Методы генетики соматических клеток реферат

Обновлено: 30.06.2024

Развитие генетики вносит уникальный вклад в фундаментальные исследования структурно-функциональной организации геномов различных организмов и в понимание молекулярных основ жизни. Однако только в начале 20 века ученые в полной мере стали осознавать важность законов наследственности, изменчивости и их механизмов. Клаг У. С. , Каммингс М. Р. Основы генетики (пер. с англ. Лушниковой А. А. , Мусаткина… Читать ещё >

Проблемы и методы современной генетики ( реферат , курсовая , диплом , контрольная )

Содержание

  • 1. Проблемы и перспективы современной генетики
    • 1. 1. Проблемы современной генетики
    • 1. 2. Перспективы современной генетики
    • 2. 1. Цитогенетический метод (кариотипирование)
    • 2. 2. Биохимические методы
    • 2. 3. Молекулярно-генетические методы
    • 2. 4. Метод генетики соматических клеток

    При прямой диагностике предметом анализа являются мутации гена. В ДНК-диагностике в настоящее время используются разнообразные прямые методы. Наиболее просто обнаруживаются мутации, изменяющие длину амплифицированных фрагментов ДНК, которые выявляются при электрофоретическом анализе. Для выявления точковых мутаций, небольших делеций и инверсий в исследуемых генах используют методы, при помощи которых можно проанализировать уникальную последовательность ДНК. Примером может служить метод секвенирования — определение нуклеотидной последовательности ДНК. Любые типы мутаций могут быть обнаружены путем прямого секвенирования мутантной ДНК. Для некоторых генов, имеющих небольшие размеры, этот метод с успехом применяется как основной метод сканирования мутаций. Главное преимущество прямых методов диагностики — почти 100% эффективность.

    Косвенное выявление мутаций применяется в тех случаях, когда нуклеотидная последовательность гена еще не известна, но имеется представление о положении гена на генетической карте. Косвенная ДНК-диагностика сводится к анализу полиморфных генетических маркеров у больных и здоровых членов семьи. Маркеры должны быть расположены в том хромосомном регионе, где и ген болезни. Такими маркерами могут быть участки ДНК, существующие в популяции в нескольких аллельных вариантах. Отличия могут быть по составу нуклеотидов, по числу динуклеотидных повторов. На основе вариабельности маркерных участков ДНК можно дифференцировать материнское или отцовское происхождение конкретного варианта маркера, сцепленного с геном болезни. Благодаря анализу полиморфных генетических маркеров можно определить и проследить в поколениях хромосому, несущую патологический ген. Технические приемы в косвенной диагностике те же, что и в прямой диагностике (получение ДНК, электрофорез и другие). Главный недостаток косвенных методов диагностики — обязательное предварительное изучение генотипа как минимум одного пораженного родственника.

    2.4 Метод генетики соматических клеток

    Метод генетики соматических клеток основан на размножении соматических клеток в искусственных условиях и позволяет анализировать генетические процессы в отдельных клетках и использовать их для изучения генетических закономерностей целостного организма. Благодаря быстрому размножению на питательных средах соматические клетки могут быть получены в количествах необходимых для анализа. Они успешно клонируются, давая генетически идентичное потомство. Разные клетки могут, сливаясь, образовывать гибридные клоны. Они легко подвергаются селекции на специальных питательных средах. Все это позволяет использовать культуры соматических клеток, полученные из материала биопсий (кровь, кожа, опухолевая ткань, ткань эмбриона) для генетических исследований человека. При этом используются следующие приемы: культивирование, клонирование, селекция, гибридизация. Клонирование позволяет получить достаточное количество клеточного материала для цитогенетических, биохимических, иммунологических и других исследований.

    Клонирование (получение потомков одной клетки) дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов. Селекция соматических клеток с помощью искусственных сред используется для отбора клеток с определенными мутантными свойствами или другими характеристиками. Гибридизация соматических клеток представляет собой слияние совместно культивируемых клеток разных типов, образующих гибридные клетки со свойствами обоих родительских видов. Для гибридизации могут использоваться клетки разных индивидов, а также клетки животных. Гибридные клетки, содержащие два полных генома, при делении могут утрачивать хромосомы одного из видов. Таким образом, можно получить клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах. Методы генетики соматических клеток позволяют изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Предоставляют возможность лучше представить патогенез на биохимическом и клеточном уровнях. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

    Развитие генетики вносит уникальный вклад в фундаментальные исследования структурно-функциональной организации геномов различных организмов и в понимание молекулярных основ жизни.

    В последние годы генетика активно развивается, и постоянно проводятся исследования на самых различных биологических объектах, но генетика до сих пор остается наукой хранящей в себе очень много тайн.

    Бакай А.В., Кочиш И. И. , Скрипниченко Г. Г. Генетика : Учебник для вузов. — М.: Колос

    Жимулёв И. Ф. Общая и молекулярная генетика. Учеб. пособие / Под ред. Е. С. Беляева , А. П. Акифьева . — 2-е изд., испр. и доп. -

    Новосибирск: Сиб. унив. изд-во, 2003. — 479 с.; ил.

    Иванов В.И., Барышникова Н. В. Генетика . Учебник. — М.: Академкнига. 2007. — 638с.

    Клаг У.С., Каммингс М. Р. Основы генетики (пер. с англ. Лушниковой А. А. , Мусаткина С.М.). Мир биологии и медицины. — М.: Техносфера, 2007

    Введение

    в генетику: Краткий конспект лекций: Учебное пособие для вузов — М.: Колос

    Фролов И.Т., Пастушный С. А. Менделизм и философские проблемы современной генетики — М.: ЛКИ, 2008. — 288 с.

    Шевченко В.А., Топорнина Н. А. , Стволинская Н. С. Генетика человека: Учебник для вузов. Изд. 2-е, испр., доп. — М: Владос, 2004. — 240 с.

    Щелкунов С. Н. Генетическая инженерия. Учеб. пособие. — 2-е изд., испр. и доп. — Новосибирск: Сиб. унив. изд-во, 2004. — 496 с.; ил.

    С помощью этих методов изучают наследственность и изменчивость соматических клеток, что в значительной мере компенсирует невозможность применения к человеку гибридологического метода.

    Культуры соматических клеток человека получают из материала биопсий (периферическая кровь, кожа, опухолевая ткань, ткань эмбриона, клетки из околоплодной жидкости).

    В генетике человека используют следующие четыре метода.

    1. Простое культивирование – клетки пригодны для цитогенетических, биохимических, иммунологических и др. исследований.

    2. Клонирование – получение потомков одной клетки. Дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.

    3. Селекция соматических клеток с помощью искусственных сред используется для отбора мутантных клеток с некоторыми свойствами, отбор гибридных клеток. Метод широко используется для изучения генных мутаций ( механизмы, спонтанная и индуцируемая частота).

    4. Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов. При введении в культуру клеток РНК-сод. Вируса Сендай инактивированного при облучении ультрафиолетом – частота гибридизации значительно повышается. Гетерокарионы -2 ядра разных клеток в одной цитоплазме. После митоза образуются две одноядерные клетки – синкарионы – настоящая гибридная клетка, содержащая хромосомы обеих исходных клеток. В дальнейшем происходит постепенное удаление хромосом того организма, клетки которого имеют более медленный темп размножения.

    Утрата хромосом носит случайный характер и поэтому среди большого числа гибридов всегда можно найти клетку, сохранившую какую-нибудь одну хромосому человека.

    Используя подходящую селективную систему, можно отобрать клетки с определенной ферментативной активностью и локализовать ген этого фермента на конкретной хромосоме.

    Метод используется для изучения проблемы сцепления и локализации генов.

    Можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Метод позволяет широко изучать патогенез наследственных болезней на биохимическом и клеточном уровне.

    IX. Создание моделей наследственных болезней человека с помощью трансгенных

    Животных.

    Биологическое моделирование наследственных болезней представляет собой большой раздел экспериментальных биологии и генетики. Принцип биологического моделирования генных мутаций основан на законе гомологичных рядов в наследственной изменчивости, открытом Н.И.Вавиловым. У животных встречаются мутации, вызывающие такой же патологический эффект, как и у человека (мыши, кролики, собаки, хомяки, мыши). Среди наследственных аномалий у животных встречаются такие заболевания как, гемофилия, ахондроплазия, мышечная дистрофия, сахарный диабет и многие другие, составляющие основу наследственной патологии человека.

    Методы основаны на введении чужеродных генов в клетки зародышей.

    Как и всякая модель мутантные линии трансгенных животных не могут полностью воспроизвести наследственное заболевание, поэтому моделируются какие-то определенные фрагменты с целью изучения первичного механизма действия генов, патогенеза заболевания разработки принципов его лечения.

    Метод генетики соматических клеток основан на размножении соматических клеток в искусственных условиях и позволяет анализировать генетические процессы в отдельных клетках и использовать их для изучения генетических закономерностей целостного организма. Благодаря быстрому размножению на питательных средах соматические клетки могут быть получены в количествах необходимых для анализа. Они успешно клонируются, давая генетически идентичное потомство. Разные клетки могут, сливаясь, образовывать гибридные клоны. Они легко подвергаются селекции на специальных питательных средах.

    Прикрепленные файлы: 1 файл

    Метод генетики соматических клеток основан на размножении соматических клеток в искусственных условиях и позволяет анализировать генети

    Метод генетики соматических клеток основан на размножении соматических клеток в искусственных условиях и позволяет анализировать генетические процессы в отдельных клетках и использовать их для изучения генетических закономерностей целостного организма. Благодаря быстрому размножению на питательных средах соматические клетки могут быть получены в количествах необходимых для анализа. Они успешно клонируются, давая генетически идентичное потомство. Разные клетки могут, сливаясь, образовывать гибридные клоны. Они легко подвергаются селекции на специальных питательных средах. Все это позволяет использовать культуры соматических клеток, полученные из материала биопсий (кровь, кожа, опухолевая ткань, ткань эмбриона) для генетических исследований человека. При этом используются следующие приемы: культивирование, клонирование, селекция, гибридизация. Клонирование позволяет получить достаточное количество клеточного материала для цитогенетических, биохимических, иммунологических и других исследований. Клонирование (получение потомков одной клетки) дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов. Селекция соматических клеток с помощью искусственных сред используется для отбора клеток с определенными мутантными свойствами или другими характеристиками. Гибридизация соматических клеток представляет собой слияние совместно культивируемых клеток разных типов, образующих гибридные клетки со свойствами обоих родительских видов. Для гибридизации могут использоваться клетки разных индивидов, а также клетки животных. Гибридные клетки, содержащие два полных генома, при делении могут утрачивать хромосомы одного из видов. Таким образом, можно получить клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах. Методы генетики соматических клеток позволяют изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Предоставляют возможность лучше представить патогенез на биохимическом и клеточном уровнях. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

    Клонирование – перенос ядер соматических клеток— технология создания клетки, которая ведет себя наподобие эмбриональной стволовой клетки, но содержит генетический материал, полученный от взрослой клетки. Процесс начинается с оплодотворенной яйцеклетки и соматической клетки, взятой от взрослого организма. Донор оплодотворенной яйцеклетки и донор соматической клетки не должен быть одним и тем же индивидуумом. Ядро оплодотворенной яйцеклетки удаляется и заменяется ядром соматической клетки. Соматическая клетка теоретически может быть любым типом клетки: от костного мозга до кожи. Яйцеклетка развивается в зиготу, а линия эмбриональных стволовых клеток образуется из бластоцита, как и в случае развития любой линии эмбриональных стволовых клеток. Однако теоретически вы можете имплантировать новую яйцеклетку с ядром соматической клетки в матку, и она разовьется в целостный организм (клон), полностью идентичный организму, от которого была получена соматическая клетка.

    Перенос ядер соматических клеток интенсивно использовался при клонировании животных. В 1996 году родилась овечка Долли — первый успешный клон, произошедший от клетки взрослого организма. С тех пор с использованием той же технологии ученые клонировали тысячи особей крупного рогатого скота, мышей и других животных. Клонирование Долли возбудило дискуссию о значении и смысле жизни, которая не утихает и до сегодняшнего дня.

    Установлено, что клетки, зараженные каким-нибудь вирусом, могут сливаться с здоровыми клетками и образовывать гигантские многоядерные клетки.

    Эти наблюдения были использованы при разработке техники гибридизации соматических клеток. Для гибридизации используется вирус Сендай, обладающий способностью сливать клетки между собой. В результате обработки этого вируса ультрафиолетовыми лучами или алкилирующим мутагеном удается повредить его РНК и оставить неповрежденной белковую оболочку. Такой инактивированный вирус утрачивает свои инфекционные свойства, но сохраняет способность сливать соматические клетки. С помощью инактивированного вируса Сендай удалось повысить выход гибридных клеток в несколько тысяч раз. При внесении инактивированного вируса Сендай в смешанную культуру двух типов клеток з некотором количестве образуются многоядерные гибридные клетки — гетерокарионы, содержащие в общей цитоплазме ядра обеих родительских клеток; Большинство многоядерных гетерокарионов быстро погибает, но те из них, которые содержат по одному ядру обеих исходных клеток, часто выживают и размножаются делением. После митоза и деления цитоплазмы из двухъядерного гетерокариона образуются две одноядерные клетки (синкарионы), то есть настоящие гибридные соматические клетки.

    Используя вирус Сендай, удалось осуществить слияние клеток абсолютно разных видов организмов и тканей. В качестве родительских брали самые разные клетки животных, человека и бактерий При слиянии клеток разных видов животных были получены межвидовые гибриды клеток мыши и человека, крысы и человека, человека и китайского хомячка, человека и курицы, человека и москита, крысы и мыши, мула и мыши и др. Оказалось возможным также гибридизировать клетки разных тканей или нормальные клетки с опухолевыми. Такие межвидовые гибридные клетки жизнеспособны и часто размножаются в течение длительного времени.

    Гибриды соматических клеток представляют большой интерес для изучения регуляции работы генов, ядерно-цитоплазматических отношений, дифференцировки клеток, а также проблемы злокачественного роста.

    Исключительный интерес представляет гибридизация соматических клеток растений. Для получения гибридных клеток растений приготавливают протопласты путем разрушения клеточных стенок соответствующими ферментами. Слияния протопластов добиваются обработкой их полиэтиленгликолем (ПЭГ) или другими химическими препаратами. В настоящее время путем слияния протопластов получены гетерокарионы двух разных видов табака, сои и гороха, табака и моркови, а также парасексуальные гибриды некоторых других видов растений. Такие гетерокарионы восстанавливают клеточные стенки и размножаются делением. Возникающая гибридная растительная ткань (каллус) может расти на специальной среде, обогащенной растительными гормонами. После образования побегов и листьев такие соматические гибриды прививают на один из родительских видов. Иногда на этих растениях развиваются цветки и семена. Получение гибридов растительных клеток путем слияния протопластов сопряжено с большими техническими трудностями. Можно надеяться, что они будут преодолены, и тогда откроются возможности для создания межвидовых гибридов растений, которые нельзя получить путем обычной гибридизации при половом размножении

    Селекция представляет собой науку о создании новых и улучшении существующих пород домашних животных и сортов культурных растении. Вместе с тем под селекцией понимают и сам процесс изменения живых организмов, осуществляемый человеком для своих потребностей. Все современные домашние животные и возделываемые человеком растительные культуры произошли от диких предков. Процесс превращения диких животных и растений в культурные формы называют одомашниванием.

    Теоретическая база селекции –генетика. Итогом селекционного процесса являются сорт, порода, штамм. Сорт растений, порода животных, штамм микроорганизмов – это совокупность организмов, созданных человеком в процессе селекции и имеющих определенные наследственные свойства. Все организмы, составляющие эту совокупность, имеют сходные наследственно закрепленные особенности, однотипную реакцию на условия среды.

    Основная задача селекции – создание высокопродуктивных пород животных, сортов растений и штаммов микроорганизмов, наилучшим образом удовлетворяющих пищевые и технические потребности человека. Породой и сортом (чистой линией) называют популяцию организмов, искусственно созданную человеком, которая характеризуется специфическим генофондом, наследственно закрепленными морфологическими и физиологическим признаками, определенным уровнем и характером продуктивности. Каждой породе или сорту свойственна присущая ему реакция

    Для культивирования вне организма живые клетки могут быть получены несколькими способами. Клетки могут быть выделены из крови, но к росту в культуре способны только лейкоциты. Моноядерные клетки могут быть выделены из мягких тканей с помощью таких ферментов как коллагеназ а, трипсин, проназа, разрушающихвнеклеточный матрикс. Кроме того, в питательную среду можно поместить кусочки тканей.

    Культуры клеток, взятых непосредственно от объекта (ex vivo), называются первичными Большинство первичных клеток, за исключением опухолевых, имеют ограниченный срок использования. После определенного количества делений клетки такие стареют и прекращают делиться, хотя могут при этом не утратить жизнеспособность.

    Культивирование клеток

    Клетки выращивают в специальных питательных средах, при постоянной температуре, а для клеток млекопитающих обычно необходима также специальная газовая среда, поддерживаемая в инкубаторе клеточных культур. Как правило, регулируется концентрация в воздухе углекислого газа и паров воды, но иногда также и кислорода. Питательные среды для разных культур клеток различаются по составу, pH, концентрации глюкозы, составу факторов роста и др. Факторы роста, используемые в питательных средах, чаще всего добавляют вместе с сывороткой крови. Одним из факторов риска при этом является возможность заражения культуры клеток прионами или вирусами. При культивировании одной из важных задач является исключение или сведение к минимуму использование зараженных ингредиентов. Однако на практике это бывает достигнуто не всегда. Наилучшим, но и наиболее дорогостоящим способом является добавление вместо сыворотки очищенных факторов роста.

    Клетки можно выращивать в суспензии, либо в адгезивном состоянии. Некоторые клетки (такие, как клетки крови) в естественных условиях существуют во взвешенном состоянии. Существуют также линии клеток, искусственно измененных таким образом, чтобы они не могли прикрепляться к поверхности; это сделано для того, чтобы увеличить плотность клеток в культуре. Для выращивания адгезивных клеток требуется поверхность, например, культура ткани, или пластик, покрытый элементами внеклеточного матрикса для улучшения адгезивных свойств, а также для стимулирования роста и дифференцировки. Большинство клеток из мягких и твердых тканей адгезивны. Из адгезивного типа культуры выделяются органотипические культуры клеток, которые представляют собой трехмерную среду, в отличие от обычной лабораторной посуды. Этот система культивирования физически и биохимически наиболее сходна с живыми тканями, но имеет некоторые технические сложности в обслуживании (например, нуждается в диффузии)

    Читайте также: