Метод гаусса в слу метод исключения неизвестных реферат

Обновлено: 02.07.2024

Дана система линейных алгебраических уравнений (СЛАУ), состоящая из уравнений с неизвестными :

Предполагается, что существует единственное решение системы, то есть .

В данной статье будут рассмотрены причины погрешности, возникающей во время решения системы с помощью метода Гаусса, способы выявления и ликвидации(уменьшения) этой погрешности.

Описание метода

Процесс решения системы линейных уравнений

по методу Гаусса состоит из 2х этапов:

  • Прямой ход Система (2) приводится к треугольному виду
  • Обратный ход Непосредственное определение неизвестных

Анализ метода

Данный метод относится к классу прямых методов решения системы уравнений, а это значит, что за конечное число шагов можно получить точное решение, при условии, что входные данные ( матрица и правая часть уравнения - ) заданы точно и вычисление ведется без округлений. Для получения решения требуется умножений и делений, то есть порядка операций.

Условия, при которых метод выдает точное решение, на практике не выполнимы - неизбежны как ошибки входных данных, так и ошибки округления. Тогда встает вопрос: насколько точное решение можно получить, используя метод Гаусса, насколько метод корректен? Определим устойчивость решения относительно входных параметров. Наряду с исходной системой (1) рассмотрим возмущенную систему:

Пусть введена некоторая норма . - называется числом обусловленности матрицы .

Возможны 3 случая:

Число обусловленности матрицы всегда . Если оно велико ( ) , то говорят, что матрица плохо обусловлена. В этом случае малые возмущения правых частей системы (1), вызванные либо неточностью задания исходных данных, либо вызванные погрешностями вычисления, существенно влияют на решение системы. Грубо говоря, если погрешность правых частей , то погрешность решения будет .

Проиллюстрируем полученные результаты на следующем числовом примере: Дана система

Она имеет решение .

Теперь рассмотрим возмущенную систему:

Решением такой системы будет вектор .

При совсем малом возмущении правой части получили несоизмеримо большое возмущение решения. Объяснить такую "ненадежность" решения можно тем, что матрица почти вырожденная: прямые, соответствующие двум уравнениям, почти совпадают, что видно на графике:

Геометрическое представление системы двух линейных алгебраических уравнений, которая является почти вырожденной. Прямые, соответствующие двум уравнениям, почти совпадают.

Такой результат можно было предвидеть в силу плохой обусловленностью матрицы : [1]

Вычисление является достаточно сложным, сравнимо с решением всей системы, поэтому для оценки пограшности применяются более грубые, но простые в реализации методы.

Способы оценки ошибок

1) Контрольная сумма: обычно применяется для предупреждения случайных погрешностей в процессе вычисления без помощи компьютеров.

Составляем контрольный столбец , состоящий из контрольных элементов системы:

При преобразовании уравнений над контрольными элементами производятся те же операции, что и над свободными членами уравнеий. В результате этого контрольный элемент каждого нового уравнения должен равняться сумме коэффициентов этого уравнения. Большое расхождение между ними указывает на погрешности в вычислениях или на неустойчивость алгоритма вычислений по отношению к вычислительной погрешности.

2) Относительная погрешность известного решения позволяет без существенных дополнительных затрат получить суждение о погрешности решения.

Задается некоторый ветор с компонентами, имеющими по возможности тот же порядок и знак, что и компоненты искомого решения [1] . Вычисляется вектор , и на ряду с исходной системой уравнения решается система .

Пусть и - реально получаемые решения этих систем. Суждение о погрешности искомого решения можно получить, основываясь на гипотезе: относительные погрешности при решении методом исключения систем с одной и той же матрицей и различными правыми частями, которыми являются соответственно величины и , отличаются не в очень большое число раз.

3) Изменение масштабов - прием, применяющийся для получения представления о реальной величине погрешности, возникающей за счет округлений при вычислениях.

Наряду с исходной системой тем же методом решается система

Если бы не было погрешности округления, то выполнялось бы равенство для решений исходной и масштабированной систем: . Поэтому при и , не являющихся степенями двойки, сравнение векторов и дает представление о величине вычислительной погрешности [1]

Улучшение метода исключения Гаусса

Рассмотренные ниже модификации метода Гаусса позволяют уменьшить погрешность результата.

Выбор главного элемента

Основное увеличение ошибки в методе происходит во время прямого хода, когда ведущая -я строка умножается на коэффициенты .Если коэффициенты , то ошибки, полученные на предыдущих шагах накапливаются. Чтобы этого избежать, применяется модификация метода Гаусса с выбором главного элемента. На каждом шаге к обычной схеме добавляется выбор максимального элемента по столбцу следующим образом:

Пусть по ходу исключения неизвестных получена система уравнений:

Найдем такое , что и поменяем местами -е и -е уровнения.

Такое преобразование во многих случаях существенно уменьшает чувствительность решения к погрешностям округления при вычислениях.

Итеративное улучшение результата

Если есть подозрение, что полученное решение сильно искажено, то можно улучшить результат следующим образом. Величина называется невязкой. Погрешность удовлетворяет системе уравнений

Решая эту систему, получаем приближение к и полагаем

Если точность данного приближения неудовлетворительна, то повторяем эту операцию.

Процесс можно продолжать до тех пор, пока все компоненты не станут достаточно малыми. При этом нельзя останавливать вычисления только потому, что все компоненты вектора невязки стали достаточно малыми: это может быть результатом плохой обусловленности матрицы коэффициентов.

Числовой пример

Рассмотрим для примера матрицу Вандермонда размером 7х7 и 2 различные правые части:

Данные системы были решены двумя способами. Тип данных - float. B итоге получили следующие результаты:

Программа, реализующая метод на C++

Gauss_Elimination.zip [30КБ] - В архиве содержится исходный код, exe-файл и пример файла с входными данными

Рекомендации пользователю

  • Метод Гаусса удобно применять для систем маленькой и средней размерности (до порядка ). Для больших же размерностей или разреженных матриц более эффективными представляются итерационные методы.
  • Рекомендуется использовать метод Гаусса с выбором главного элемента по столбцу, как более устойчивый к ошибкам, но при этом не требующий больших дополнительных затрат. В этом плане метод выбора главного элемента по строке и столбцу представляется менее эффективным, так как требует гораздо больше вычислительных затрат, но дает небольшую прибавку в точности.
  • Итерационное улучшение результата стоит провести 2-3 раза, если погрешность уменьшается очень медленно - возможно, матрица плохо обусловлена, тогда метод в любом случае даст не лучшие результаты - лучше попробовать применить итерационные методы.
  • Важно, чтобы данные считывались из файла правильно.

Дмитриева Виктория

В данной работе рассмотрен один из способов решения систем линейных уравнений - метод Гаусса, а также возможность применения метода Гаусса к решению прикладных задач.

ВложениеРазмер
vektor.docx 838.24 КБ

Предварительный просмотр:

  1. Введение 2
  2. Понятие матрицы 5
  3. Немного из биографии Гаусса 6
  4. Решение систем линейных уравнений методом Гаусса 7
  5. Проведение обучающего эксперимента 12
  6. Заключение 14
  7. Список используемой литературы 15

Увлечение математикой начинается с размышления над какой-то интересной задачей или проблемой.

Часто на уроках математики мы решаем различные уравнения. Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных алгебраических уравнений. Способы решения систем линейных уравнений – очень интересная и важная тема. В седьмом классе на уроках алгебры мы использовали такие способы, как сложение, подстановка и графический.

Нужно заметить, что не всегда системы линейных уравнений удобно решать данными способами. Мы решили выяснить существуют ли другие методы решения систем линейных уравнений. Изучив данную тему, мы выяснили, что существуют такие методы, как: метод Крамара, метод Гаусса, метод обратной матрицы.

На примерах был изучен и исследован алгоритм решения систем линейных уравнений методом Гаусса. Этот метод (который также называют методом последовательного исключения неизвестных) известен в различных вариантах уже более 2000 лет.

Процесс решения по методу Гаусса состоит из двух этапов, называемых прямым и обратным ходом. На первом этапе система приводится к треугольному виду, а на втором (обратный ход) идет последовательное определение неизвестных из указанной треугольной системы.

Метод Гаусса - один из основных результатов линейной алгебры и аналитической геометрии, к нему сводятся множество других теорем и методов линейной алгебры. Поэтому поиск решения системы линейных уравнений методом Гаусса имеет не только важное значение, но и является частью алгоритма решения многих задач, что позволяет говорить об актуальности изучения метода Гаусса. В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных.

Системы линейных алгебраических уравнений имеют широкое применение в решении многих задач практического приложения математики. Данная тема в школьном курсе алгебры не изучается, чтобы изучить данную тему, необходимо познакомиться с понятиями матрицы, матрица системы и расширенная матрица системы. Получение новых знаний и нового опыта способствует развитию личности, формирует некоторые особенности мышления и оказывает влияние на отношение к миру.

Научиться решать системы уравнений с помощью метода Гаусса

и применять этот метод на практике, ознакомить и научить одноклассников решать системы уравнений методом Гаусса.

2. Изучить метод Гаусса.

3. Научиться применять метод Гаусса на практике .

Объект(изучения): Метод Гаусса

Предмет: Системы линейных уравнений с двумя и более переменными.

Методы исследования: анализ, обобщение, эксперимент, опрос.

Гипотезы: С помощью данного метода увеличивается скорость решения систем линейных уравнений . Метод Гаусса можно изучать на уроках алгебры в 7 - 8 классах как дополнительный метод решения систем уравнений с двумя и более переменными.

Метод Гаусса — это метод, который применяется при решении систем линейных алгебраических уравнений и имеет следующие преимущества:

  • отсутствует необходимость проверять систему уравнений на совместность;
  • есть возможность решать системы уравнений, где:
  • количество определителей совпадает с количеством неизвестных переменных;
  • количество определителей не совпадает с количеством неизвестных переменных;
  • определитель равен нулю.
  • результат выдается при сравнительно небольшом количестве вычислительных операций.

Основные определения и обозначения

Есть система из р линейных уравнений с n неизвестными ( p может быть равно n ):

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p ,

где x 1 , x 2 , . . . . , x n — неизвестные переменные, a i j , i = 1 , 2 . . . , p , j = 1 , 2 . . . , n — числа (действительные или комплексные), b 1 , b 2 , . . . , b n — свободные члены.

Если b 1 = b 2 = . . . = b n = 0 , то такую систему линейных уравнений называют однородной, если наоборот — неоднородной.

Решение СЛАУ — совокупность значения неизвестных переменных x 1 = a 1 , x 2 = a 2 , . . . , x n = a n , при которых все уравнения системы становятся тождественными друг другу.

Совместная СЛАУ — система, для которой существует хотя бы один вариант решения. В противном случае она называется несовместной.

Определенная СЛАУ — это такая система, которая имеет единственное решение. В случае, если решений больше одного, то такая система будет называться неопределенной.

Координатный вид записи:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋯ a p 1 x 1 + a p 2 x 2 + . . . + a p n x n = b p

Матричный вид записи: A X = B , где

A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a p 1 a p 2 ⋯ a p n - основная матрица СЛАУ;

X = x 1 x 2 ⋮ x n - матрица-столбец неизвестных переменных;

B = b 1 b 2 ⋮ b n - матрица свободных членов.

Расширенная матрица — матрица, которая получается при добавлении в качестве ( n + 1 ) столбца матрицу-столбец свободных членов и имеет обозначение Т .

T = a 11 a 12 ⋮ a 1 n b 1 a 21 a 22 ⋮ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ ⋮ a p 1 a p 2 ⋮ a p n b n

Вырожденная квадратная матрица А — матрица, определитель которой равняется нулю. Если определитель не равен нулю, то такая матрица, а потом называется невырожденной.

Описание алгоритма использования метода Гаусса для решения СЛАУ с равным количеством уравнений и неизвестных (обратный и прямой ход метода Гаусса)

Для начала разберемся с определениями прямого и обратного ходов метода Гаусса.

Прямой ход Гаусса — процесс последовательного исключения неизвестных.

Обратный ход Гаусса — процесс последовательного нахождения неизвестных от последнего уравнения к первому.

Алгоритм метода Гаусса:

Решаем систему из n линейных уравнений с n неизвестными переменными:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + . . . + a 2 n x n = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 + . . . + a 3 n x n = b 3 ⋯ a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + . . . + a n n x n = b n

Определитель матрицы не равен нулю.

  1. a 11 не равен нулю - всегда можно добиться этого перестановкой уравнений системы;
  2. исключаем переменную x 1 из всех уравнений систему, начиная со второго;
  3. прибавим ко второму уравнению системы первое, которое умножено на - a 21 a 11 , прибавим к третьему уравнению первое умноженное на - a 21 a 11 и т.д.

После проведенных действий матрица примет вид:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n ,

где a i j ( 1 ) = a i j + a 1 j ( - a i 1 a 11 ) , i = 2 , 3 , . . . , n , j = 2 , 3 , . . . , n , b i ( 1 ) = b i + b 1 ( - a i 1 a 11 ) , i = 2 , 3 , . . . , n .

Далее производим аналогичные действия с выделенной частью системы:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 1 ) 32 x 2 + a ( 1 ) 33 x 3 + . . . + a ( 1 ) 3 n x n = b ( 1 ) 3 ⋯ a ( 1 ) n 2 x 2 + a ( 1 ) n 3 x 3 + . . . + a ( 1 ) n n x n = b ( 1 ) n

Считается, что a 22 ( 1 ) не равна нулю. Таким образом, приступаем к исключению неизвестной переменной x 2 из всех уравнений, начиная с третьего:

  • к третьему уравнению систему прибавляем второе, которое умножено на - a ( 1 ) 42 a ( 1 ) 22 ;
  • к четвертому прибавляем второе, которое умножено на - a ( 1 ) 42 a ( 1 ) 22 и т.д.

После таких манипуляций СЛАУ имеет следующий вид:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( 2 ) n 3 x 3 + . . . + a ( 2 ) n n x n = b ( 2 ) n ,

где a i j ( 2 ) = a ( 1 ) i j + a 2 j ( - a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n , j = 3 , 4 , . . . , n , b i ( 2 ) = b ( 1 ) i + b ( 1 ) 2 ( - a ( 1 ) i 2 a ( 1 ) 22 ) , i = 3 , 4 , . . . , n . .

Таким образом, переменная x 2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x 3 , действуя по аналоги с предыдущим образцом:

a 11 x 1 + a 12 x 2 + a 13 x 3 + . . . + a 1 n x n = b 1 a ( 1 ) 22 x 2 + a ( 1 ) 23 x 3 + . . . + a ( 1 ) 2 n x n = b ( 1 ) 2 a ( 2 ) 33 x 3 + . . . + a ( 2 ) 3 n x n = b ( 2 ) 3 ⋯ a ( n - 1 ) n n x n = b ( n - 1 ) n

После того как система приняла такой вид, можно начать обратный ход метода Гаусса:

  • вычисляем x n из последнего уравнения как x n = b n ( n - 1 ) a n n ( n - 1 ) ;
  • с помощью полученного x n находим x n - 1 из предпоследнего уравнения и т.д., находим x 1 из первого уравнения.

Найти решение системы уравнений методом Гаусса:

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 = - 1 - 2 x 1 - 2 x 2 - 3 x 3 + x 4 = 9 x 1 + 5 x 2 - x 3 + 2 x 4 = 4

Коэффициент a 11 отличен от нуля, поэтому приступаем к прямому ходу решения, т.е. к исключению переменной x 11 из всех уравнений системы, кроме первого. Для того, чтобы это сделать, прибавляем к левой и правой частям 2-го, 3-го и 4-го уравнений левую и правую часть первого, которая умножена на - a 21 a 11 :

- 1 3 , - а 31 а 11 = - - 2 3 = 2 3 и - а 41 а 11 = - 1 3 .

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 = - 1 - 2 x 1 - 2 x 2 - 3 x 3 + x 4 = 9 x 1 + 5 x 2 - x 3 + 2 x 4 = 4 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 + ( - 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = - 1 + ( - 1 3 ) ( - 2 ) - 2 x 1 - 2 x 2 - 3 x 3 + x 4 + 2 3 ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 9 + 2 3 ( - 2 ) x 1 + 5 x 2 - x 3 + 2 x 4 + ( - 1 3 ) ( 3 x 1 + 2 x 2 + x 3 + x 4 ) = 4 + ( - 1 3 ) ( - 2 ) ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 - 4 3 x 3 + 5 3 x 4 = 14 3

Мы исключили неизвестную переменную x 1 , теперь приступаем к исключению переменной x 2 :

- a 32 ( 1 ) a 22 ( 1 ) = - - 2 3 - 5 3 = - 2 5 и а 42 ( 1 ) а 22 ( 1 ) = - 13 3 - 5 3 = 13 5 :

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 = 23 3 13 3 x 2 - 4 3 x 3 + 5 3 x 4 = 14 3 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 2 3 x 2 - 7 3 x 3 + 5 3 x 4 + ( - 2 5 ) ( - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 ) = 23 3 + ( - 2 5 ) ( - 1 3 ) 13 3 x 2 - 4 3 x 3 + 5 3 x 4 + 13 5 ( - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 ) = 14 3 + 13 5 ( - 1 3 ) ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 = 19 5

Для того чтобы завершить прямой ход метода Гаусса, необходимо исключить x 3 из последнего уравнения системы - а 43 ( 2 ) а 33 ( 2 ) = - 41 5 - 19 5 = 41 19 :

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 = 19 5 ⇔

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 41 5 x 3 - 9 5 x 4 + 41 19 ( - 19 5 x 3 + 11 5 x 4 ) = 19 5 + 41 19 39 5 ⇔

⇔ 3 x 1 + 2 x 2 + x 3 + x 4 = - 2 - 5 3 x 2 + 11 3 x 3 - 4 3 x 4 = - 1 3 - 19 5 x 3 + 11 5 x 4 = 39 5 56 19 x 4 = 392 19

Обратный ход метода Гаусса:

  • из последнего уравнения имеем: x 4 = 392 19 56 19 = 7 ;
  • из 3-го уравнения получаем: x 3 = - 5 19 ( 39 5 - 11 5 x 4 ) = - 5 19 ( 39 5 - 11 5 × 7 ) = 38 19 = 2 ;
  • из 2-го: x 2 = - 3 5 ( - 1 3 - 11 3 x 4 + 4 3 x 4 ) = - 3 5 ( - 1 3 - 11 3 × 2 + 4 3 × 7 ) = - 1 ;
  • из 1-го: x 1 = 1 3 ( - 2 - 2 x 2 - x 3 - x 4 ) = - 2 - 2 × ( - 1 ) - 2 - 7 3 = - 9 3 = - 3 .

Ответ: x 1 = - 3 ; x 2 = - 1 ; x 3 = 2 ; x 4 = 7

Найти решение этого же примера методом Гаусса в матричной форме записи:

3 x 1 + 2 x 2 + x 3 + x 4 = - 2 x 1 - x 2 + 4 x 3 - x 4 = - 1 - 2 x 1 - 2 x 2 - 3 x 3 + x 4 = 9 x 1 + 5 x 2 - x 3 + 2 x 4 = 4

Расширенная матрица системы представлена в виде:

x 1 x 2 x 3 x 4 3 2 1 1 1 - 1 4 - 1 - 2 - 2 - 3 1 1 5 - 1 2 - 2 - 1 9 4

Прямой ход метода Гаусса в данном случае предполагает приведение расширенной матрицы к трапецеидальному виду при помощи элементарных преобразований. Этот процесс очень поход на процесс исключения неизвестных переменных в координатном виде.

Преобразование матрицы начинается с превращения всех элементов нулевые. Для этого к элементам 2-ой, 3-ей и 4-ой строк прибавляем соответствующие элементы 1-ой строки, которые умножены на - a 21 a 11 = - 1 3 , - a 31 a 11 = - - 2 3 = 2 3 и н а - а 41 а 11 = - 1 3 .

Дальнейшие преобразования происходит по такой схеме: все элементы во 2-ом столбце, начиная с 3-ей строки, становятся нулевыми. Такой процесс соответствует процессу исключения переменной . Для того, чтобы выполнить этой действие, необходимо к элементам 3-ей и 4-ой строк прибавить соответствующие элементы 1-ой строки матрицы, которая умножена на - а 32 ( 1 ) а 22 ( 1 ) = - 2 3 - 5 3 = - 2 5 и - а 42 ( 1 ) а 22 ( 1 ) = - 13 3 - 5 3 = 13 5 :

x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 - 2 3 - 7 3 5 3 | 23 3 0 13 3 - 4 3 5 3 | 14 3 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 - 2 3 + ( - 2 5 ) ( - 5 3 ) - 7 3 + ( - 2 5 ) 11 3 5 3 + ( - 2 5 ) ( - 4 3 ) | 23 3 + ( - 2 5 ) ( - 1 3 ) 0 13 3 + 13 5 ( - 5 3 ) - 4 3 + 13 5 × 11 3 5 3 + 13 5 ( - 4 3 ) | 14 3 + 13 5 ( - 1 3 ) ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 - 9 5 | 19 5

Теперь исключаем переменную x 3 из последнего уравнения — прибавляем к элементам последней строки матрицы соответствующие элементы последней строки, которая умножена на а 43 ( 2 ) а 33 ( 2 ) = - 41 5 - 19 5 = 41 19 .

x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 - 9 5 | 19 5 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 41 5 + 41 19 ( - 19 5 ) - 9 5 + 41 19 × 11 5 | 19 5 + 41 19 × 39 5 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

Теперь применим обратных ход метода. В матричной форме записи такое преобразование матрицы, чтобы матрица, которая отмечена цветом на изображении:

x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19

стала диагональной, т.е. приняла следующий вид:

x 1 x 2 x 3 x 4 3 0 0 0 | а 1 0 - 5 3 0 0 | а 2 0 0 - 19 5 0 | а 3 0 0 0 56 19 | 392 19 , где а 1 , а 2 , а 3 - некоторые числа.

Такие преобразования выступают аналогом прямому ходу, только преобразования выполняются не от 1-ой строки уравнения, а от последней. Прибавляем к элементам 3-ей, 2-ой и 1-ой строк соответствующие элементы последней строки, которая умножена на

- 11 5 56 19 = - 209 280 , н а - - 4 3 56 19 = 19 42 и н а - 1 56 19 = 19 56 .

x 1 x 2 x 3 x 4 3 2 1 1 | - 2 0 - 5 3 11 3 - 4 3 | - 1 3 0 0 - 19 5 11 5 | 39 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 1 + ( - 19 56 ) 56 19 | - 2 + ( - 19 56 ) 392 19 0 - 5 3 11 3 - 4 3 + 19 42 × 56 19 | - 1 3 + 19 42 × 392 19 0 0 - 19 5 11 5 + ( - 209 280 ) 56 19 | 39 5 + ( - 209 280 ) 392 19 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 0 | - 9 0 - 5 3 11 3 0 | 9 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

Далее прибавляем к элементам 2-ой и 1-ой строк соответствующие элементы 3-ей строки, которые умножены на

- 11 3 - 19 5 = 55 57 и н а - 1 - 19 5 = 5 19 .

x 1 x 2 x 3 x 4 3 2 1 0 | - 9 0 - 5 3 11 3 0 | 9 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 + 5 19 ( - 19 5 ) 0 | - 9 + 5 19 ( - 38 5 ) 0 - 5 3 11 3 + 55 57 ( - 19 5 ) 0 | 9 + 55 57 ( - 38 5 ) 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 1 0 | - 11 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

На последнем этапе прибавляем элементы 2-ой строки к соответствующим элементам 1-ой строки, которые умножены на - 2 - 5 3 = 6 5 .

x 1 x 2 x 3 x 4 3 2 1 0 | - 11 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 2 + 6 5 ( - 5 3 ) 0 0 | - 11 + 6 5 × 5 3 ) 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19 ~

x 1 x 2 x 3 x 4 ~ 3 0 0 0 | - 9 0 - 5 3 0 0 | 5 3 0 0 - 19 5 0 | - 38 5 0 0 0 56 19 | 392 19

Полученная матрица соответствует системе уравнений

3 x 1 = - 9 - 5 3 x 2 = 5 3 - 19 5 x 3 = - 38 5 56 19 x 4 = 392 19 , откуда находим неизвестные переменные.

Ответ: x 1 = - 3 , x 2 = - 1 , x 3 = 2 , x 4 = 7 . ​​​

Описание алгоритма использования метода Гаусса для решения СЛАУ с несовпадающим количеством уравнений и неизвестных, или с вырожденной системой матрицы

Если основная матрица квадратная или прямоугольная, то системы уравнений могут иметь единственное решение, могут не иметь решений, а могут иметь бесконечное множество решений.

Из данного раздела мы узнаем, как с помощью метода Гаусса определить совместность или несовместность СЛАУ, а также, в случае совместности, определить количество решений для системы.

В принципе, метод исключения неизвестных при таких СЛАУ остается таким же, однако есть несколько моментов, на которых необходимо заострить внимание.

На некоторых этапах исключения неизвестных, некоторые уравнения обращаются в тождества 0=0. В таком случае, уравнения можно смело убрать из системы и продолжить прямой ход метода Гаусса.

Если мы исключаем из 2-го и 3-го уравнения x 1 , то ситуация оказывается следующей:

x 1 + 2 x 2 - x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 - 2 x 3 + 6 x 4 = 14 x - x + 3 x + x = - 1 ⇔

x 1 + 2 x 2 - x 3 + 3 x 4 = 7 2 x 1 + 4 x 2 - 2 x 3 + 6 x 4 + ( - 2 ) ( x 1 + 2 x 2 - x 3 + 3 x 4 ) = 14 + ( - 2 ) × 7 x - x + 3 x + x + ( - 1 ) ( x 1 + 2 x 2 - x 3 + 3 x 4 ) = - 1 + ( - 1 ) × 7 ⇔

⇔ x 1 + 2 x 2 - x 3 + 3 x 4 = 7 0 = 0 - 3 x 2 + 4 x 3 - 2 x 4 = - 8

Из этого следует, что 2-ое уравнение можно смело удалять из системы и продолжать решение.

Если мы проводим прямой ход метода Гаусса, то одно или несколько уравнений может принять вид — некоторое число, которое отлично от нуля.

Это свидетельствует о том, что уравнение, обратившееся в равенство 0 = λ , не может обратиться в равенство ни при каких любых значениях переменных. Проще говоря, такая система несовместна (не имеет решения).

Метод Гаусса был предложен известнейшим немецким математиком Карлом Фридрихом Гауссом (1777 - 1855) и является одним из наиболее универсальных методов решения СЛАУ. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении задачи, расширенная матрица системы с помощью элементарных преобразований над ее строками приводится к ступенчатому виду. Далее последовательно находятся все неизвестные, начиная снизу вверх.

Принцип метода Гаусса

Метод Гаусса включает в себя прямой (приведение расширенной матрицы к ступенчатому виду, то есть получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и называется методом Гаусса, обратный - методом Гаусса-Жордана, который отличается от первого только последовательностью исключения переменных.

Метод Гаусса идеально подходит для решения систем содержащих больше трех линейных уравнений, для решения систем уравнений, которые не являются квадратными (чего не скажешь про метод Крамера и матричный метод). То есть метод Гаусса - наиболее универсальный метод для нахождения решения любой системы линейных уравнений, он работает в случае, когда система имеет бесконечно много решений или несовместна.

Примеры решения систем уравнений

Задание. Решить СЛАУ $\left\ 2 x_+x_+x_=2 \\ x_-x_=-2 \\ 3 x_-x_+2 x_=2 \end\right.$ методом Гаусса.

Решение. Выпишем расширенную матрицу системы и при помощи элементарных преобразований над ее строками приведем эту матрицу к ступенчатому виду (прямой ход) и далее выполним обратный ход метода Гаусса (сделаем нули выше главной диагонали). Вначале поменяем первую и вторую строку, чтобы элемент $a_$ равнялся 1 (это мы делаем для упрощения вычислений):

Далее делаем нули под главной диагональю в первом столбце. Для этого от второй строки отнимаем две первых, от третьей - три первых:

Все элементы третьей строки делим на два (или, что тоже самое, умножаем на $\frac$ ):

Далее делаем нули во втором столбце под главной диагональю, для удобства вычислений поменяем местами вторую и третью строки, чтобы диагональный элемент равнялся 1:

От третьей строки отнимаем вторую, умноженную на 3:

Умножив третью строку на $\left(-\frac\right)$ , получаем:

Проведем теперь обратный ход метода Гаусса (метод Гассу-Жордана), то есть сделаем нули над главной диагональю. Начнем с элементов третьего столбца. Надо обнулить элемент $a_$, для этого от второй строки отнимем третью:

Далее обнуляем недиагональные элементы второго столбца, к первой строке прибавляем вторую:

Полученной матрице соответствует система

$\left\x_+0 \cdot x_+0 \cdot x_=-1 \\ 0 \cdot x_+x_+0 \cdot x_=1 \\ 0 \cdot x_+0 \cdot x_+x_=3\end\right.$ или $\left\ x_=-1 \\ x_=1 \\ x_=3 \end\right.$

Читайте также: