Метод линейной корреляции браве пирсона реферат

Обновлено: 04.07.2024

Планирование эксперимента - математико-статистическая дисциплина, изучающая методы рациональной организации экспериментальных исследований — от оптимального выбора исследуемых факторов и определения собственно плана эксперимента в соответствии с его целью до методов анализа результатов. Начало планирования эксперимента положили труды английского статистика Р.Фишера (1935), подчеркнувшего, что рациональное планирование эксперимента даёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. В 60-х годах 20 века сложилась современная теория планирования эксперимента. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

- планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

- планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

- планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

- планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

- планирование при изучении динамических процессов и т.д.

Целью изучения дисциплины является подготовка студентов к производственно-технической деятельности по специальности с применением методов теории планирования и современных информационных технологий.

Задачи дисциплины: изучение современных методов планирования, организации и оптимизации научного и промышленного эксперимента, проведения экспериментов и обработки полученных результатов.

1. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, может ли рост влиять на вес человека или может ли давление влиять на качество продукции?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи - это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. Оба термина - корреляционная связь и корреляционная зависимость - часто используются как синонимы. Зависимость подразумевает влияние, связь - любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Корреляционные связи различаются по форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (рисунок 1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.

Корреляционный анализ

Рисунок 1 - Связь между эффективностью решения задачи и силой мотивационной тенденции

По направлению корреляционная связь может быть положительной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого (рисунок 2). При отрицательной корреляции соотношения обратные (рисунок 3). При положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак[1].

Корреляционный анализ

Рисунок 2 – Прямая корреляция

Корреляционный анализ

Рисунок 3 – Обратная корреляция

Корреляционный анализ

Рисунок 4 – Отсутствие корреляции

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции. Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

Общая классификация корреляционных связей

В зависимости от коэффициента корреляции различают следующие корреляционные связи:

- сильная, или тесная при коэффициенте корреляции r>0,70;

- средняя (при 0,50 0 имеет место положительная корреляция (с увеличением xi значения yi имеют тенденцию к возрастанию), при p 0,54 , следовательно, гипотеза Н1 отвергается и принимается гипотеза H0, иными словами, связь между временем решения наглядно-образных и вербальных заданий теста не доказана[1].

Коэффициент ранговой корреляции Спирмена

Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена ():

где dx и dy – ранги показателей xi и yi; n – число коррелируемых пар.

Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то = -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений xi и yi.

Когда ранги всех значений xi и yi строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая, то ранги значений xi и yi совпадают и = 1; если зависимость монотонно убывающая, то ранги обратны и = –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.

Из формулы видно, что для вычисления необходимо сначала проставить ранги (dx и dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy)2. Зная эти значения, находятся суммы , учитывая, что всегда равна нулю. Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным. Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.

Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

- если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций;

- когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

Пример 2. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

xi,кг~55; 45; 43; 47; 47; 51; 48; 60; 53;50

yi, кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

1. Расчет рангового коэффициента корреляции Спирмена произведем по формуле:

где: dx и dy — ранги показателей х и у;

n — число коррелируемых пар или исследуемых.

2 Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.


Еще Гиппократ обратил внимание на то, что между телосложением и темпераментом людей, между строением их тела и предрасположенностью к заболеваниям существует определенная связь.
Чаще всего рассматриваются простейшие ситуации, когда в ходе исследования измеряют значения только одного варьирующего признака генеральной совокупности. Остальные признаки либо считаются постоянными для данной совокупности, либо относятся к случайным факторам, определяющим варьирование исследуемого признака. Как правило, исследования в спорте значительно сложнее и носят комплексный характер. Например, при контроле за ходом тренировочного процесса измеряется спортивный результат, и одновременно может оцениваться целый ряд биомеханических, физиологических, биохимических и других параметров (скорость и ускорения общего центра масс и отдельных звеньев тела, углы в суставах, сила мышц, показатели систем дыхания и кровообращения, объем физической нагрузки и энергозатраты организма на ее выполнение и т. д.). При этом часто возникает вопрос о взаимосвязи отдельных признаков. Например, как зависит спортивный результат от некоторых элементов техники спортивных движений? как связаны энергозатраты организма с объемом физической нагрузки определенного вида? насколько точно по результатам выполнения некоторых стандартных упражнений можно судить о потенциальных возможностях человека в конкретном виде спортивной деятельности? и т. п. Во всех этих случаях внимание исследователя привлекает зависимость между различными величинами, описывающими интересующие его признаки.
Этой цели служит математическое понятие функции, имеющее в виду случаи, когда определенному значению одной (независимой) переменной Х, называемой аргументом , соответствует определенное значение другой (зависимой) переменной Y, называемой функцией . Однозначная зависимость между переменными величинами Y и X называется функциональной , т.е. Y = f(X) (“игрек есть функция от икс”).
Например, в функции Y = 2X каждому значению X соответствует в два раза большее значение Y . В функции Y = 2X 2 каждому значению Y соответствует 2 определенных значения X . Графически это выглядит так (рис.1.1, 1.2 соответственно):


Но такого рода однозначные или функциональные связи между переменными величинами встречаются не всегда. Известно, например, что между ростом (длиной тела) и массой человека существует положительная связь: более высокие индивиды имеют обычно и большую массу, чем индивиды низкого роста. То же наблюдается и в отношении качественных признаков: блондины, как правило, имеют голубые, а брюнеты — карие глаза. Однако из этого правила имеются исключения, когда сравнительно низкорослые индивиды оказываются тяжелее высокорослых, и среди населения хотя и нечасто, но встречаются кареглазые блондины и голубоглазые брюнеты. Причина таких “исключений” в том, что каждый биологический признак, выражаясь математическим языком, является функцией многих переменных; на его величине сказывается влияние и генетических и средовых факторов, в том числе и случайных, что вызывает варьирование признаков. Отсюда зависимость между ними приобретает не функциональный, а статистический характер , когда определенному значению одного признака, рассматриваемого в качестве независимой переменной, соответствует не одно и то же числовое значение, а целая гамма распределяемых в вариационный ряд числовых значений другого признака, рассматриваемого в качестве независимой переменной. Такого рода зависимость между переменными величинами называется корреляционной или корреляцией (термин “корреляция” происходит от лат. correlatio — соотношение, связь). При этом данный вид взаимосвязи между признаками проявляется в том, что при изменении одной из величин изменяется среднее значение другой.
Если функциональные связи одинаково легко обнаружить и на единичных, и на групповых объектах, то этого нельзя сказать о связях корреляционных, которые изучаются только на групповых объектах методами математической статистики.
Задача корреляционного анализа сводится к установлению направления и формы связи между признаками, измерению ее тесноты и к оценке достоверности выборочных показателей корреляции.
Корреляционная связь между признаками может быть линейной и криволинейной (нелинейной), положительной и отрицательной.
Прямая корреляция отражает однотипность в изменении признаков: с увеличением значений первого признака увеличиваются значения и другого, или с уменьшением первого уменьшается второй.
Обратная корреляция указывает на увеличение первого признака при уменьшении второго или уменьшение первого признака при увеличении второго.
Например, больший прыжок и большее количество тренировок — прямая корреляция, уменьшение времени, затраченного на преодоление дистанции, и большее количество тренировок — обратная корреляция.

1.2. Корреляционные поля и цель их построения


Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (xi , yi ) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений xi и yi . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.
Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения xi и yi .
Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами xi и yi г рафически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем .
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: m x , m y – средние значения (математические ожидания); s x , s y – стандартные отклонения случайных величин Х и Y и р – коэффициент корреляции, который является мерой связи между случайными величинами Х и Y .
Если р = 0, то значения, xi , yi , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рис.1.3, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y .


Рис.1.3. Графическая интерпретация взаимосвязи между показателями.

Если р = 1 или р = -1, то между случайными величинами Х и Y существует линейная функциональная зависимость (Y = c + dX) . В этом случае говорят о полной корреляции. При р = 1 значения xi , yi определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением xi значения yi также увеличиваются), при р = -1 прямая имеет отрицательный наклон (рис.1.3, б).
В промежуточных случаях (-1 0 имеет место положительная корреляция (с увеличением xi значения yi имеют тенденцию к возрастанию), при p 2 . Зная эти значения, находятся суммы , учитывая, что всегда равна нулю. Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным (табл. 9 приложения). Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.
Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.
Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

1. Если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций.

2. Когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

Пример 1.6. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

xi , кг ~ 55; 45; 43; 47; 47; 51; 48; 60; 53; 50
yi , кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

где: dx и dy — ранги показателей х и у ;
n — число коррелируемых пар или исследуемых.

2. Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

xi dx yi dy
55 9 26 9 0 0
45 2 20 4 -2 4
43 1 25 7 -6 36
47 3.5 22 5 -1.5 2.25
47 3.5 7 8 -4.5 20.25
51 7 28 10 -3 9
48 5 16 2 3 9
60 10 15 1 9 81
53 8 18 3 5 25
50 6 24 6 0 0
= 0 = 186,5

3. Сравнить расчетное значение рангового коэффициента корреляции (rф = -0,13) с табличным значением для n = 10 при a = 5% (табл.2 приложения) и сделать вывод.

Статистика и обработка данных в психологии. Три главных раздела статистики: описательный, индуктивный и измерение корреляции. Коэффициент корреляции Браве-Пирсона и рангов Спирмена. Психологическая диагностика и оценка значимости параметров взаимосвязи.

Рубрика Психология
Вид контрольная работа
Язык русский
Дата добавления 11.04.2012
Размер файла 80,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Однако, как говорит Мак-Коннелл, статистика -- это прежде всего способ мышления, и для ее применения нужно лишь иметь немного здравого смысла и знать основы математики. В нашей повседневной жизни мы, сами о том не догадываясь, постоянно занимаемся статистикой. Хотим ли мы спланировать бюджет, рассчитать потребление бензина автомашиной, оценить усилия, которые потребуются для усвоения какого-то курса, с учетом полученных до сих пор отметок, предусмотреть вероятность хорошей и плохой погоды по метеорологической сводке или вообще оценить, как повлияет то или иное событие на наше личное или совместное будущее, -- нам постоянно приходится отбирать, классифицировать и упорядочивать информацию, связывать ее с другими данными так, чтобы можно было сделать выводы, позволяющие принять верное решение.

Все эти виды деятельности мало отличаются от тех операций, которые лежат в основе научного исследования и состоят в синтезе данных, полученных на различных группах объектов в том или ином эксперименте, в их сравнении с целью выяснить черты различия между ними, в их сопоставлении с целью выявить показатели, изменяющиеся в одном направлении, и, наконец, в предсказании определенных фактов на основании тех выводов, к которым приводят полученные результаты. Именно в этом заключается цель статистики в науках вообще, особенно в гуманитарных. В последних нет ничего абсолютно достоверного, и без статистики выводы в большинстве случаев были бы чисто интуитивными и не могли бы составлять солидную основу для интерпретации данных, полученных в других исследованиях.

1. Статистика и обработка данных в психологии

Три главных раздела статистики:

1. Описательная статистика, как следует из названия, позволяет описывать, подытоживать и воспроизводить в виде таблиц или графиков данные того или иного распределения, вычислять среднее для данного распределения и его размах и дисперсию.

2. Задача индуктивной статистики -- проверка того, можно ли распространить результаты, полученные на данной выборке, на всю популяцию, из которой взята эта выборка. Иными словами, правила этого раздела статистики позволяют выяснить, до какой степени можно путем индукции обобщить на большее число объектов ту или иную закономерность, обнаруженную при изучении их ограниченной группы в ходе какого-либо наблюдения или эксперимента. Таким образом, при помощи индуктивной статистики делают какие-то выводы и обобщения, исходя из данных, полученных при изучении выборки.

3. Наконец, измерение корреляции позволяет узнать, насколько связаны между собой две переменные, с тем чтобы можно было предсказывать возможные значения одной из них, если мы знаем другую.

Существуют две разновидности статистических методов или тестов, позволяющих делать обобщение или вычислять степень корреляции. Первая разновидность -- это наиболее широко применяемые параметрические методы, в которых используются такие параметры, как среднее значение или дисперсия данных. Вторая разновидность -- это непараметрические методы, оказывающие неоценимую услугу в том случае, когда исследователь имеет дело с очень малыми выборками или с качественными данными; эти методы очень просты с точки зрения как расчетов, так и применения.

2. Корреляционный анализ

При изучении корреляций стараются установить, существует ли какая-то связь между двумя показателями в одной выборке (например, между ростом и весом детей или между уровнем IQ и школьной успеваемостью) либо между двумя различными выборками (например, при сравнении пар близнецов), и если эта связь существует, то сопровождается ли увеличение одного показателя возрастанием (положительная корреляция) или уменьшением (отрицательная корреляция) другого.

Иными словами, корреляционный анализ помогает установить, можно ли предсказывать возможные значения одного показателя, зная величину другого.

С этой целью можно использовать два разных способа: параметрический метод расчета коэффициента Браве-Пирсона (r) и вычисление коэффициента корреляции рангов Спирмена (rs), который применяется к порядковым данным, т.е. является непараметрическим. Однако разберемся сначала в том, что такое коэффициент корреляции.

2.1. Коэффициент корреляции

Коэффициент корреляции -- это величина, которая может варьировать в пределах от +1 до -1. В случае полной положительной корреляции этот коэффициент равен плюс 1, а при полной отрицательной -- минус 1. На графике этому соответствует прямая линия, проходящая через точки пересечения значений каждой пары данных:

В случае если коэффициент корреляции равен 0, обе переменные полностью независимы друг от друга.

В гуманитарных науках корреляция считается сильной, если ее коэффициент выше 0,60; если же он превышает 0,90, то корреляция считается очень сильной. Однако для того, чтобы можно было делать выводы о связях между переменными, большое значение имеет объем выборки: чем выборка больше, тем достовернее величина полученного коэффициента корреляции. Существуют таблицы с критическими значениями коэффициента корреляции Браве-Пирсона и Спирмена для разного числа степеней свободы (оно равно числу пар за вычетом 2, т. е. n-2). Лишь в том случае, если коэффициенты корреляции больше этих критических значений, они могут считаться достоверными. Так, для того чтобы коэффициент корреляции 0,70 был достоверным, в анализ должно быть взято не меньше 8 пар данных (h=n-2=6) при вычислении r (см. табл. 4 в Приложении) и 7 пар данных (h=n-2=5) при вычислении rs (табл. 5 в Приложении).

Хотелось бы еще раз подчеркнуть, что сущность этих двух коэффициентов несколько различна. Отрицательный коэффициент r указывает на то, что эффективность чаще всего тем выше, чем время реакции меньше, тогда как при вычислении коэффициента rs требовалось проверить, всегда ли более быстрые испытуемые реагируют более точно, а более медленные -- менее точно.

2.2. Коэффициент корреляции Браве-Пирсона

Коэффициент корреляции Браве-Пирсона (r) -- этопараметрический показатель, для вычисления которого сравнивают средние и стандартные отклонения результатов двух измерений. При этом используют формулу (у разных авторов она может выглядеть по-разному)

где УXY -- сумма произведений данных из каждой пары;

X -- средняя для данных переменной X;

Y-- средняя для данных переменной Y

Sx -- стандартное отклонение для распределения х;

Sy -- стандартное отклонение для распределения у

2.3. Коэффициент корреляции рангов Спирмена

Коэффициент корреляции рангов Спирмена (rs) -- это непараметрический показатель, с помощью которого пытаются выявить связь между рангами соответственных величин в двух рядах измерений.

Этот коэффициент рассчитывать проще, однако результаты получаются менее точными, чем при использовании r. Это связано с тем, что при вычислении коэффициента Спирмена используют порядок следования данных, а не их количественные характеристики и интервалы между классами.

Коэффициент rs вычисляют по формуле:

где d -- разность между рангами сопряженных значений признаков (независимо от ее знака), а -- число пар.

Обычно этот непараметрический тест используется в тех случаях, когда нужно сделать какие-то выводы не столько об интервалах между данными, сколько об их рангах, а также тогда, когда кривые распределения слишком асимметричны и не позволяют использовать такие параметрические критерии, как коэффициент r (в этих случаях бывает необходимо превратить количественные данные в порядковые).

3. Оценка значимости параметров взаимосвязи

Получив оценку корреляции, необходимо проверить ее на соответствие истинным параметрам взаимосвязи.

Существующие программы для ЭВМ включают, как правило, несколько наиболее распространенных критериев. Для оценки значимости коэффициента парной корреляции рассчитывают стандартную ошибку коэффициента корреляции:

В первом приближении нужно, чтобы . Значимость rxy проверяется его сопоставлением с , при этом получают

где tрасч - так называемое расчетное значение t-критерия.

Если tрасч больше теоретического (табличного) значения критерия Стьюдента (tтабл) для заданного уровня вероятности и (n - 2) степеней свободы, то можно утверждать, что rxy значимо.

Подобным же образом на основе соответствующих формул рассчитывают стандартные ошибки параметров уравнения регрессии, а затем и t-критерии для каждого параметра. Важно опять-таки проверить, чтобы соблюдалось условие tрасч > tтабл. В противном случае доверять полученной оценке параметра нет оснований.

Приложение

корреляция психологическая диагностика

Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологической диагностике, это будет информация об индивидуально-психологических особенностях испытуемых. Вообще психологические исследования обычно строятся с опорой на количественные данные.

Список использованной литературы:

1. www.psihologu.ru

3. Петровский А.В. Ярошевский М.Г. История и теория психологии в 2-х томах. Т-1 1996;

4. Андреева Г.М., Богомолова Н.Н., Петровская Л.А. Зарубежная социальная психология ХХ столетия: Теоретические подходы: Учебное пособие для вызов - М.: Аспект Пресс, 2002. - 286с.

Подобные документы

Применение корреляционного анализа в психологии для подтверждения или опровержения гипотезы о статистической связи между двумя переменными (психическими свойствами, процессами, состояниями). Понятие и виды корреляции. Расчет коэффициентов корреляции.

контрольная работа [1,6 M], добавлен 17.03.2010

Мотивационная сфера человека. Взаимосвязь мотивации и черт личности. Сравнение личностных особенностей людей с мотивом достижения и мотивом избегания неудач. Метод математической обработки данных: корреляционный анализ (коэффициент корреляции Пирсона).

курсовая работа [165,1 K], добавлен 09.04.2009

Основные типы агрессии. Определение враждебности и несдержанности. Организация исследования, направленного на изучение агрессивного поведения. Описание выборки и методик. Корреляционный анализ статистических данных с использованием корреляции Пирсона.

курсовая работа [146,1 K], добавлен 15.06.2014

Применение математических методов для обработки данных психологического исследования. Проверка распределения на нормальность с помощью критерия Колмогорова–Смирнова. Расчет t-критерия Стьюдента для зависимых выборок, ранговой корреляции Спирмена.

контрольная работа [289,6 K], добавлен 19.05.2011

Теоретические аспекты страха интимности и ответственности. Проблема ответственности в отечественной и зарубежной психологии. Коэффициент ранговой корреляции Кенделла. Психологическая зрелость, страх интимности. Дифференциальные шкалы эмоций по К. Изарду.

дипломная работа [62,4 K], добавлен 11.09.2011

Сущность психодиагностики. Задачи научной и практической психодиагностики. Методы вычисления коэффициента корреляции. Создание количественных и качественных методов психодиагностики. Модели оценки личности. Пихологические основы взаимодействия в обществе.

тест [28,2 K], добавлен 10.12.2011

Характеристика профессиональной направленности студентов, анализ смысложизненных ориентаций. Методика эмпирических исследований взаимосвязи профессиональной направленности и смысложизненных ориентаций. Применение метода ранговой корреляции Спирмена.

На последнем этапе сравниваются показатели эмпирического значения rэмп — Пирсона со значением критическим rкр по таблице. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степеней свободы рассчитывается как k=n- 2 = 8. Rкр = 0,610 (при вероятности р=0,10). Критическое значение коэффициента Пирсона меньше эмпирического значения (0,67… Читать ещё >

Коэффициент корреляции r-Пирсона ( реферат , курсовая , диплом , контрольная )

Содержание

  • 1. Название метода, его назначение
  • 2. Идея метода, формула для расчета
  • 3. Алгоритм расчета
  • 4. Ограничения и трудности применения метода
  • Заключение
  • Литература

На последнем этапе сравниваются показатели эмпирического значения rэмп — Пирсона со значением критическим rкр по таблице. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степеней свободы рассчитывается как k=n- 2 = 8.

rкр = 0,610 (при вероятности р=0,10). Критическое значение коэффициента Пирсона меньше эмпирического значения (0,67), следовательно, гипотеза доказана: с возрастом характеристики оперативной памяти улучшаются.

4. Ограничения и трудности применения метода

Используя коэффициент корреляции r-Пирсона, следует учитывать, что лучше всего он подходит для оценки взаимосвязи между двумя нормальными переменными. Если распределение переменных отличается от нормального, то он по-прежнему продолжает характеризовать степень взаимосвязи между ними, но к нему уже нельзя применять методы проверки на значимость. Также коэффициент корреляции Пирсона не очень устойчив к выбросам — при их наличии можно ошибочно сделать вывод о наличии корреляции между переменными.

К основным трудностям применения метода можно отнести объемность вычислений (лучше всего использовать при расчете вручную программу Excel). Кроме того, существует несколько вариантов формул расчета данного коэффициента. Это также создает некоторую трудность при выборе расчетов.

Для переменных с интервальной и с номинальной шкалой используется коэффициент корреляции Пирсона (корреляция моментов произведений). Если, по меньшей мере, одна из двух переменных имеет порядковую шкалу либо не является нормально распределённой, то используется ранговая корреляция по Спирману или τ (тау-грого-соая) Кендала.

Заключение

Зависимость между случайными величинами может иметь функциональный характер, т. е. быть строгим функциональным отношением, связывающим их значения. Однако при обработке экспериментальных данных гораздо чаще встречаются зависимости другого рода: статистические зависимости. Различие между двумя видами зависимостей состоит в том, что функциональная зависимость устанавливает строгую взаимосвязь между переменными, а статистическая зависимость лишь говорит о том, что распределение случайной величины Y зависит от того, какое значение принимает случайная величина X. Одной из мер статистической зависимости между двумя переменными является коэффициент корреляции Пирсона. Он показывает, насколько ярко выражена тенденция к росту одной переменной при увеличении другой. Коэффициент корреляции находится в диапазоне [-1, 1]. Нулевое значение коэффициента обозначает отсутствие такой тенденции (но не обязательно отсутствие зависимости вообще). Если тенденция ярко выражена, то коэффициент корреляции близок к +1 или -1 (в зависимости от знака зависимости), причем строгое равенство единице обозначает крайний случай статистической зависимости — функциональную зависимость. Промежуточные значения коэффициента корреляции говорят, что хотя тенденция к росту одной переменной при увеличении другой не очень ярко выражена, но в какой-то мере она все же присутствует (24, "https://referat.bookap.info").

Для применения коэффициента корреляции Пирсона, необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть получены в интервальной шкале или шкале отношений.

2. Распределения переменных X и Y должны быть близки к нормальному.

3. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Читайте также: