неподвижной фазами. Неподвижной фазой служит либо сухой сорбент (адсорбционная хроматография), либо сорбент, покрытый жидкой фазой (распределительная хроматография). Систему растворителей подбирают в соответствии со свойствами разделяемых веществ.

1.3. Количественные аналитические методы определения микотоксинов

1.4. Биологические методы определения микотоксинов

Биологические методы обычно не отличаются высокой специфичностью и чувствительностью и применяются, главным образом, в тех случаях, когда отсутствуют химические методы выявления микотоксинов или в дополнение к ним в качестве подтверждающих тестов. Однако эти методы широко применяют для общей токсикологической оценки кормов при отравлениях животных на первой стадии лабораторного токсикологического исследования. С помощью этих методов можно установить отравление и исключить заболевания другой этиологии. В качестве тест – объектов используют различные микроорганизмы, куриные эмбрионы, различные лабораторные животные, культуры клеток и тканей.

1.5. Контроль за загрязнением пищевых продуктов

В настоящее время вопросы контроля за загрязнением продовольственного сырья, пищевых продуктов и кормов микотоксинами решаются не только в рамках определенных государств, но и на международном уровне, под эгидой ВОЗ и ФАО.

В системе организации контроля за загрязнением продовольственного сырья и пищевых продуктов можно выделить два уровня: инспектирование и мониторинг, которые включают регулярные количественные анализы продовольственного сырья и пищевых продуктов.

Мониторинг позволяет установить уровень загрязнения, оценить степень реальной нагрузки и опасности, выявить пищевые продукты, являющиеся наиболее благоприятным субстратом для микроскопических грибов – продуцентов микотоксинов, а также подтвердить эффективность проводимых мероприятий по снижению загрязнения микотоксинами. Особое значение имеет контроль за загрязнением микотоксинами при характеристике качества сырья и продуктов импортируемых из других стран.

В соответствии с системой Анализа опасности и критических контрольных точек (HACCP), путем идентификации и оценки риска, обусловленного наличием микотоксинов, в процессе производства и потребления зерна и комбикормов было выделено 7 критических контрольных точек, на которых необходимо предпринимать меры для предотвращения контаминации: (1) состояние и качество семян, (2) качество обработки почвы, (3) период прорастания, (4) уборка урожая, (5) период после уборки урожая, (6) хранение и (7) переработка. Для того чтобы избежать загрязнения зерна и кормов микотоксинами, необходимо тщательно придерживаться технологических норм в первых шести критических контрольных точках. Если загрязнение все-таки произошло, то следует принять меры по обеззараживанию (деконтаминации) зерна и кормовых субстратов до использования и по профилактике отравлений (микотоксикозов) животных при использовании токсичных кормов.

Процесс деконтаминации зерна представляет собой направленное воздействие физических, химических или биологических факторов (агентов), а также их комбинаций, в результате которого происходит деградация (разрушение) содержащихся в зерне микотоксинов. Зерно подвергают обработке деконтаминирующими факторами либо в сухом виде, либо в водной среде. В большинстве случаев второй подход оказывается более эффективным в силу того, что, во-первых, преобладающее количество реакций, ведущих к детоксикации, происходит в водной среде, во-вторых, в сухом субстрате микотоксины гораздо менее доступны для действия как физических, так и для химических агентов. Недостатком этого подхода является необходимость удаления остатков химических агентов, наличие которых в кормах нежелательно, и продуктов трансформации микотоксинов во избежание возможности обратных реакций и реакций активации. Кроме того, после завершения деконтаминации зерно необходимо высушить, что требует дополнительных энергетических затрат.

Это один из наиболее ранних приёмов по обеззараживанию зерновых продуктов. В основе метода детоксикации зерна путем вымачивания лежат два механизма: (1) экстракция водорастворимых микотоксинов и (2) трансформация ферментами, содержащимися в зерне. Многие микотоксины, молекулы которых содержат гидрофильные группы, эффективно экстрагируются водой. К таким микотоксинам относятся ДОН, ниваленол, НТ-2 токсин, Т-2 триол, Т-2 тетраол. Предложен метод обезвреживания фуражного зерна, согласно которому зерно заливают четырёхкратным объёмом воды и выдерживают, помешивая, 6 часов, после чего воду меняют. Таким образом, в течение суток процедуру повторяют четыре раза. Показано, что обработанная таким образом культура на зерне токсигенного штамма Fusarium sporotrichiella 5750 теряла присущую изначально способность вызывать образование некрозов на коже кролика.

Обработка аммиаком или монометиламином эффективна в отношении афлатоксинов, зеараленона и охратоксинов. Эфирные и лактонные группы, имеющиеся в составе молекул зеараленона и родственных ему соединений, а также охратоксинов и афлатоксинов, взаимодействуют с первичными и вторичными аминами, в результате чего образуются амиды, что коренным образом изменяет свойства молекул микотоксинов. Однако разрыв лактонного кольца при воздействии этих веществ происходит лишь при инкубации от получаса до нескольких часов в сильнощелочной среде, при температуре 100°С и давлении от 3 до 10 бар. Установлено, что углеаммонийные соли (УАС) способны разрушать афлатоксины B1 и G1, а также Т-2 токсин с образованием Т-2 триола и Т-2 тетраола. При концентрации УАС в зерне 8 % и экспозиции 4 недели концентрация афлатоксина B1 снижалась на 75 %, афлатоксина G1 на 94 %, начальные концентрации которых составляли 40 и 12 мг/кг, соответственно. УАС обладают сильным фунгицидным, бактерицидным и инсектицидным действием. В зависимости от вида и влажности зерна концентрация УАС должна составлять от 2,5 до 4,5 %. В этих концентрациях УАС не оказывают отрицательного воздействия на цыплят.

Содержание работы
Файлы: 1 файл

экология кр1.docx

Задание на контрольную работу:

1. Общие сведения о токсинах…………………………………………………..4

2. Методы идентификации токсинов…………………………………………….9

Современное оборудование……………………………………………… ….….14

Список использованных источников………………………………..………. 20

Проблема пищи всегда была одной из самых важных проблем, стоящих перед человеческим обществом. Все, кроме кислорода, человек получает для своей жизнедеятельности из пищи, среднее потребление которой в сутки составляет около 800 г (без воды) , а воды около 2000 г.

Правильная организация питания требует знания, хотя бы в самом общем виде, химического состава пищевого сырья и готовых продуктов питания, представлений о способах их получения, о превращениях, которые происходят при их получении и при кулинарной обработке продуктов питания.

Последствия отравления токсинами являются очень опасными, они могут доходить вплоть до летального исхода. Рассмотрим некоторых представителей токсинов более подробно.

1. Общие сведения о токсинах

Токсины (от греческого toxikоn - яд) - это вещества бактериального, растительного или животного происхождения, способные угнетать физиологические функции, что приводит к заболеванию или гибели животных и человека. Токсины при попадании в организм вызывают образование антител. (Молекулярная масса токсина свыше 4-5 тыс.; низкомолекулярные вещества не иммуногены.) Токсины входят в состав ядов змей, скорпионов, пауков и др. ядовитых животных, ряда ядовитых растений.

Наиболее распространенные и изученные бактериальные токсины (их известно несколько сотен) подразделяются на экзотоксины и эндотоксины. Экзотоксины выделяются бактериями в процессе их жизнедеятельности в окружающую среду и обладают специфическим действием на организм (к таким токсинам относятся нейротоксины, цитотоксины). Некоторые микроорганизмы выделяют очень сильные токсины, вызывающие ботулизм, столбняк, дифтерию, пищевые токсикоинфекции и др. Эндотоксины высвобождаются после гибели бактерий и представляют собой нормальные продукты их метаболизма (например, ферменты). Такие токсины нарушают у животных и человека обмен аминов биогенных.

Токсины бактерий были открыты в 1888 французским ученым Э. Руи швейцарским ученым А. Йерсеном, получившими название токсины дифтерийной палочки. Этим открытием они создали предпосылки для разработки методов обезвреживания токсинов, а не уничтожения продуцирующих их микроорганизмов. Успешная попытка применения антитоксинов (антител) была предпринята немецким бактериологом Э. Берингом в 1890, установившим, что сыворотка крови животных, иммунизированных сублетальными дозами. Токсины, обладает профилактическими и лечебными свойствами.

В 1924 французский ученый Г. Рамон предложил обезвреживать токсины (с сохранением их иммунных свойств) обработкой формалином, в результате чего образуется неядовитое производное токсина - анатоксин, который при введении в организм способствует выработке иммунитета к соответствующему токсину. В конце 50-х гг. 20 в. с развитием химии и методов их очистки и идентификации появилась возможность не только избирательно модифицировать токсины, но и отделять полученные анатоксины от не прореагировавших исходных токсинов[1].

Токсины различают и по типу действия на организм. Нейротоксины действуют на различные этапы передачи нервного импульса. Так, некоторые бактериальные токсины нарушают проводимость нервных волокон. Тайпотоксин и b-бунгаротоксин действуют на пресинаптическую мембрану, подавляя выделение медиатора ацетилхолина, кобротоксин и др. Токсины этого класса (их известно несколько десятков; для 30 из них установлена аминокислотная последовательность) блокируют ацетилхолиновый рецептор постсинаптической мембраны. Цитотоксины обладают высокой поверхностной активностью и разрушают биологические мембраны. Такие токсины часто встречаются в ядах змей; по строению они близки нейротоксинам змей, но отличаются от них функционально важными аминокислотами. Цитотоксины могут вызывать лизис (разрушение) клеток крови. Токсины-ингибиторы подавляют активность определенных ферментов и нарушают таким образом процессы обмена веществ. Токсины-ферменты (протеазы, нуклеазы, гиалуронидазы, фосфолипазы и др.) разрушают (гидролизуют) важные компоненты организма - нуклеиновые кислоты, полисахариды, липиды и др. Применение токсинов ограничено получением из них анатоксинов; нейротоксины используют в качестве избирательно действующих агентов при электрофизиологических и клинических исследованиях механизмов передачи возбуждения в нервной системе. Часто термин "Токсины" неправильно распространяют на природные небелковые вещества, нарушающие те или иные функции организма[2].

Существует точка зрения, что организм человека плохо приспособлен к перевариванию мяса, особенно такого, как свинина, баранина. Еще более тяжелой, чем мясо, пищей являются мясные и куриные, рыбные бульоны (которыми принято кормить тяжело больных), а также излюбленные всеми во время праздничных застолий холодцы и заливные. Продукты, образующиеся в организме после употребления мяса и мясных бульонов, вызывают гниение и брожение в кишечнике, что способствует повышению кислотности организма. Все окислительно-восстановительные процессы и функционирование клеток здорового организма протекают нормально в среде со слабощелочной реакцией, что соответствует величине рН=7,2-7,4 (такую же величину имеют наша кровь, межклеточная жидкость, лимфа, слюна). Кислая среда – почва для развития множества болезней, в том числе аллергических, почва для преждевременного старения организма. Созданию щелочной среды в организме способствует употребление растительной пищи с сыром виде, сухофруктов, а также ежедневное употребление воды "Алка-Майн". Большая часть продуктов, которые мы сегодня покупаем в супермаркетах не соответствует требованиям качества и относится к группе генетически модифицированных продуктов (ГМ - продукты)[3].

Одна из разновидностей токсинов – митотоксины. Рассмотрим их более подробно.

Микотоксины - от греч. mykes-гриб и toxikon-яд, токсичные продукты жизнедеятельности микроскопических (плесневых) грибов.

Известно более 250 видов грибов, продуцирующих несколько сотен микотоксинов. Многие из них обладают мутагенными (в том числе канцерогенными) свойствами. Среди микотоксинов, представляющих опасность для здоровья человека и животных, наиболее распространены афлатоксины (формула I и II), трихотеценовые микотоксины, или трихотецены (III-IV), охратоксины (V), патулин (VI), зеараленон и зеараленол (VII). Большинство микотоксинов – кристаллические вещества. Они термически стабильны, хорошо растворимые в органических растворителях. Микотоксины (за исключением охратоксинов) достаточно устойчивы к действию кислот, разрушаются щелочами с образованием нетоксичных или малотоксичных соединений. Биосинтез микротоксинов включает обычно стадию конденсации 1 молекулы ацетил-кофермента А с тремя и более молекулами малонил-кофермента А[4].

Афлатоксины. В эту группу входят более 15 микотоксинов, которые продуцируются грибами Aspergillus flavus и Aspergillus раrasiticus. Основные загрязнители (главным образом токсин В) пищевых продуктов. Высокой токсичностью обладают афлатоксины В1, В2, G1 и G2 (для афлатоксина B1 ЛД50 7,8 мг/кг, макаки, перорально). Афлатоксины – сильные мутагены (в т.ч. гепатоканцерогены), обладают также тератогенным и иммунодепрессивным действием. Токсичное действие обусловлено их взаимодействием с нуклеофильными участками ДНК, РНК и белков.

В ряде стран Африки и Азии, где наблюдаются острые афлатоксикозы у людей, выявлена прямая корреляция между частотой заболевания населения раком печени и содержанием афлатоксинов в пищевых продуктах. Химическая детоксикация кормов аммиаком при повышенном давлении и температуре (США, Франция) или пероксидом водорода (Индия) позволяет снизить содержание афлатоксинов до безопасного уровня. При этом, однако, теряется часть питатательной ценности корма. Перспективна биологическая детоксикация афлатоксинов и других микотоксинов некоторыми видами микроорганизмов. При употреблении животными кормов, загрязненных афлатоксином В1, с молоком выделяется высокотоксичный афлатоксин M1.

Трихотецены. Продуцируются грибами Fusarium spo-rotrichiella, Fusarium solani, Fusarium graminearum и др. Включают более 80 микотоксинов, которые подразделяют на 4 типа: А, В, С и D. Представители группы А – токсин Т-2 и диацетокси-скирпенол, группы В – дезоксиниваленол и ниваленол, группы С – роридин А, группы D – кротоцин. ЛД50 для этих микотоксинов (мыши, перорально) варьирует от 6,7 мг/кг (токсин Т-2) до 46 мг/кг (дезоксиниваленол). Биосинтез трихотеценов осуществляется через лактон мевалоновой кислоты и фарнезил-пирофосфат.

Трихотецены проявляют тератогенные, цитотоксические, иммунодепрессивные, дерматотоксические свойства, действуют на кроветворные органы, центральную нервную систему, вызывают лейкопению, геморрагический синдром, ответственны за ряд пищевых микотоксикозов человека и животных. Токсические свойства обусловлены их участием в подавлении биосинтеза белка. Из всех трихотеценов природными загрязнителями пищевых продуктов являются только 4 (они приведены в качестве представителей группы III и IV).

Патулин. Впервые выделен в 1943 году как антибиотик. Продуцируется грибом Penicillium expansum; ЛД50 17-36 мг/кг (мыши, перорально). Обладает высокими мутагенными свойствами. Ингибирует синтез белка, ДНК, РНК, ферменты, содержащие в активном центре группы SH.

Охратоксины. В эту группу входят охратоксины А, В и С. Продуцируются грибами Aspergillus ochraceus и Penicillium viridicatum. Наиболее токсичен охратоксин А (ЛД50 3,4 мг/кг, однодневные цыплята, перорально). Другие микотоксины этой группы на порядок менее токсичны. Охратоксин А (им наиболее часто загрязняются пищевые продукты) в чистом виде нестабилен, чувствителен к действию света и кислорода, устойчив в растворах. Эти микотоксины обладают нефротоксичным, тератогенным и иммунодепрессивным действием. Ингибируют синтез белка, нарушают обмен гликогена. Охратоксины ответственны за возникновение нефропатии у свиней.

Зеараленон и его производные. К этой группе относят 15 микотоксинов. Продуцируются грибом Fusarium graminearum.

Для зеараленона ЛД50 10 000 мг/кг (крысы, перорально). Взаимодействие с эстрадиолсвязывающими рецепторами в клетках-мишенях. Обладают эстрогенными и тератогенными свойствами, а также антибактериальным действием в отношении грамположительных бактерий. В качестве природных загрязнителей встречаются только зеараленон и зеараленол.

Для определения микотоксинов в пробе его извлекают органическим растворителем, осуществляют предварительную очистку, переводят (в случае необходимости) в летучее, флуоресцирующее или окрашенное соединение. На конечном этапе используют различные виды хроматографии, для некоторых микотоксинов - радиоиммунные и иммуноферментные методы[5].

2. Методы идентификации токсинов

Проблема микотоксикозов не нова. Со времен охоты на ведьм в Сэлеме (XVII в.), когда токсин спорыньи, паразитирующий на ржи, попадая в муку для хлебопечения, вызывал массовые галлюцинации, и до настоящего времени микотоксины продолжают представлять угрозу здоровью как животных, так и людей. В нашей стране наиболее часто встречаются микотоксины: ДОН, или вомитоксин, Т-2 токсин, зеараленон и афлатоксин. Нередки случаи обнаружения в корме фузариевой кислоты и фумонизина, иногда - охратоксина А. Ими чаще всего бывают контаминированы зерновые, а также соевые и подсолнечниковые шроты и жмыхи, в том числе при хранении и продолжительной транспортировке. Причины появления и интенсивного роста грибов в период вегетации и созревания культур, особенно за несколько недель до уборки, еще до конца не выяснены.

Читайте также: