Метод монте карло статистических испытаний реферат

Обновлено: 30.06.2024

Специальный метод изучения поведения заданной статистики при проведении многократных повторных выборок, существенно использующий вычислительные возможности современных компьютеров. При проведении анализа по методу Монте-Карло компьютер использует процедуру генерации псевдослучайных чисел для имитации данных из изучаемой генеральной совокупности. Процедура анализа по методу Монте-Карло модуля Моделирование структурными уравнениями строит выборки из генеральной совокупности в соответствии с указаниями пользователя, а затем производит следующие действия:

Для каждого повторения по методу Монте-Карло :

1. Имитирует случайную выборку из генеральной совокупности,

2. Проводит анализ выборки,

3. Сохраняет результаты.

После большого числа повторений, сохраненные результаты хорошо имитирует реальное распределение выборочной статистики. Метод Монте-Карло позволяет получить информацию о выборочном распределении в случаях, когда обычная теория выборочных распределений оказывается бессильной.

ЭВМ позволяют легко получать так называемые псевдослучайные числа (при решении задач их применяют вместо случайных чисел); это привело к широкому внедрению метода во многие области науки и техники (статистическая физика, теория массового обслуживания, теория игр и др.). Метод Монте-Карло используют для вычисления интегралов, в особенности многомерных, для решения систем алгебраических уравнений высокого порядка, для исследования различного рода сложных систем (автоматического управления, экономических, биологических и т.д.).

Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину X , математическое ожидание которой а:


(1)

Практически же поступают так: производят п испытаний; в результате которых получают п возможных значений X , вычисляют их среднее арифметическое


(2)

и принимают х в качестве оценки (приближенного значения) а * искомого числа а:


(3)

Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний. Теория этого метода указывает, как наиболее целесообразно выбрать случайную величину X , как найти ее возможные значения. В частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а *.

Оценка погрешности метода Монте-Карло

Пусть для получения оценки а * математического ожидания а случайной величины Х было произведено п независимых испытаний (разыграно п возможных значений Х) и по ним была найдена выборочная средняя , которая принята в качестве искомой оценки: а* = . Ясно, что если повторить опыт, то будут получены другие возможные значения X , следовательно, другая средняя, а значит, и другая оценка а*. Уже отсюда следует, что получить точную оценку математического ожидания невозможно. Естественно, возникает вопрос о величине допускаемой ошибки. Ограничимся отысканием лишь верхней границы допускаемой ошибки с заданной вероятностью (надежностью) :


(4)


1. Случайная величина Х распределена нормально и ее среднее квадратическое отклонение - известно. В этом случае с надежностью у верхняя граница ошибки


(5)

где п — число испытаний (разыгранных значений X ); t значение аргумента функции Лапласа, при котором Ф(t) == /2, — известное среднее квадратическое отклонение X .

2. Случайная величина Х распределена нормально, причем ее среднее квадратическое отклонение неизвестно. В этом случае с надежностью верхняя граница ошибки


(6)


Замечание. Для того чтобы найти наименьшее число испытаний, которые обеспечат наперед заданную верхнюю границу ошибки , надо выразить п из формул (5) и (6):


2. Практическая часть

Исходя из статистических данных о деятельности торгового предприятия, с помощью регрессионной зависимости вида

Y = a *Х + b

установить связь между потерями на рекламу (X) и объемом реализации (Y).

2.1. Вычислить параметры зависимости a и b методом наименьших квадратов.

2.2. Оценить соответствие построенной зависимости статистическим данным.

Метод Монте-Карло можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений.

Возникновение идеи использования случайных явлений в области приближённых вычислений принято относить к 1878 году, когда появилась работа Холла об определении числа p с помощью случайных бросаний иглы на разграфлённую параллельными линиями бумагу. Существо дела заключается в том, чтобы экспериментально воспроизвести событие, вероятность которого выражается через число p, и приближённо оценить эту вероятность. Отечественные работы по методу Монте-Карло появились в 1955-1956 годах. С того времени накопилась обширная библиография по методу Монте-Карло. Даже беглый просмотр названий работ позволяет сделать вывод о применимости метода Монте-Карло для решения прикладных задач из большого числа областей науки и техники.

Первоначально метод Монте-Карло использовался главным образом для решения задач нейтронной физики, где традиционные численные методы оказались мало пригодными. Далее его влияние распространилось на широкий класс задач статистической физики, очень разных по своему содержанию.

Метод Монте-Карло оказал и продолжает оказывать существенное влияние на развитие методов вычислительной математики (например, развитие методов численного интегрирования) и при решении многих задач успешно сочетается с другими вычислительными методами и дополняет их. Его применение оправдано в первую очередь в тех задачах, которые допускают теоретико-вероятностное описание. Это объясняется как естественностью получения ответа с некоторой заданной вероятностью в задачах с вероятностным содержанием, так и существенным упрощением процедуры решения.

Глава 1. Некоторые сведения теории вероятностей

§1. Математическое ожидание, дисперсия.

Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определёнными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех её возможных значений на их вероятность.


,

где Х – случайная величина, - значения, вероятности которых соответственно равны .

Математическое ожидание приближённо равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.


Дисперсией (рассеянием) случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .


Средним квадратичным отклонением случайной величины Х называют квадратный корень из дисперсии: .

§2. Точность оценки, доверительная вероятность. Доверительный интервал.

Точечной называют оценку, которая определяется одним числом.

Интервальной называют оценку, которая определяется двумя числами – концами интервала. Интервальные оценки позволяют установить точность и надёжность оценок.

Пусть, найденная по данным выборки, статистическая характеристика служит оценкой неизвестного параметра . Ясно, что тем точнее определяет параметр , чем меньше абсолютная величина разности . Другими словами, если d>0 и , то , чем меньше d, тем оценка точнее. Положительное число d характеризует точность оценки.

Надёжностью (доверительной вероятностью) оценки по называют вероятность g, с которой осуществляется неравенство .


Доверительным называют интервал , который покрывает неизвестный параметр с заданной надёжностью g.

§3. Нормальное распределение.

Нормальным называют распределение вероятностей непрерывной

случайной величины, которое описывается дифференциальной функцией


.

а - математическое ожидание, s - среднее квадратичное отклонение нормального распределения.

Глава 2. Метод Монте-Карло


§1. Общая схема метода Монте-Карло.

Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину Х, математическое ожидание которой равно а: М(Х)=а.


Практически же поступают так: производят n испытаний, в результате которых получают n возможных значений Х; вычисляют их среднее арифметическое и принимают x в качестве оценки (приближённого значения) a * искомого числа a:


.

Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний. Теория этого метода указывает, как наиболее целесообразно выбрать случайную величину Х, как найти её возможные значения. В частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а * .

§2. Оценка погрешности метода Монте-Карло.

Пусть для получения оценки a * математического ожидания а случайной величины Х было произведено n независимых испытаний (разыграно n возможных значений Х) и по ним была найдена выборочная средняя , которая принята в качестве искомой оценки: . Ясно, что если повторить опыт, то будут получены другие возможные значения Х, следовательно, другая средняя, а значит, и другая оценка a * . Уже отсюда следует, что получить точную оценку математического ожидания невозможно. Естественно возникает вопрос о величине допускаемой ошибки. Ограничимся отысканием лишь верхней границы d допускаемой ошибки с заданной вероятностью (надёжностью) g: .

1. Случайная величина Х распределена нормально и её среднее

квадратичное отклонение d известно.

В этом случае с надёжностью g верхняя граница ошибки


, (*)


где n число испытаний (разыгранных значений Х); t – значение аргумента функции Лапласа, при котором , s - известное среднее квадратичное отклонение Х.

2. Случайная величина Х распределена нормально, причём её среднее квадратическое отклонение s неизвестно.

В этом случае с надёжностью g верхняя граница ошибки


, (**)

3. Случайная величина Х распределена по закону, отличному от нормального.

Из изложенного следует, что метод Монте-Карло тесно связан с задачами теории вероятностей, математической статистики и вычислительной математики. В связи с задачей моделирования случайных величин (в особенности равномерно распределённых) существенную роль играют также методы теории чисел.

Среди других вычислительных методов, метод Монте-Карло выделяется своей простотой и общностью. Медленная сходимость является существенным недостатком метода, однако, могут быть указаны его модификации, которые обеспечивают высокий порядок сходимости при определённых предположениях. Правда, вычислительная процедура при этом усложняется и приближается по своей сложности к другим процедурам вычислительной математики. Сходимость метода Монте-Карло является сходимостью по вероятности. Это обстоятельство вряд ли следует относить к числу его недостатков, ибо вероятностные методы в достаточной мере оправдывают себя в практических приложениях. Что же касается задач, имеющих вероятностное описание, то сходимостью по вероятности является даже в какой-то мере естественной при их исследовании.

Глава 3. Вычисление интегралов методом Монте-Карло.

§1. Алгоритмы метода Монте-Карло для решения интегральных уравнений второго рода.

Пусть необходимо вычислить линейный функционал , где , причём для интегрального оператора K с ядром выполняется условие, обеспечивающее сходимость ряда Неймана: . Цепь Маркова определяется начальной плотностью и переходной плотностью ; вероятность обрыва цепи в точке равна . N – случайный номер последнего состояния. Далее определяется функционал от траектории цепи, математическое ожидание которого равно . Чаще всего используется так называемая оценка по столкновениям , где , . Если при , и при , то при некотором дополнительном условии . Важность достижения малой дисперсии в знакопостоянном случае показывает следующее утверждение: если и , где , то , а . Моделируя подходящую цепь Маркова на ЭВМ, получают статистическую оценку линейных функционалов от решения интегрального уравнения второго рода. Это даёт возможность и локальной оценки решения на основе представления: , где . Методом Монте-Карло оценка первого собственного значения интегрального оператора осуществляется интерациональным методом на основе соотношения . Все рассмотренные результаты почти автоматически распространяются на системы линейных алгебраических уравнений вида . Решение дифференциальных уравнений осуществляется методом Монте-Карло на базе соответствующих интегральных соотношений.

§2. Способ усреднения подынтегральной функции.


В качестве оценки определённого интеграла принимают


,

где n – число испытаний; - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , их разыгрывают по формуле , где - случайное число.


Дисперсия усредняемой функции равна


,

где , . Если точное значение дисперсии вычислить трудно или невозможно, то находят выборочную дисперсию (при n>30) , или исправленную дисперсию (при n / )

Укажем способ вычисления интеграла (5 / ) методом случайных испытаний.

Выбираем m равномерно распределённых на отрезке [0, 1] последовательностей случайных чисел:


Точки можно рассматривать как случайные. Выбрав достаточно большое N число точек , проверяем, какие из них принадлежат области σ (первая категория) и какие не принадлежат ей (вторая категория). Пусть


1. при i=1, 2, …, n (6)


2. при i=n+1, n+2, …,N (6 / )

(для удобства мы здесь изменяем нумерацию точек).

Заметим, что относительно границы Г области σ следует заранее договориться, причисляются ли граничные точки или часть их к области σ, или не причисляются к ней. В общем случае при гладкой границе Г это не имеет существенного значения; в отдельных случаях нужно решать вопрос с учётом конкретной обстановки.

Взяв достаточно большое число n точек , приближённо можно положить: ; отсюда искомый интеграл выражается формулой , где под σ понимается m-мерный объём области интегрирования σ. Если вычисление объёма σ затруднительно, то можно принять: , отсюда . В частном случае, когда σ есть единичный куб, проверка становится излишней, то есть n=N и мы имеем просто .

Метод Монте-Карло используется очень часто, порой некритично и неэффективным образом. Он имеет некоторые очевидные преимущества:

а) Он не требует никаких предложений о регулярности, за исключением квадратичной интегрируемости . Это может быть полезным, так как часто очень сложная функция, чьи свойства регулярности трудно установить.

б) Он приводит к выполнимой процедуре даже в многомерном случае, когда численное интегрирование неприменимо, например, при числе измерений, большим 10.

в) Его легко применять при малых ограничениях или без предварительного анализа задачи.

Он обладает, однако, некоторыми недостатками, а именно:

а) Границы ошибки не определены точно, но включают некую случайность. Это, однако, более психологическая, чем реальная, трудность.

б) Статическая погрешность убывает медленно.

в) Необходимость иметь случайные числа.

Равномерно распределённые случайные числа

10 09 73 25 33 76 52 01 35 86 34 67 35 48 76 80 95 90 9117

37 54 20 48 05 64 89 47 42 96 24 80 52 40 37 20 63 61 04 02

08 42 26 89 53 19 64 50 93 03 23 20 90 25 60 15 95 33 47 64

99 01 90 25 29 09 37 67 07 15 38 31 13 11 65 88 67 67 43 97

12 80 79 99 70 80 15 73 61 47 64 03 23 66 53 98 95 11 68 77

66 06 57 47 17 34 07 27 68 50 36 69 73 61 70 65 81 33 98 85

31 06 01 08 05 45 57 18 24 06 35 30 34 26 14 86 79 90 74 39

85 26 97 76 02 02 05 16 56 92 68 66 57 48 18 73 05 38 52 47

63 57 33 21 35 05 32 54 70 48 90 55 35 75 48 28 46 82 87 09

73 79 64 57 53 03 52 96 47 78 35 80 83 42 82 60 93 52 03 44

1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студентов втузов. – 3-е изд., перераб. И доп. – М.: Высш. школа, 1979г.

2. Ермаков С. М. Методы Монте-Карло и смежные вопросы. М.: Наука, 1971г.

3. Севастьянов Б. А. Курс теории вероятностей и математической статистики. – М.:Наука,1982г.

4. Математика. Большой энциклопедический словарь / Гл. ред. Ю. В. Прохоров. – М.: Большая Российская энциклопедия,1999г.

Анализ численных методов решения математических задач при помощи имитационного моделирования случайных чисел. Описание использования метода Монте-Карло на практике в инвестиционном планировании в условиях неопределенности и высокого экономического риска.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 28.10.2019
Размер файла 23,6 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

студент гр. ЭПзус-17 Матыко О.Б.

1. История метода Монте-Карло

2. Сущность метода Монте-Карло

Метод Монте-Карло можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений. Возникновение идеи использования случайных явлений в области приближённых вычислений принято относить к 1878 году, когда появилась работа Холла об определении числа p с помощью случайных бросаний иглы на разграфлённую параллельными линиями бумагу.

Актуальность исследования обусловлена тем, что с 1970-х гг. в новой области математики - теории вычислительной сложности было показано , что существует класс задач, сложность (количество вычислений , необходимых для получения точного ответа) которых растет с размерностью задачи экспоненциально.

В рамках исследования данного вопроса необходимо поставить следующие задачи:

· рассмотреть историю метода Монте-Карло;

· изучить сущность метода Монте-Карло.

Следовательно, целью работы будет являться определение сущности метода Монте-Карло как метода статистических исследований.

Объектом исследования являются статистические методы исследования, а предметом, в свою очередь, - метод Монте-Карло как метод статистических исследований.

Говоря о теоретической и методологической основах исследования, следует отметить, что теоретической базой выступает диалектическая логика и системный подход.

1. История метода Монте-Карло

Данный метод родился в 1949 благодаря усилиям американских ученых Дж. Неймана и Стива Улана в городе Монте-Карло (княжество Монако). Метод Монте-Карло - численный метод решения математических задач при помощи моделирования случайных чисел. Суть метода заключается в том, что посредствам специальной программы на ЭВМ производится последовательность псевдослучайных чисел с равномерным законом распределения от 0 до 1. Затем данные числа с помощью специальных программ преобразуются в числа, распределенные по закону Эрланга, Пуассона, Релея и т.д. Имитационное моделирование по методу Монте-Карло (Monte-Carlo Simulation) позволяет построить математическую модель для проекта с неопределенными значениями параметров, и, зная вероятностные распределения параметров проекта, а также связь между изменениями параметров (корреляцию) получить распределение доходности проекта.

2. Сущность метода Монте-Карло

Для оценки экономических рисков также используются различные методы имитационного моделирования, наиболее распространенным из которых является методом Монте-Карло. Моделирование методом Монте-Карло дает вам возможность разработать математическую модель для проекта с неопределенными значениями параметров. Принимая во внимание распределение вероятностей параметров проекта, а также соотношение параметры могут быть получены путем распределения рентабельности проекта.

Метод Монте-Карло предоставляет дополнительную возможность оценки риска, позволяя создавать случайные сценарии. При применении анализа рисков используются все компоненты информации, а также ее формы. Информация может быть представлена в следующих формах: объективные данные и экспертные оценки.

Результат анализа риска выражается не только величиной чистой приведенной стоимости (NPV), но и в виде распределения вероятностей всех возможных значений этого показателя. Чистая приведенная стоимость рассчитывается по формуле (1):

Метод Монте-Карло можно определить как метод моделирования случайных величин с целью вычисления характеристик их распределений.

Возникновение идеи использования случайных явлений в области приближённых вычислений принято относить к 1878 году, когда появилась работа Холла об определении числа p с помощью случайных бросаний иглы на разграфлённую параллельными линиями бумагу. Существо дела заключается в том, чтобы экспериментально воспроизвести событие, вероятность которого выражается через число p, и приближённо оценить эту вероятность. Отечественные работы по методу Монте-Карло появились в 1955-1956 годах. С того времени накопилась обширная библиография по методу Монте-Карло. Даже беглый просмотр названий работ позволяет сделать вывод о применимости метода Монте-Карло для решения прикладных задач из большого числа областей науки и техники.

Первоначально метод Монте-Карло использовался главным образом для решения задач нейтронной физики, где традиционные численные методы оказались мало пригодными. Далее его влияние распространилось на широкий класс задач статистической физики, очень разных по своему содержанию.

Метод Монте-Карло оказал и продолжает оказывать существенное влияние на развитие методов вычислительной математики (например, развитие методов численного интегрирования) и при решении многих задач успешно сочетается с другими вычислительными методами и дополняет их. Его применение оправдано в первую очередь в тех задачах, которые допускают теоретико-вероятностное описание. Это объясняется как естественностью получения ответа с некоторой заданной вероятностью в задачах с вероятностным содержанием, так и существенным упрощением процедуры решения.

Глава 1. Некоторые сведения теории вероятностей

§1. Математическое ожидание, дисперсия.

Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определёнными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех её возможных значений на их вероятность.

где Х – случайная величина, - значения, вероятности которых соответственно равны .

Математическое ожидание приближённо равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Дисперсией (рассеянием) случайной величины называют математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .

Средним квадратичным отклонением случайной величины Х называют квадратный корень из дисперсии: .

§2. Точность оценки, доверительная вероятность. Доверительный интервал.

Точечной называют оценку, которая определяется одним числом.

Интервальной называют оценку, которая определяется двумя числами – концами интервала. Интервальные оценки позволяют установить точность и надёжность оценок.

Пусть, найденная по данным выборки, статистическая характеристика служит оценкой неизвестного параметра . Ясно, что тем точнее определяет параметр , чем меньше абсолютная величина разности . Другими словами, если d>0 и , то , чем меньше d, тем оценка точнее. Положительное число d характеризует точность оценки.

Надёжностью (доверительной вероятностью) оценки по называют вероятность g, с которой осуществляется неравенство .

Доверительным называют интервал , который покрывает неизвестный параметр с заданной надёжностью g.

§3. Нормальное распределение.

Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается дифференциальной функцией

а - математическое ожидание, s - среднее квадратичное отклонение нормального распределения.

Глава 2. Метод Монте-Карло

§1. Общая схема метода Монте-Карло.

Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину Х, математическое ожидание которой равно а: М(Х)=а.

Практически же поступают так: производят n испытаний, в результате которых получают n возможных значений Х; вычисляют их среднее арифметическое и принимают x в качестве оценки (приближённого значения) a* искомого числа a:

Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний. Теория этого метода указывает, как наиболее целесообразно выбрать случайную величину Х, как найти её возможные значения. В частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой а*.

§2. Оценка погрешности метода Монте-Карло.

Пусть для получения оценки a* математического ожидания а случайной величины Х было произведено n независимых испытаний (разыграно n возможных значений Х) и по ним была найдена выборочная средняя , которая принята в качестве искомой оценки: . Ясно, что если повторить опыт, то будут получены другие возможные значения Х, следовательно, другая средняя, а значит, и другая оценка a*. Уже отсюда следует, что получить точную оценку математического ожидания невозможно. Естественно возникает вопрос о величине допускаемой ошибки. Ограничимся отысканием лишь верхней границы d допускаемой ошибки с заданной вероятностью (надёжностью) g: .

Случайная величина Х распределена нормально и её среднее квадратичное отклонение d известно.

В этом случае с надёжностью g верхняя граница ошибки

где n число испытаний (разыгранных значений Х); t – значение аргумента функции Лапласа, при котором , s - известное среднее квадратичное отклонение Х.

Случайная величина Х распределена нормально, причём её среднее квадратическое отклонение s неизвестно.

В этом случае с надёжностью g верхняя граница ошибки

Случайная величина Х распределена по закону, отличному от нормального.

Из изложенного следует, что метод Монте-Карло тесно связан с задачами теории вероятностей, математической статистики и вычислительной математики. В связи с задачей моделирования случайных величин (в особенности равномерно распределённых) существенную роль играют также методы теории чисел.

Среди других вычислительных методов, метод Монте-Карло выделяется своей простотой и общностью. Медленная сходимость является существенным недостатком метода, однако, могут быть указаны его модификации, которые обеспечивают высокий порядок сходимости при определённых предположениях. Правда, вычислительная процедура при этом усложняется и приближается по своей сложности к другим процедурам вычислительной математики. Сходимость метода Монте-Карло является сходимостью по вероятности. Это обстоятельство вряд ли следует относить к числу его недостатков, ибо вероятностные методы в достаточной мере оправдывают себя в практических приложениях. Что же касается задач, имеющих вероятностное описание, то сходимостью по вероятности является даже в какой-то мере естественной при их исследовании.

Глава 3. Вычисление интегралов методом Монте-Карло.

§1. Алгоритмы метода Монте-Карло для решения интегральных уравнений второго рода.

Пусть необходимо вычислить линейный функционал , где , причём для интегрального оператора K с ядром выполняется условие, обеспечивающее сходимость ряда Неймана: . Цепь Маркова определяется начальной плотностью и переходной плотностью ; вероятность обрыва цепи в точке равна . N – случайный номер последнего состояния. Далее определяется функционал от траектории цепи, математическое ожидание которого равно . Чаще всего используется так называемая оценка по столкновениям , где , . Если при , и при , то при некотором дополнительном условии . Важность достижения малой дисперсии в знакопостоянном случае показывает следующее утверждение: если и , где , то , а . Моделируя подходящую цепь Маркова на ЭВМ, получают статистическую оценку линейных функционалов от решения интегрального уравнения второго рода. Это даёт возможность и локальной оценки решения на основе представления: , где . Методом Монте-Карло оценка первого собственного значения интегрального оператора осуществляется интерациональным методом на основе соотношения . Все рассмотренные результаты почти автоматически распространяются на системы линейных алгебраических уравнений вида . Решение дифференциальных уравнений осуществляется методом Монте-Карло на базе соответствующих интегральных соотношений.

§2. Способ усреднения подынтегральной функции.

В качестве оценки определённого интеграла принимают

где n – число испытаний; - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , их разыгрывают по формуле , где - случайное число.

Дисперсия усредняемой функции равна

Функцию f(x) желательно выбирать так, чтобы отношение при различных значениях x изменялось незначительно. В частности, если , то получим оценку .

Задача. Найти оценку интеграла .

Запишем искомый интеграл так:

Таким образом, интеграл I представлен в виде математического ожидания функции . В качестве искомой оценки примем выборочную среднюю (для простоты ограничимся десятью испытаниями):

где - возможные значения X, которые надо разыграть по известной плотности . По правилу (для того, чтобы разыграть возможное значение непрерывной случайной величины X, зная её плотность вероятности f(x), надо выбрать случайное число и решить относительно уравнение

где a – наименьшее конечно возможное значение X), имеем . Отсюда находим явную формулу для разыгрывания возможных значений X:

В таблице 2 приведены результаты 10 испытаний.

Сложив числа последней строки таблицы 2, получим . Искомая оценка равна .

Управление рисками на сегодняшний день является актуальной проблемой. Поэтому особое внимание уделяется методам управления рисками.

Актуальность исследования состоит в изучении методов управления рисками, а в честности метода Монте - Карло.

Итак, предметом данной работы является метод. Объектом написания данной работы - метод Монте - Карло.

При написании данной работы были поставлены ряд задач и целей.

Цель: всесторонне охарактеризовать применение метода Монте - Карло в управлении рисками предприятия.

Исходя из поставленной цели, были выдвинуты ряд задач:

1. Метод Монте - Карло при анализе риска.

2. Метод Монте - Карло в условиях управления рыночными рисками.

Метод Монте - Карло при анализе риска

Широкое распространение особенно при анализе риска получил метод Монте-Карло. Этот метод имитации применим для решения почти всех задач при условии, что альтернативы могут быть выражены количественно. Построение модели начинается с определения функциональных зависимостей в реальной системе, которые в последствии позволяют получить количественное решение, используя теорию вероятности и таблицы случайных чисел.

Модель Монте-Карло не столь формализована и является более гибкой, чем другие имитирующие модели. Причины здесь следующие:

при моделировании по методу Монте-Карло нет необходимости определять, что именно оптимизируется;

нет необходимости упрощать реальность для облегчения решения, поскольку применение ЭВМ позволяет реализовать модели сложных систем;

в программе для ЭВМ можно предусмотреть опережения во времени.

Типичным примером задачи, которая может быть решена на основе модели Монте-Карло, может быть задача на обслуживание. Например, при планировании стратегии развития ресторана быстрого обслуживания необходимо знать, как долго в среднем приходится посетителю ждать обслуживания (среднее значение ожидания). Работа ресторана характеризуется следующими парами. Посетители обслуживаются последовательно на одной кухне. Прибытие клиентов носит случайный характер. Поступление заказов характеризуется следующими данными: интервалы поступления требований до 10 мин составляют 40% случаев, от 10 до 20 мин -- 60%. Продолжительность обслуживания в зависимости от вкусов клиентов-- также величина случайная. В 80 % случаев на обслуживание требуется 10 мин, в остальных -- 30 мин.

В таблице 1 представлены результаты решения задачи на основе имитационной модели Монте-Карло, в которой интервалы между прибытием клиентов и временем обслуживания представлены последовательностью случайных чисел.

Решение задачи обслуживания с применением метода Монте - Карло.

Первая случайная цифра

Интервал до прибытия, мин.

Время начала обслуживания

Вторая случайная цифра

Время до обслуживания мин.

Время окончания обслуживания

Время ожидания, мин

Время простоя, мин

Примечание. Колонка 8 = колонка 5 + колонка 7, колонка 9 = колонка 5 - колонка 4, колонка 10 = колонка 5 - цифра в предшествующем ряду колонки 8.

Для интервалов между прибытиями выберем следующую случайную последовательность: 0, 1,2, 3,4, 5, 6, 7, 8 или 9 - называют случайной цифрой. Если выбраны числа 0, 1, 2 или 3, то продолжительность интервала между поступлением двух требований составляет 10 мин. Если выбраны числа 4,5,6,7,8 или 9, продолжительность интервала равна 20 мин. Аналогичным образом определяется время обслуживания, которое наступает после истечения интервала прибытия. Для этого выбирается второе случайное число.

Если выбраны числа 0, 1,2, 3, 4, 5, 6 или 7, время обслуживания составит 10 мин. Если выбраны числа 8 или 9, обслуживание клиента длится 30 мин.

Из таблицы 3.2 видно, что для 10 испытаний, приведенных в таблице, суммарное время ожидания составляет 60 мин, или в среднем по 6 мин на клиента. Данный пример оставляет без ответа многие вопросы, и среди них вопрос о необходимом количестве испытаний, позволяющем с достаточной точностью определить время ожидания.

Предположим, что мы произвели N независимых опытов, в результате которых получили N случайных цифр. Записав эти цифры (в порядке их появления) в таблицу, получим то, что называется таблицей случайных цифр может иметь следующий вид (цифры разбиты на группы для удобства чтения таблицы):

86515 90795 66155 66434 56558 12332

69186 03393 42502 99224 88955 53758

41686 42163 85181 38967 33181 72664

86522 47171 88059 89342 67248 09082

72587 93000 89688 78416 27589 99528

Случайным числом называется случайная величина

где г 1, г2, … ,гs … - независимые случайные цифры. Иными словами, случайное число -- это случайная величина, равномерно распределенная на промежутке [0, 1). В настоящее время существуют специальные компьютерные программы для построения случайных чисел в любом количестве. Такие программы называют генераторами случайных чисел.

Рассмотрим теперь дискретную случайную величину о, распределение которой имеет вид:

Для моделирования случайной величины о промежуток [0, 1) разделим на участки ? i так, чтобы длина промежутка ? i равнялась Рi, i = 1, 2, . , п. Новая

случайная величина о^определяемая равенством:

о^ = Х I, если д Є ? I , I - 1, 2, … , п,

где д - случайное число, имеет такое же распределение, что и случайная величина о.

Предыдущее равенство позволяет каждому случайному числу приписать определенное значение случайной величине о. Такой процесс приписывания значений случайной величине о часто называют разыгрыванием этой случайной величины.

Предположим, что даны две случайные величины о и з совместное распределение которых имеет вид:

Для моделирования пары случайных величин о и з промежуток [0, 1) разделим на части ? ij так, чтобы длина полуинтервала ? ij равнялась Р ij, I =1, 2. m; j = 1, 2, . n.

В этом случае пара случайных величин о ^,з ^, где

о ^ = Х i, з ^ = y j, при д Є ? ij.

имеет такое же распределение, что и пара о и з.

Предыдущее равенство позволяет каждому случайному числу приписать определенную пару значений случайных величин о и з. Такой процесс приписывания значений паре случайных величин о и з азывают разыгрыванием этой пары.

Если случайные величины о и з независимы, то для разыгрывания пары о и з достаточно разыграть каждую случайную величину в отдельности. Для разыгрывания непрерывной случайной величины можно вначале найти дискретную случайную величину, близкую к данной случайной величине, а затем разыграть эту дискретную случайную величину.

Метод Монте-Карло позволяет численно находить различные вероятностные характеристики случайной величины з, зависящей от большого числа других случайных величин о1, о2, …, о n. Этот метод сводится к следующему: разыгрывается последовательность случайных величин о1, о2, …, о n для каждого розыгрыша определяется соответствующее значение случайной величины з, а по найденным значениям строится эмпирическое распределение вероятностей этой случайной величины.

Рассмотрим пример. Инвестор владеет портфелем, состоящим из одной казначейской облигации и двух корпоративных облигаций одного и того же кредитного рейтинга. Основные параметры портфеля указаны в таблице:

Срок до погашения, лет

Номинал, млн. долл.

Доходность к погашению, %

Инвестора интересует реализуемая доходность портфеля облигаций за 6 месяцев. По его мнению, реализуемая доходность портфеля будет определяться следующими двумя факторами: кривой доходностей казначейских облигаций через 6 месяцев и спредом между доходностями корпоративных и казначейских облигаций. Предположим, что инвестор располагает еще и следующей информацией:

Доходности казначейских облигаций, %

Разбиение промежутка [0,1)

доходностями, б, п.*

Разбиение промежутка [0,1)

Для определения реализуемой доходности портфеля облигаций можно использовать метод Монте-Карло. Первая итерация (случайные числа: 0,91 для кривой доходностей и 0,12 для спреда между доходностями). В этом случае доходности казначейских облигаций со сроком до погашения 5, 15 и 25 лет составят соответственно 10, 8 и 8%, а доходности корпоративных облигаций со сроком до погашения 15 и 25 лет -- 9 и 9%.

Тогда цены облигаций (на номинал в 100 долл.) через 6 месяцев определяются следующим образом:

P1 = 6/0,1 (1- 1/ (1+0,05)10)+100/(1+0,05)10 = 84,55653

P2 = 100 (купонная ставка совпадает с доходностью).

P3 = 10,5/0,09 (1 - 1/(1,045)50)+ 100/(1,045)50 = 114,82151

Значит, реализуемая доходность портфеля облигаций составит:

P1 * 5*104+P2*4*104+ P3* 6*104+15 *104+18*104+315*103-15*106=0,1016

Предположим, что было проведено 100 итераций. При этом оказалось, что наименьшая реализуемая доходность портфеля равна -3,905%, а наибольшая реализуемая доходность составляет 24,97%.

Разделив отрезок (-3,905%; 24,97%) на достаточно большое число частей, подсчитаем для каждой части число итераций, дающих реализуемую доходность из этой части.

Таким образом, будет построено эмпирическое распределение вероятностей реализуемой доходности портфеля облигаций. После чего можно получить различные числовые характеристики этой реализуемой доходности: среднее значение, стандартное отклонение и т. д.

2. Метод Монте-Карло в условиях управления рыночными рисками.

Метод Монте-Карло, или метод стохастического моделирования (Monte Carlo simulation), основан на моделировании случайных процессов с заданными характеристиками. В отличие от метода исторического моделирования, в методе Монте-Карло изменения цен активов генерируются псевдослучайным образом в соответствии с заданными параметрами распределения, например математическим ожиданием м и волатильностью у. Имитируемое распределение может быть, в принципе, любым, а количество сценариев -- весьма большим (до нескольких десятков тысяч). Выделяют:

метод Монте-Карло для одного фактора риска;

метод Монте-Карло для портфеля активов.

Рассмотрим Метод Монте-Карло для одного фактора риска. Моделирование траектории цен производится по различным моделям. Например, распространенная модель геометрического броуновского движения дает в итоге следующие выражения для моделирования цен S на каждом шаге процесса, состоящего из очень большого количества шагов, охватывающих период Т:

dSt = St (мdt + уdzt), (1)

, где dzt -- винеровский случайный процесс.

Воспользовавшись определением винеровского процесса, уравнение (1) можно записать в дискретной форме:

уу?St= St-1 (м?t + уеv?t) , (2)

St+1 = St + St (м?t + уе1v?t), (3)

St+1 = St+1 + St+1 (м?t + уе2v?t), (4)

Если траектория цен состоит из n равных шагов (например, n дней), то один шаг ?t = 1/n, а случайная величина е подчиняется стандартному нормальному распределению (м = 0, у = 1). Можно использовать и иные модели эволюции цен, например экспоненциальную.

Траектория цен -- это последовательность псевдослучайным образом смоделированных цен, начиная от текущей цены и заканчивая ценой на некотором конечном шаге, например на тысячном или десятитысячном. Чем больше число шагов, тем выше точность метода.

Каждая траектория представляет собой сценарий, по которому определяется цена на последнем шаге исходя из текущей цены. Затем производится полная переоценка портфеля по цене последнего шага и расчет изменения его стоимости для каждого сценария. Оценка VaR производится по распределению изменений стоимости портфеля.

Генерация случайных чисел в методе Монте-Карло состоит из двух шагов. Сначала можно воспользоваться генератором случайных чисел, равномерно распределенных на интервале между 0 и 1 (рассмотрено выше). Затем, используя как аргументы полученные случайные числа, вычисляют значения функций моделируемых распределений.

Рассмотрим пример: элементы расчета VaR методом Монте-Карло на современном российском рынке. Для расчета VaR можно использовать различные модификации метода Монте-Карло; в данном случае метод описывается следующим образом:

По ретроспективным данным рассчитываются оценки математического ожидания х и волатильности у.

С помощью датчика случайных чисел генерируются нормально распределенные случайные числа е с математическим ожиданием, равным х, и стандартным отклонением у.

Полученными на предыдущем шаге случайными числами е заполняется таблица размерностью 500 столбцов на 1000 строк (вообще говоря, размерность таблицы произвольная и зависит, например, от имеющихся вычислительных мощностей, но, чтобы метод обеспечивал приемлемую точность, она должна быть достаточно большой).

Вычисляется траектория моделируемых цен вплоть до S1000 по формуле St= St-1e еt-1, где е -- основание натурального логарифма, St-- текущая цена (курс) актива.

Производится переоценка стоимости портфеля (состоящего в данном примере из одного актива) по формуле: ?V= Q (S1000 - S0), где Q -- количество единиц актива.

Шаги 4 и 5 выполняются 500 раз для заполнения таблицы 500 х 1000. Полученные 500 значений ?V сортируются по убыванию (от самого большого прироста до самого большого убытка). Эти ранжированные изменения можно пронумеровать от 1 до 500. В соответствии с желаемым уровнем доверия (1 - б) риск-менеджер может определить VaR как такой максимальный убыток, который не превышается в 500(1 - б) случаях, т. е. VaR равен абсолютной величине изменения с номером, равным 500(1 - б).

Шаги 1-6 повторяются для каждого расчета каждого дневного VaR.

В качестве объекта исследования был выбран индекс РТС. Генерация случайных чисел производилась при помощи встроенного генератора МS Ехсеl.

Метод Монте-Карло является наиболее технически сложным из всех описанных методов расчета VaR. Кроме того, для выполнения расчетов в полном объеме необходимы значительные вычислительные мощности и временные ресурсы. Современные компьютеры пока еще не позволяют обрабатывать информацию в режиме реального времени, как этого требуют трейдеры, если риск-менеджеры хотят устанавливать VaR-лимиты на величину открытых позиций с помощью метода Монте-Карло.

Теперь рассмотрим метод Монте-Карло для портфеля активов. Чтобы проводить моделирование по Монте-Карло для многофакторного процесса, можно точно так же моделировать каждый из к рассматриваемых факторов исходя из сгенерированных случайных чисел:

dSt,j = мt,j St,j dt + уt,j St,j Sdzt,j, j = 1,2, …, k, (5)

или для дискретного времени:

?St,j = St-1,j(мj?t + уjеjv?t), j = 1,2, …, k. (6)

С целью учета корреляции между факторами необходимо, чтобы случайные величины еi и еj точно так же коррелировали между собой. Для этого используется разложение Холецкого, суть которого состоит в разложении корреляционной матрицы на две (множители Холецкого) и использовании их для вычисления коррелированных случайных чисел.

Корреляционная матрица является симметричной и может быть представлена произведением треугольной матрицы низшего порядка с нулями в верхнем правом углу на такую же транспонированную матрицу. Например, для случая двух факторов имеем:

Коррелированные случайные числа е1 и е2 получаются путем перемножения множителя Холецкого и вектора независимых случайных чисел з:

При расчетах необходимо правильно выбрать количество множителей,

чтобы получилась положительно определенная матрица.

Достоинства метода Монте-Карло:

высокая точность расчетов;

высокая точность применительно к инструментам с нелинейными ценовыми характеристиками;

Недостатки метода Монте-Карло:

высокая сложность моделей и соответственно высокий риск неадекватности моделей;

высокие требования к вычислительной мощности и значительные затраты времени на проведение расчетов.

В данной работе был рассмотрен метод Монте - Карло. Этот метод имитации применим для решения почти всех задач при условии, что альтернативы могут быть выражены количественно. Построение модели начинается с определения функциональных зависимостей в реальной системе, которые в последствии позволяют получить количественное решение, используя теорию вероятности и таблицы случайных чисел.

Модель Монте-Карло не столь формализована и является более гибкой, чем другие имитирующие модели. Причины здесь следующие:

при моделировании по методу Монте-Карло нет необходимости определять, что именно оптимизируется;

нет необходимости упрощать реальность для облегчения решения, поскольку применение ЭВМ позволяет реализовать модели сложных систем;

в программе для ЭВМ можно предусмотреть опережения во времени.

Данный метод является общепризнанным и наилучшим, так как обладает рядом непреодолимых достоинств, в частности использует гипотезу о нормальном распределении доходностей, показывает высокую точность для нелинейных инструментов и устойчив к выбор ретроспективы. К недостаткам можно отнести техническую сложность расчётов и модельный риск.

Список литературы

Читайте также: