Методы определения твердости реферат

Обновлено: 04.07.2024

Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

Твердостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твердого тела. Для определения твердости в поверхность материала с определунной силой вдавливается тело (индентор), выполненное в виде стального шарика, алмазного конуса, пирамиды или иглы. По размерам получаемого на поверхности отпечатка судят о твердости материала. Таким образом, под твердостью понимают сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела – индентора. В зависимости от способа измерения твердости материала, количественно ее характеризуют числами твердости по Бринеллю (НВ), Роквеллу (HRC) или Виккерсу (HV).

Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника – шарика. Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием — сопротивление пластической деформации. Перспективным и высокоточным методом является метод непрерывного вдавливания, при котором записывается диаграмма перемещения, возникающего при внедрении индентора, с одновременной регистрацией усилий. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).

Таблица 1 — Особенности различных методов измерени твердости

Допустимая шероховатость поверхности Ra

по диаметру отпечатка

по глубине вдавливания

алмазный конусный наконечник или стальной шариковый

Измерение твердости металлов по методу Бринелля

. Твёрдость по шкале Бринелля выражают в кгс/мм?. Для определения твёрдости по методу Бринелля используют различные твердометры, как автоматические, так и ручные. Таблица 1. Значения твёрдости для различных материалов Материал Твёрдость . невосстановленная твёрдость определяется как отношение силы сопротивления внедрению индентора к площади или объему внедренной в материал части индентора. Твёрдость .

по глубине вдавливания

алмазный конус или стальной шарик

по глубине вдавливания или по диагонали отпечатка

алмазный наконечник в форме правильной черырехгранной пирамиды

по диаметру отпечатка

по заданной глубине отпечатка

алмазный или стальной наконеник

по ширине царапины

алмазный конус или пирамида

Широкое распространение испытаний на твердость объясняется рядом их преимуществ перед другими видами испытаний:

  • простота измерений, которые не требуют специального образца и могут быть выполнены непосредственно на проверяемых деталях;
  • высокая производительность;
  • измерение твердости обычно не влечет за собой разрушения детали, и после измерения ее можно использовать по своему назначению;
  • возможность ориентировочно оценить по твердости другие характеристики металла (например предел прочности).

Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде шарика, конуса и пирамиды (соответственно методы Бринелля (рис.1, а)), Роквелла (рис.1, б)) и Виккерса (рис.1, в) )).

В результате вдавливания достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Величина внедрения наконечника в поверхность металла будет тем меньше, чем тверже испытываемый материал.

Методы измерения твердости 1

Рисунок 1 — Схемы испытаний на твердость: а — по Бринеллю; б — по Роквеллу; в — по Виккерсу.

КЛАССИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ ТВЕРДОСТИ

ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЛЮ

Методы измерения твердости 2

Рисунок 2 — Схема испытиний на твердость по Бринеллю

Твердость по методу Бринелля (ГОСТ 9012-59) измеряют вдавливанием в испытываемый образец стального шарика определенного диаметра D под действием заданной нагрузки P в течение определенного времени (рис. 2).

В результате вдавливания шарика на поверхности образца получается отпечаток (лунка).

Число твердости по Бринеллю, обозначаемое HB (при применении стального шарика для металлов с твердостью не более 450 единиц) или HBW

(при применении шарика из твердого сплава для металлов с твердостью не более 650 единиц), представляет собой отношение нагрузки P к площади поверхности сферического отпечатка F и измеряется в кгс/мм2 или МПа:

, (1)

Площадь шарового сегмента составит:

, мм2, (2)

Статические испытания

. или деформации. По способу приложения нагрузок различают следующие статические испытания: на растяжение; сжатие; изгиб; кручение; 1.1 Испытания на растяжение Самыми распространенными являются испытания на растяжение. Для них из испытуемого материала изготовляют стандартные .

где D –диаметр шарика, (мм);

    h – глубина отпечатка, (мм).

Так как глубину отпечатка измерить трудно, а проще измерить диаметр отпечатка d, выражают h через диаметр шарика D и отпечатка d:

, мм (3)

Методы измерения твердости 6

, мм2 (4)

Число твердости по Бринеллю определяется по формуле:

Методы измерения твердости 7

, кгс/мм2 (5)

В практике при определении твердости не делают вычислений по формуле (5), а пользуются таблицами, составленными для установленных диаметров шариков, отпечатков и нагрузок. Шарики применяют диаметром 1,2; 2,5; 5; 10 мм. Диаметр шарика и нагрузка выбираются в соответствии с толщиной и твердостью образца. При этом для получения одинаковых чисел твердости одного материала при испытании шариками разных диаметров необходимо соблюдать закон подобия между получаемыми диаметрами отпечатков. Поэтому твердость измеряют при постоянном соотношении между величиной нагрузки P и квадратом диаметра шарика D2. Это соотношение должно быть различным для металлов разной твердости.

Число твердости по Бринеллю, измеренное при стандартном испытании (D = 10 мм, P = 3000 кгс), записывается так: HB 350. Если испытания проведены при других условиях, то запись будет иметь следующий вид: HB 5/250/30-200 или 200 HB 5/250/30, что означает – число твердости 200 получено при испытании шариком диаметром 5 мм под нагрузкой 250 кгс и длительности нагрузки 30 с. При испытании на твёрдость шаром из карбида вольфрама обозначение НВ дополняется буквой W с сохранением указанных индексов.

При измерении твердости по методу Бринелля необходимо выполнять следующие условия:

Понятие и методы измерения твердости. Отношение нагрузки к площади поверхности отпечатка. Таблицы чисел по Бринеллю и зависимости от диаметра шарика, отпечатка и нагрузки. Минимально допустимая толщина образца для корректного измерения твердости.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.12.2015
Размер файла 171,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

твердость бринелль нагрузка

1. Понятие твердости

2. Методы измерения твердости

2.1 Твердость по Бринеллю

2.2 Твердость по Викерсу

2.3 Твердость по Роквеллу

2.4 Твердость по Шору

5. Твердость как критерий износостойкости

Список используемых источников

1. Понятие твердости

Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и в различных условиях работы, является тверость.

Твердость -- свойство материала оказывать сопротивление упругой и пластической деформации или разрушению при внедрении в поверхностный слой материала другого, более твердого и не получающего остаточной деформации тела - индентора.

Твердость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объему отпечатка. Различают поверхностную, проекционную и объемную твердость:

поверхностная твердость -- отношение нагрузки к площади поверхности отпечатка;

проекционная твердость -- отношение нагрузки к площади проекции отпечатка;

объемная твердость -- отношение нагрузки к объему отпечатка.

Так же различают невосстановленную твердость. Она определяется как отношение силы сопротивления к площади поверхности, площади проекции или объему внедренной в материал части индентора.

Твердость измеряют в трех диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на индентор от 2 Н до 30кН. Микродиапазон регламентирует величину нагрузки на индентор до 2 Н и глубину внедрения индентора больше 0,2 мкм. Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм.

Наиболее твердыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода: лонсдейлит, на 58 % превосходящий по твердости алмаз, и фуллерит (примерно в 2 раза тверже алмаза). Однако практическое применение этих веществ пока маловероятно. Самым твердым из распространенных веществ является алмаз (10 единиц по шкале Мооса).

2. Методы измерения твердости

2.1 Твердость по Бринеллю

При практическом определении твердости разными методами нагрузку P по настоящее время принято задавать в кгс.

Метод измерения твердости по Бринеллю регламентирован ГОСТ 9012.

При определении твердости этим методом стальной шарик определенного диаметра D вдавливают в тестируемый образец под действием нагрузки Р, приложенной перпендикулярно к поверхности образца, в течение определенного времени (Рис. 1). После снятия нагрузки измеряют диаметр отпечатка d. Число твердости по Бринеллю обозначается буквами НВ, и его определяют путем деления нагрузки Р на площадь поверхности сферического отпечатка F.

Для удобства имеются таблицы чисел твердости по Бринеллю и зависимости от диаметра шарика D, диаметра отпечатка d и нагрузки Р.

Рис. 1. Схема измерения твердости по Бринеллю

В качестве инденторов используют полированные (Ra 3 ; S - площадь поверхности внедренной части индентора, нм 2

5. Твердость как критерий износостойкости

Первые попытки исследования изнашивания были связаны с установлением зависимостей скорости изнашивания от общеизвестных механических характеристик: твердости, временного сопротивления разрыву, предела усталости, модуля нормальной упругости и т.д. Наиболее удачно феноменологический подход развивался при моделировании абразивного изнашивания. Как уже отмечалось, абразивное разрушение является наиболее опасным видом износа. Абразивный износ быстро выводит из строя рабочие органы горного, землеройного, строительного, сельскохозяйственного оборудования и ходовые части машин. Износ происходит в основном в режиме микрорезания. Абразивные частицы обладают разными размерами, структурой, прочностью и твердостью. Контактирование имеет нестационарный характер.

По характеру силового взаимодействия и кинематике различают скольжение детали по монолитному абразиву, свободному абразиву в насыпном состоянии, соударение с монолитным или свободным абразивом, гидро- и газообразивное изнашивание и различные взаимодействия контактирующих тел с попавшими в контакт частицами. Сложность и нестационарность процесса, его случайный характер не позволяют пока создать общую теорию абразивного изнашивания. Однако в целях решения практических задач накоплен большой экспериментальный материал по влиянию различных факторов на износостойкость.

Наиболее значимые результаты исследования абразивного изнашивания получены М.М. Хрущевым при испытаниях материалов скользящих по коррундовому полотну.

Исследования показали, что при истирании чистых металлов в отожженном состоянии (см. рис. 6 а) при скольжении по свободному абразиву наиболее вероятен многоцикловой износ, а относительная износостойкость пропорциональна твердости. Для термоотработанных сталей связь имеет линейный характер (рис. 6 б):

Uo = Uoc + K (HB - HBoc).

(Здесь Uoc - относительная износостойкость в отожженном состоянии; К - коэффициент; НВoc - твердость в отожженном состоянии.

Рис. 6. Зависимость относительной износостойкости от твердости

Износостойкость зависит от соотношения твердостей материала и абразива: КТ = НМА. Если КТ 0,7, процесс переходит в многоцикловой.

Привлекательность механического подхода для описания процесса разрушения при трении связана с достаточной простотой получения этих характеристик и, в некоторых случаях, возможностью описания износостойкости e при помощи несложных эмпирических зависимостей вида U = f (М), где М - механическая характеристика.

Эмпирические модели разрабатывали М.М. Хрущев и М.А. Бабичев, В. Тонн, К.Д. Стрэнг, Д.Т. Барвелл и др. Они являются самыми ранними представителями расчетных моделей, в большинстве случаев предназначенных для оценки абразивного изнашивания деталей.

Однако формулы такого типа оказались непригодными для оценки износостойкости механически наклепанных металлов и сталей. Это объяснялось тем, что в процессе самого изнашивания перед разрушением материала наблюдается более высокий наклеп.

При изучении изнашивания металлов, сплавов и минералов о жестко закрепленное абразивное зерно В.Н. Кащеевым, В. Тонном и др. для большого числа испытанных материалов установлена нелинейная зависимость величины износа от модуля упругости Е:

Однако дальнейшее изучение этой зависимости показало, что авторами в опытах не было обеспечено постоянство влияния всех факторов на изнашивание материала. В ходе испытаний у них менялось соотношение значений твердости и абразива и материала.

Тем не менее, исследование соотношения твердости абразива и изнашиваемого материала позволило представить их функциональную связь отношением

где j - коэффициент; На - твердость абразивной частицы.

В дальнейшем с учетом влияния свойств среды и размеров зерен абразивных частиц износ был описан выражением более сложного вида:

где u - массовый износ; m - коэффициент трения; p - номинальное давление; Аа - площадь контакта; L - путь трения; r - плотность изнашиваемого материала; b - коэффициент, показывающий влияние среднего размера зерна крупной фракции на величину износа материала; d - коэффициент, учитывающий влияние СОЖ на величину износа. С учетом того, что в процессе изнашивания распределение поверхностных сил не меняется во времени, а время работы превышает начальный период приработки, А.С. Проников получил выражение для расчета скорости изнашивания в виде степенной функции:

где vcк - скорость скольжения; P - нормальная нагрузка; m, n - показатели степени.

Наиболее общее заключение трибологов, полученное на базе феноменологического подхода, состоит в том, что в общем случае:

износ пропорционален нагрузке;

износ обратно пропорционален твердости изнашиваемого материала;

скорость износа коррелирует со скоростью скольжения.

Тем не менее, хотя эмпирические модели не имели развития в современной трибологии, из-за простоты полученных формул они до сих пор используются в конкретных случаях в инженерных расчетах, в частности, при расчетах изнашивания абразивного, бурильного инструмента, почвообрабатывающих машин и др.

Список используемых источников

3. ГОСТ 9012 - метод измерения твердости по Бринеллю.

4. ГОСТ 2999 - Метод измерения твердости по Виккерсу.

5. ГОСТ 9013 - Метод измерения твердости по Роквеллу.

6. ГОСТ 23273 - Метод измерения твердости по Шору.

Подобные документы

Понятие твердости как способности металла сопротивляться деформации на поверхности образца или изделия. Cущность методики измерения твердости на приборах Бринелля, Роквелла, Виккерса и микротвердомере. Порядок выбора прибора, нагрузки и наконечника.

методичка [486,2 K], добавлен 27.11.2010

Сущность и основные этапы изучения метода Бринелля, его назначение и сферы применения. Критерии и показатели твердости тела согласно теории Бринелля. Вычисление числа твердости по значениям диаметра отпечатка исследуемого тела и силы вдавливания.

лабораторная работа [12,4 K], добавлен 12.01.2010

Испытание на твердость по методу Роквелла посредством вдавливания наконечника алмазного конуса или стального закаленного шарика в образец или деталь. Углубление конуса под последовательно прилагаемыми предварительной и общей нагрузками, глубина внедрения.

лабораторная работа [13,8 K], добавлен 12.01.2010

Изучение особенностей капиллярного, вибрационного, ротационного и ультразвукового метода вискозиметрии. Метод падающего шарика вискозиметрии. Классификация вискозиметров. Вискозиметр Брукфильда - высокоточный прибор для поточного измерения вязкости сред.

презентация [992,7 K], добавлен 20.05.2014

Свойства звукоизоляции и звукопроницаемости материалов. Определение звукоизоляции образца звукоизоляционного материала с помощью акустического интерферометра. Характеристики погрешности измерений. Оценка погрешности измерений звукоизоляции образца.

дипломная работа [3,4 M], добавлен 24.06.2012

Понятие о физической величине как одно из общих в физике и метрологии. Единицы измерения физических величин. Нижний и верхний пределы измерений. Возможности и методы измерения физических величин. Реактивный, тензорезистивный и терморезистивный методы.

контрольная работа [301,1 K], добавлен 18.11.2013

Определение твердости металлов методами Бринелля, Роквелла и Виккерса. Составление диаграммы состояния железо - карбид железа. Описание структуры доэвтектоидного сплава при комнатной температуре. Изучение процессов закалки и отпуска хромистой стали.

Твёрдостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твёрдого тела. Твёрдость определяется как величина нагрузки необходимой для начала разрушения материала. Различают относительную и абсолютную твёрдость. Относительная — твёрдость одного материала относительно другого. Является важнейшим диагностическим свойством. Абсолютная, она же инструментальная — измеряется методами вдавливания.

Содержание работы
Файлы: 1 файл

реферат материаловеденье 2 курс.docx

Выполнил: студент гр.

г. Нерюнгри, 2012 год

Методы определения твердости……..…………………………….….….5

Динамический метод (по Шору)………………………………………….7

Твёрдостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твёрдого тела. Твёрдость определяется как величина нагрузки необходимой для начала разрушения материала. Различают относительную и абсолютную твёрдость. Относительная — твёрдость одного материала относительно другого. Является важнейшим диагностическим свойством. Абсолютная, она же инструментальная — измеряется методами вдавливания.

Твёрдость зависит от:

1) Межатомных расстояний.

2) Координационного числа — чем выше число, тем выше твёрдость.

4) Природы химической связи

5) От направления (например минерал дистен — его твёрдость вдоль кристалла 4, а поперёк — 7)

6) Хрупкости и ковкости

7) Гибкости — минерал легко гнётся, изгиб не выпрямляется (например, тальк)

8) Упругости — минерал сгибается, но выпрямляется (например, слюды)

9) Вязкости — минерал трудно сломать (например, жадеит)

Наиболее твёрдыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода — лонсдейлит, на 58 % превосходящий по твёрдости алмаз и фуллерит (примерно в 2 раза твёрже алмаза). Однако практическое применение этих веществ пока малораспостранено. Самым твёрдым из распространённых веществ является алмаз.

Методы определения твердости

Метод Бринелля — твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга); размерность единиц твердости по Бринеллю кгс/мм². Твёрдость, определённая по этому методу, обозначается HB, где H = hardness (твёрдость, англ.), B — Бринелль;

Метод Роквелла — твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твёрдость вычисляется по формуле HR = 100 (130) − kd, где d — глубина вдавливания наконечника после снятия основной нагрузки, аk — коэффициент. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B - 130 единиц.

Метод Виккерса — твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка (причём площадь отпечатка берётся как площадь части поверхности пирамиды, а не как площадь ромба); размерность единиц твёрдости по Виккерсу кг-с/мм². Твёрдость, определённая по этому методу, обозначается HV;

Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием сопротивление пластической деформации. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).

Определение твердости этим методом производят царапанием поверхности алмазным конусом с углом при вершине 90 0 . Мерой твердости в этом случае является величина, обратная ширине царапины при определенной постоянной нагрузке. На каждом образце измеряют ширину большого числа царапин, так как точное измерение ширины царапины затруднено вследствие нерезких ее краев.

Н.Н. Давиденков установил, что твердость при царапании, вычисленная как величина, обратная ширине царапины при нагрузке на алмаз 50 г, тесно связана с сопротивлением разрушению при разрыве. У большинства металлов при царапании происходит разрушение путем среза. Поэтому метод царапания, широко распространенный при изучении минералов, может представлять большой практический интерес и при изучении металлов, давая возможность определять сопротивлением разрушению и связанных с ним характеристик, по данным испытаний очень малого участка поверхности.

Динамический метод (по Шору)

Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

В результате проведения динамических испытаний на ударный изгиб специальных образцов с надрезом (ГОСТ 9454) оценивается вязкость материалов и устанавливается их склонность к переходу из вязкого состояния в хрупкое.

Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.

Является энергетической характеристикой материала, выражается в единицах работы Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.

Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).

Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

Прикрепленные файлы: 1 файл

Реферат твердость.doc

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное учреждение высшего профессионального образования

Институт физики высоких технологий

Кафедра физики высоких технологий в машиностроении

Методы измерения твердости

Студент группы 4А21 Попов С. В.

Преподаватель Григорьев М. В.

Методы определения твердости металлов

Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

Твёрдостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твёрдого тела. Для определения твёрдости в поверхность материала с определённой силой вдавливается тело (индентор), выполненное в виде стального шарика, алмазного конуса, пирамиды или иглы. По размерам получаемого на поверхности отпечатка судят о твёрдости материала. В зависимости от способа измерения твёрдости материала, количественно её характеризуют числом твёрдости по Бринелю (НВ), Роквеллу (HRC) или Виккерсу (HV).

Указанные механические характеристики связаны между собой, поэтому их конкретные значения могут быть найдены расчётным путём на основе данных о твёрдости с помощью формул, полученных для конкретного материала с определённой термообработкой. Так, например, предел выносливости на изгиб сталей с твёрдостью 180-350 НВ равен примерно 1,8 НВ, с твёрдостью 45-55 HRC - 18 HRC+150, связь предела выносливости с пределом прочности стали описывается соотношениями:

Конкретным образцам конструкционных материалов, а также выполненным из них изделиям, присуща индивидуальность прочностных и упругих характеристик. Разброс их значений для различ ных образцов, выполненных из одного и того же материала, обусловлен статистической природой прочности твёрдых тел, различием структур внешне одинаковых образцов. Из-за неопределённости реальных механических характеристик материала, неопределённости некоторых внешних нагрузок, действующих на технический объект, погрешности расчётов для обеспечения безопасной работы проектируемых конструкций должны быть приняты соответствующие проектному этапу обеспечения надёжности меры предосторожности. В качестве такой меры используется понижение в n раз относительно опасного напряжения материала (предела прочности, предела текучести, предела выносливости или предела пропорциональности) величины максимально допускаемых напряжений, используемых в условии прочности. Величина n получила название нормативного коэффициента запаса прочности, который выбирается по таблице или рассчитывается как произведение

где n1-учитывает среднюю точность определения напряжений, n2-учитывает неопределённость механических характеристик материала, n3-учитывает среднюю

степень ответственности проектируемой детали.

Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника – шарика. Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием сопротивление пластической деформации. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).

Широкое распространение испытаний на твердость объясняется рядом их преимуществ перед другими видами испытаний:

  • простота измерений, которые не требуют специального образца и могут быть выполнены непосредственно на проверяемых деталях;
  • высокая производительность;
  • измерение твердости обычно не влечет за собой разрушения детали, и после измерения ее можно использовать по своему назначению;
  • возможность ориентировочно оценить по твердости другие характеристики металла, в первую очередь предел прочности.

Так, например, зная твердость по Бринеллю (HB), можно определить предел прочности на растяжение (временное сопротивление).

где k – коэффициент, зависящий от материала;

k = 0,34 – сталь HB 120 … 175;

k = 0,35 – сталь HB 175 … 450;

k = 0,55 – медь, латунь и бронза отоженные;

k = 0,33 … 0,36 – алюминий и его сплавы.

Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде шарика, конуса и пирамиды (соответственно методы Бринелля, Роквелла и Виккерса). В результате вдавливания достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Величина внедрения наконечника в поверхность металла будет тем меньше, чем тверже испытываемый материал.

Таким образом под твердостью понимают сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела – индентора.

Измерение твердости по Бринеллю

Твердость по методу Бринелля (ГОСТ 9012-59) измеряют вдавливанием в испытываемый образец стального шарика определенного диаметра D под действием заданной нагрузки P в течение определенного времени (Рис. 1). В результате вдавливания шарика на поверхности образца получается отпечаток (лунка). Число твердости по Бринеллю, обозначаемое HB, представляет собой отношение нагрузки P к площади поверхности сферического отпечатка F и измеряется в кгс/мм 2 или МПа:

Площадь шарового сегмента составит:

где D –диаметр шарика, (мм);

h – глубина отпечатка, (мм).

Так как глубину отпечатка измерить трудно, а проще измерить диаметр отпечатка d, выражают h через диаметр шарика D и отпечатка d:

Число твердости по Бринеллю определяется по формуле:

Для перевода твердости по Бринеллю в единицы СИ необходимо умножить число твердости в кгс/мм 2 на 9,81, т.е. HB=9,81*HB (МПа).

Для получения сопоставимых результатов при определении твердости HB шариками различного диаметра необходимо соблюдать условие подобия.

Подобие отпечатков при разных D и P будет обеспечено, если угол j остается постоянным (Рис. 1.1). Подставив в формулу (6) , получим следующее выражение:

Из этой формулы видно, что значение HB будет оставаться постоянным, если и .

В практике при определении твердости не делают вычислений по формуле (6), а пользуются таблицами, составленными для установленных диаметров шариков, отпечатков и нагрузок. Шарики применяют диаметром 10,5 и 2,5 мм. Диаметр шарика и нагрузка выбираются в соответствии с толщиной и твердостью образца (табл. 1). При этом для получения одинаковых чисел твердости одного материала при испытании шариками разных диаметров необходимо соблюдать закон подобия между получаемыми диаметрами отпечатков. Поэтому твердость измеряют при постоянном соотношении между величиной нагрузки P и квадратом диаметра шарика D 2 . Это соотношение должно быть различным для металлов разной твердости.

Метод Бринелля не рекомендуется применять для материалов с твердостью более 450 HB, так, как стальной шарик может заметно деформироваться, что внесет погрешность в результаты испытаний.

Условия испытания металлов на твердость по Бринеллю

Число твердости по Бринеллю, измеренное при стандартном испытании (D = 10 мм, P = 3000 кгс), записывается так: HB 350. Если испытания проведены при других условиях, то запись будет иметь следующий вид: HB 5/250/30-200, что означает – число твердости 200 получено при испытании шариком диаметром 5 мм под нагрузкой 250 кгс и длительности нагрузки 30 с.

При измерении твердости по методу бринелля необходимо выполнять следующие условия:

  • образцы с твердостью выше HB 450 кгс/мм 2 (4500 МПа) испытывать запрещается;
  • поверхность образца должна быть плоской и очищенной от окалины и других посторонних веществ;
  • диаметры отпечатков должны находиться в пределах 0,2D£d£0,6D;
  • образцы должны иметь толщину не менее 10 – кратной глубины отпечатка (или менее диаметра шарика);
  • расстояние между центрами соседних отпечатков и между центром отпечатка и краем образца должны быть не менее 4d.

Определение твердости HB производится на прессе Бринелля (твердомер типа ТШ) в следующем порядке. Испытываемый образец (деталь) устанавливают на столике 1 (Рис. 2) шлифованной поверхностью кверху. Поворотом маховика 2 по часовой стрелке столик прибора поднимают так, чтобы шарик 4 мог вдавиться в испытываемую поверхность. Маховик 2 вращают до упора, и нажатием кнопки включают электродвигатель 6. Двигатель перемещает коромысло и постепенно нагружает шток с закрепленным в нем шариком. Шарик под действием нагрузки 3, сообщаемой приведенным к коромыслу грузом, вдавливается в испытываемый материал. Нагрузка действует в течение определенного времени (10 … 60 с), задаваемого реле времени, после чего вал двигателя, вращаясь в обратную сторону, соответственно перемещает коромысло и снимает нагрузку. После автоматического выключения двигателя, поворачивая маховик 2 против часовой стрелки, опускают столик прибора и снимают образец.

Диаметр отпечатка измеряют при помощи отсчетного микроскопа (лупы Бринелля), на окуляре которого имеется шкала с делениями, соответствующими десятым долям миллиметра. Измерение проводят с точностью до 0,05 мм в двух взаимно перпендикулярных направлениях; для определения твердости следует принимать среднюю из полученных величин.

Измерение твердости по ВиккерсУ

При испытании на твердость по методу Виккерса в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине a=136 0 (Рис. 1.1). После снятия нагрузки вдавливания измеряется диагональ отпечатка d1. Число твердости по Виккерсу HV подсчитывается как отношение нагрузки З к площади поверхности пирамидального отпечатка М:

Число твердости по Виккерсу обозначается символом HV с указанием нагрузки P и времени выдержки под нагрузкой, причем размерность числа твердости (кгс/мм 2 ) не ставится. Продолжительность выдержки индентора под нагрузкой принимают для сталей 10 – 15 с, а для цветных металлов – 30 с.

Например, 450 HV10/15 означает, что число твердости по Виккерсу 450 получено при P = 10 кгс (98,1 Н), приложенной к алмазной пирамиде в течение 15 с.

Преимущества метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материаллы более высокой твердости из-за применения алмазной пирамиды.

Измерение твердости по Роквеллу

При этом методе индентором является алмазный конус или стальной закаленный шарик. В отличие от измерений по методу Бринелля твердость определяют по глубине отпечатка, а не по его площади. Глубина отпечатка измеряется в самом процессе вдавливания, что значительно упрощает испытания. Нагрузка прилагается последовательно в две стадии (ГОСТ 9013-59): сначала предварительная, обычно равная 10 кгс (для устранения влияния упругой деформации и различной степени шероховатости), а затем основная (Рис. 3).

После приложения предварительной нагрузки индикатор, измеряющий глубину отпечатка, устанавливается на нуль. Когда отпечаток получен приложением окончательной нагрузки, основную нагрузку снимают и измеряют остаточную глубину проникновения наконечника t.

Твердость измеряют на приборе Роквелла (Рис. 4), в нижней части станции которого установлен столик 5. В верхней части станции индикатор 3, масляный регулятор 2 и шток 4, в котором устанавливается наконечник с алмазным конусом (имеющим угол при вершине 120 0 и радиус закругления 0,2 мм) или стальным шариком диаметром 1,588 мм. Индикатор 3 представляет собой циферблат, на котором нанесены две шкалы (черная и красная) и имеются две стрелки – большая (указатель твердости) и маленькая – для контроля величины предварительного нагружения, сообщаемого вращением маховика 6. Столик с установленным на нем образцом для измерений поднимают вращением маховика до тех пор, пока малая стрелка не окажется против красной точки на шкале. Это означает, что наконечник вдавливается в образец под предварительной нагрузкой, равной 10 кгс.

После этого поворачивают шкалу индикатора (круг циферблата) до совпадения цифры 0 на черной шкале с большой стрелкой. Затем включают основную нагрузку, определяемую грузом 1, и после остановки стрелки считывают значение твердости по Роквеллу, представляющее собой цифру. Столик с образцом опускают, вращая маховик против часовой стрелки.

Твердомер Роквелла измеряет разность между глубиной отпечатков, полученных от вдавливания наконечника под действием основной и предварительной нагрузок. Каждое давление (единица шкалы) индикатора соответствует глубине вдавливания 2 мкм. Однако условное число твердости по Роквеллу (HR) представляет собой не указанную глубину вдавливания t, а величину 100 – t по черной шкале при измерении конусом и величину 130 – t по красной шкале при измерении шариком.

Читайте также: