Механические испытания металлов реферат

Обновлено: 30.06.2024

Механические свойства металлов (прочность, упругость, пластичность, вязкость), как и другие свойства, являются исходными данными при проектировании и создании различных машин, механизмов и сооружений.

Методы определения механических свойств металлов делятся на следующие группы:

· статические, когда нагрузка возрастает медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);

· динамические, когда нагрузка возрастает с большой скоростью (испытания на ударный изгиб);

· циклические, когда нагрузка многократно изменяется (испытание на усталость);

· технологические — для оценки поведения металла при обработке давлением (испытания на изгиб, перегиб, выдавливание).

Испытания на растяжение (ГОСТ 1497-84) проводятся на стандартных образцах круглого или прямоугольного сечения. При растяжении под действием плавно возрастающей нагрузки образец деформируется до момента разрыва. Во время испытания образца снимают диаграмму растяжения (рис. 1.36, а), фиксирующую зависимость между действующей на образец силой Р, и вызванной ею деформацией Δl (Δl — абсолютное удлинение).


Рис. 1.36. Диаграмма растяжения низкоуглеродистой стали (а) и зависимость между напряжением и относительным удлинением (б)

Вязкость (внутреннее трение) — способность металла поглощать энергию внешних сил при пластической деформации и разрушении (определяется величиной касательной силы, приложенной к единице площади слоя металла, подлежащего сдвигу).

Пластичность — способность твердых тел необратимо деформироваться под действием внешних сил.

При испытании на растяжение определяют:

· σв — границу прочности, МН/м 2 (кг/мм 2 ):


где Рb — наибольшая нагрузка; F0 — начальная площадь сечения образца;

· σпц — границу пропорциональности, МН/м 2 (кг/мм 2 ):


где Pпц — нагрузка, соответствующая границе пропорциональности;

· σпр — границу упругости, МН/м 2 (кг/мм 2 ):


где Рпр — нагрузка, соответствующая границе упругости (при σпр остаточная деформация соответствует 0,05-0,005 % начальной длины);

· σт — границу текучести, МН/м 2 (кг/мм 2 ):


где Рт — нагрузка, соответствующая границе текучести, Н;

· δ — относительное удлинение, %:


где l0 — длина образца до разрыва, м; l1 — длина образца после разрыва, м;

· ψ — относительное сужение, %:


где F0 — площадь сечения до разрыва, м 2 ; F — площадь сечения после разрыва, м 2 .

Испытания на твердость

Твердость — это сопротивление материала проникновению в него другого, более твердого тела. Из всех видов механического испытания определение твердости является самым распространенным.

Испытания по Бринеллю (ГОСТ 9012-83) проводятся путем вдавливания в металл стального шарика. В результате на поверхности металла образуется сферический отпечаток (рис. 1.37, а).

Твердость по Бринеллю определяется по формуле:


где P — нагрузка на металл, Н; D — диаметр шарика, м; d — диаметр отпечатка, м.

Чем тверже металл, тем меньше площадь отпечатка.

Диаметр шарика и нагрузку устанавливают в зависимости от исследуемого металла, его твердости и толщины. При испытании стали и чугуна выбирают D = 10 мм и P = 30 кН (3000 кгс), при испытании меди и ее сплавов D = 10 мм и P = 10 кН (1000 кгс), а при испытании очень мягких металлов (алюминия, баббитов и др.) D = 10 мм и P = 2,5 кН (250 кгс). При испытании образцов толщиной менее 6 мм выбирают шарики с меньшим диаметром — 5 и 2,5 мм. На практике пользуются таблицей перевода площади отпечатка в число твердости.

Метод Бринелля не рекомендуется применять для металлов твердостью более НВ 450 (4500 МПа), поскольку шарик может деформироваться, что исказит результаты испытаний.

Испытания по Роквеллу (ГОСТ 9013-83). Проводятся путем вдавливания в металл алмазного конуса (α = 120°) или стального шарика (D = 1,588 мм или 1/16", рис. 1.37, б). Прибор Роквелла имеет три шкалы — В, С и А. Алмазный конус применяют для испытания твердых материалов (шкалы С и А), а шарик — для испытания мягких материалов (шкала В). Конус и шарик вдавливают двумя последовательными нагрузками: предварительной Р0 и общей Р:

где Р1 — основная нагрузка.

Предварительная нагрузка Р0 = 100 Н (10 кгс). Основная нагрузка составляет 900 Н (90 кгс) для шкалы В; 1400 Н (140 кгс) для шкалы С и 500 Н (50 кгс) для шкалы А.


Рис. 1.37. Схема определения твердости: а — по Бринеллю; б — по Рoквеллу; в — по Виккерсу

Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принимают величину, которая соответствует осевому перемещению наконечника на расстояние 0,002 мм.

Твердость по Роквеллу вычисляют следующим способом:

НR = 100 – e (шкалы А и С); НR = 130 – e (шкала В).

Величину e определяют по формуле:


,

где h — глубина проникновения наконечника в металл под действием общей нагрузки Р (Р =Р0+ Р1); h0 — глубина проникновения наконечника под действием предварительной нагрузки Р0.

В зависимости от шкалы твердость по Роквеллу обозначают НRВ, НRС, НRА.

Испытания по Виккерсу (ГОСТ 2999-83). В основе метода — вдавливание в испытываемую поверхность (шлифованную или даже полированную) четырехгранной алмазной пирамиды (α = 136°) (рис. 1.37, в). Метод используется для определения твердости деталей малой толщины и тонких поверхностных слоев, имеющих высокую твердость.

Твердость по Виккерсу:


где Р — нагрузка на пирамиду, Н; d — среднее арифметическое двух диагоналей отпечатка, измеренных после снятия нагрузки, м.

Число твердости по Виккерсу определяют по специальным таблицам по диагонали отпечатка d. При измерении твердости применяют нагрузку от 10 до 500 Н.

Микротвердость (ГОСТ 9450-84). Принцип определения микротвердости такой же, как и по Виккерсу, согласно соотношению:


Метод применяется для определения микротвердости изделий мелких размеров и отдельных составляющих сплавов. Прибор для измерения микротвердости — это механизм вдавливания алмазной пирамиды и металлографический микроскоп. Образцы для измерений должны быть подготовлены так же тщательно, как микрошлифы.

Испытание на ударную вязкость

Для испытания на удар изготавливают специальные образцы с надрезом, которые затем разрушают на маятниковом копре (рис. 1.39). Общий запас энергии маятника будет расходоваться на разрушение образца и на подъем маятника после его разрушения. Поэтому если из общего запаса энергии маятника отнять часть, которая тратится на подъем (взлет) после разрушения образца, получим работу разрушения образца:

K = Рl(соs β – соs α), Дж (кг·м),

де P — масса маятника, Н (кг); h1 — высота подъема центра масс маятника до удара, м; h2 — высота взлета маятника после удара, м; l — длина маятника, м; α, β — углы подъема маятника соответственно до разрушения образца и после него.


Рис. 1.39. Испытание на ударную вязкость: 1 — маятник; 2 — нож маятника; 3 — опоры

Ударную вязкость, т. е. работу, затраченную на разрушение образца и отнесенную к поперечному сечению образца в месте надреза, определяют по формуле:


, МДж/м 2 (кг·м/см 2 ),

где F — площадь поперечного сечения в месте надреза образца, м 2 (см 2 ).

Для определения пользуются специальными таблицами, в которых для каждого угла β определена величина работы удара K. При этом F = 0,8 · 10 –4 м 2 .

Для обозначения ударной вязкости добавляют и третью букву, указывающую на вид надреза на образце: U, V, Т. Запись KСU означает ударную вязкость образца с U-образным надрезом, KСV — с V-образным надрезом, а KСТ — с трещиной (рис. 1.40).


Рис. 1.40. Виды надрезов на образцах для испытания на ударную вязкость:
аU-образный надрез (KCU); бV-образный надрез (KСV); в — надрез с трещиной (KСТ)

Испытание на усталость (ГОСТ 2860-84). Разрушение металла под действием повторных или знакопеременных напряжений называется усталостью металла. При разрушении металла вследствие усталости на воздухе излом состоит из двух зон: первая зона имеет гладкую притертую поверхность (зона усталости), вторая — зона долома, в хрупких металлах она имеет грубокристаллическое строение, а в вязких — волокнистое.

При испытании на усталость определяют границу усталости (выносливости), т. е. то наибольшее напряжение, которое может выдержать металл (образец) без разрушения заданное число циклов. Самым распространенным методом испытания на усталость является испытание на изгиб при вращении (рис. 1.41).


Рис. 1.41. Схема испытания на изгиб при вращении:
1 — образец; Р — нагрузка; Мвиг — изгибающий момент

Применяют следующие основные виды технологических испытаний (проб).

Проба на изгиб (рис. 1.42) в холодном и горячем состоянии — для определения способности металла выдерживать заданный изгиб; размеры образцов — длина l = 5а + 150 мм, ширина b = 2а (но не менее 10 мм), где а — толщина материала.


Рис. 1.42. Технологическая проба на изгиб: а — образец до испытания; б — загиб до определенного угла; в — загиб до параллельности сторон; г — загиб до соприкосновения сторон

Проба на перегиб предусматривает оценку способности металла выдерживать повторный изгиб и применяется для проволоки и прутков диаметром 0,8—7 мм из полосового и листового материала толщиной до 55 мм. Образцы сгибают попеременно направо и налево на 90° с равномерной — около 60 перегибов в минуту — скоростью до разрушения образца.

Проба на выдавливание (рис. 1.43) — для определения способности металла к холодной штамповке и вытягиванию тонкого листового материала. Состоит в продавливании пуансоном листового материала, зажатого между матрицей и зажимом. Характеристикой пластичности металла является глубина выдавливания ямки, что соответствует появлению первой трещины.


Рис. 1.43. Испытание на выдавливание: 1 — лист; h — мера способности материала к вытяжке

Проба на навивку проволоки диаметром d ≤ 6 мм. Испытание состоит в навивке 5—6 плотно прилегающих по винтовой линии витков на цилиндр заданного диаметра. Выполняется только в холодном состоянии. Проволока после навивки не должна иметь повреждений.

Проба на искру используется при необходимости определения марки стали при отсутствии специального оборудования и маркировки.

В первом разделе данного курсового проекта рассмотрены основные виды статистических, динамических и прочих видов испытаний стали, имеющих практическое значение для изучения их механических свойств, которые определяют их поведение при эксплуатации и обработке.
Второй раздел проекта посвящен анализу конструкций измерительных приборов для контроля радиального биения.

Содержание работы

ВВЕДЕНИЕ. 3
РАЗДЕЛ 1
1 Испытание механических свойств. 4
1.1 Классификация механических испытаний. 5
1.2 Условия подобия механических испытаний. 7
2 Свойства металлов при статических испытаниях. 10
2.1 Испытания на растяжение (сжатие). Диаграмма растяжений. 10
2.1.2 Испытание на сжатие. 12
2.2 Определение твердости. 13
3 Динамические испытания. 14
3.1 Испытания на ударный изгиб. 15
4 Циклические испытания. 16
4.1 Испытания на усталость. 16
4.2 Испытание на истираемость. 17
РАЗДЕЛ 2
1 Анализ конструкторских, технологических и метрологических объектов
контроля. 18
2 Обзор существующих методов и средств контроля радиального биения..
. 19
2.1Методы измерения радиального биения. 21
3 Выбор целесообразной конструкции прибора и описание его принципа
действия. 24
ЗАКЛЮЧЕНИЕ. 29
Список использованной литературы.

Файлы: 1 файл

методы и средства испытаний и контроля курсач.docx

1 Испытание механических свойств. . . 4

1.1 Классификация механических испытаний. . 5

1.2 Условия подобия механических испытаний. . 7

2 Свойства металлов при статических испытаниях. . 10

2.1 Испытания на растяжение (сжатие). Диаграмма растяжений. . 10

2.1.2 Испытание на сжатие. . . 12

2.2 Определение твердости. . . 13

3 Динамические испытания. . . 14

3.1 Испытания на ударный изгиб. . . 15

4 Циклические испытания. . . 16

4.1 Испытания на усталость. . . . 16

4.2 Испытание на истираемость. . . ..17

1 Анализ конструкторских, технологических и метрологических объектов

2 Обзор существующих методов и средств контроля радиального биения..

2.1Методы измерения радиального биения. . 21

3 Выбор целесообразной конструкции прибора и описание его принципа

Список использованной литературы. . . 30

Нормативные ссылки. . . . 31

В первом разделе данного курсового проекта рассмотрены основные виды статистических, динамических и прочих видов испытаний стали, имеющих практическое значение для изучения их механических свойств, которые определяют их поведение при эксплуатации и обработке.

Второй раздел проекта посвящен анализу конструкций измерительных приборов для контроля радиального биения.

При проектировании строительных конструкций, машин и механизмов из стали инженеру необходимо знать и учитывать значения величин, характеризующих прочностные и деформативные свойства данного металла. Их можно получить путем механических испытаний, проводимых в испытательных лабораториях на соответствующих машинах. Таких испытаний проводится много и самых различных, например испытание на твердость, сопротивляемость ударным и переменным нагрузкам, противодействие высокой температуре и так далее.

Получить идеальную форму детали в процессе изготовления невозможно из-за: погрешности станка, деформации станка, инструмента, заготовки, неравномерности припуска и т.д.

Искажение формы детали приводит к снижению эксплуатационных свойств детали, влияет на точность базирования при изготовлении и контроле. Влияет на трудоемкость, точность сборки, на неоднородность результата измерения, повышается объем пригоночных работ.

Любая деталь состоит из поверхностей, нескольких элементов которые должны быть определенным образом расположены относительно друг друга, чтобы образовать конфигурацию детали.

Использовать деталь так, чтоб составляющие ее поверхности были точно расположены друг относительно друга, невозможно, поэтому необходимо нормировать требование к точности формы и расположения поверхностей.

Результаты испытаний используются для решения основной задачи-повышение качества механических материалов, в частности улучшение их механических свойств.

1 Испытания механических свойств.

Поведение металлов под действием внешних нагрузок характеризуется их механическими свойствами, которые позволяют определить пределы нагрузки для каждого конкретного материала, произвести сопоставимую оценку различных материалов и осуществить контроль качества металла в заводских и лабораторных условиях.

К испытаниям механических свойств предъявляется ряд требований. Температурно-силовые условия проведения испытаний должны быть по возможности приближены к служебным условиям работы материалов в реальных машинах и конструкциях. Вместе с тем методы испытаний должны быть достаточно простыми и пригодными для массового контроля качества металлургической продукции. Поскольку необходимо иметь возможность сопоставления качества разных конструкционных материалов, методы испытаний механических свойств должны быть строго регламентированы стандартами.

Результаты определения механических свойств используют в расчетной конструкторской практике при проектировании машин и конструкций. Наибольшее распространение имеют следующие виды механических испытаний.

1) Статические кратковременные испытания однократным нагружением на одноосное растяжение - сжатие, твердость, изгиб и кручение.

2) Динамические испытания с определением ударной вязкости и ее составляющих - удельной работы зарождения и развития трещины.

3) Испытания переменной нагрузкой с определением предела выносливости материала.

4) Испытания на термическую усталость.

5) Испытания на ползучесть и длительную прочность.

6) Испытания на сопротивление развитию трещины с определением параметров вязкости разрушения.

7) Испытания материалов в условиях сложнонапряженного состояния, а также натурные испытания деталей, узлов и готовых конструкций.

1.1 Классификация механических испытаний

Многообразие условий службы и обработки стали предопределяет необходимость проведения большого числа механических испытаний. Они классифицируются по разным принципам. Один из них — схема напряженного или деформированного состояния. Второй — это способ нагружения образца в процессе испытания.

В основном используют два способа нагружения образца:

1) путем его деформации с заданной скоростью и измерением сил сопротивления образца этой деформации;

2) подачей постоянной нагрузки (напряжения) на образец с измерением возникающей при этом деформации.

Наиболее распространен первый способ, обеспечивающий возможность непрерывного измерения и записи силы сопротивления образца деформированию. Он используется практически во всех разновидностях статических испытаний.

Примеры применения второго способа нагружения — испытания на ползучесть, длительную прочность и замедленное разрушение.

Механические испытания можно классифицировать также по характеру изменения нагрузки во времени. По этому принципу нагрузки подразделяют на статические, динамические и циклические. Статические нагрузки относительно медленно возрастают от нуля до некоторой максимальной величины (обычно секунды — минуты). При динамическом нагружении это возрастание происходит за очень короткий промежуток времени (доли секунды). Циклические нагрузки характеризуются многократными изменениями по направлению и (или) по величине.

В соответствии с характером действующих нагрузок различают статические, динамические и усталостные испытания.

Статические испытания отличаются плавным, относительно медленным изменением нагрузки образца и малой скоростью его деформации.

Наиболее важны следующие разновидности статических испытаний, отличающиеся схемой приложения нагрузок к образцу (т. е. схемой напряженного состояния): одноосное растяжение, одноосное сжатие (в дальнейшем — просто растяжение, сжатие), изгиб, кручение, растяжение и изгиб образцов с надрезом и трещиной (плоские и объемные схемы напряженного состояния).

Динамические испытания характеризуются приложением к образцу нагрузок с резким изменением их величины и большой скоростью деформации. Длительность всего испытания не превышает сотых — тысячных долей секунды.

В результате динамических испытаний определяют величину полной или удельной работы динамической деформации, а также величину остаточной деформации образца (абсолютной или относительной). Данных о величине напряжений и деформаций в процессе этих испытать обычно не получают, хотя в принципе это возможно. Динамические испытания чаще всего проводят по схеме изгиба. Испытания на усталость проводят при многократном приложении к образцу изменяющихся нагрузок. Такие испытания обычно длительны (часы — сотни часов), по их результатам определяют число циклов до разрушения при разных значениях напряжений, а в конечном итоге—то предельное напряжение, которое образец выдерживает без разрушения в течение определенного числа циклов нагружения.

Помимо рассмотренных статических, динамических и усталостных, различают еще две большие специфические группы испытаний. Первая из них — испытания на твердость, в которых оценивают различные характеристики сопротивления деформации или, реже, разрушению поверхностных слоев образца при взаимодействии их с другим телом— индентором (от английского indentation — вдавливание). Большинство испытаний на твердость статические.

Вторая группа — испытания на ползучесть и длительную прочность. Их обычно проводят при повышенных температурах для оценки характеристик жаропрочности. Образцы здесь в течение всего испытания находятся под постоянным напряжением или нагрузкой. При испытании на ползучесть измеряют величину деформации в зависимости от времени при разных напряжениях в образце, а при испытании на длительную прочность оценивают время до разрушения под действием различных напряжений.

Существует еще ряд методов и разновидностей механических испытаний, которые используют на практике в более ограниченных масштабах.

Как видно, методы проведения испытаний весьма разнообразны. К тому же они проводятся при разных температурах, начиная от очень низких отрицательных и кончая температурами в интервале плавления, в разных средах и т. д. Все это вполне естественно, ибо отражает разнообразие условии эксплуатации и обработки металлов и сплавов, которые в конечном итоге пытаются моделировать испытаниями.

1.2 Условия подобия механических испытаний

Большинство характеристик механических свойств металлов и сплавов не является их физическими константами. Они в сильной степени зависят от условий проведения испытаний. Поэтому нельзя судить о свойствах стали по данным механических испытаний, которые проводятся разными исследователями по разным методикам. Необходимо выполнение определенных условий проведения испытаний, которые бы обеспечили постоянство результатов при многократном повторении испытаний, так чтобы эти результаты в максимальной степени отражали свойства материала, а не влияние условий испытания. Кроме того, соблюдение этих правил должно гарантировать сопоставимость результатов испытаний, проведенных в разное время, в разных лабораториях, на различном оборудовании, образцах и т. д. Условия, обеспечивающие такое постоянство и сопоставимость результатов, называются условиями подобия механических испытаний.

Для соблюдения условий подобия образцы следует подвергать испытаниям при одинаковой схеме напряженного состояния и в одинаковых физических условиях. Отсюда следует необходимость соблюдения трех видов подобия:

1) геометрического (форма и размеры образца);

2) механического (схема и скорость приложения нагрузок);

3) физического (внешние физические условия).

Условие геометрического подобия сводится к тому, что испытываемые образцы должны иметь геометрически подобную форму. Например, два образца на рисунке 1.1 геометрически подобны, если они имеют качественно одинаковую конфигурацию, а отношения любых двух соответственных размеров каждого из них равны d1/D1= d2/D2 , l1/d1= l2/d2 и т. д. Форма и размеры образца влияют на результаты испытания через схему напряженного состояния, которая зависит от формы тела и определенного расположения точек приложения нагрузок.

Рисунок 1.1- Геометрически подобные образцы

Естественно, что еще в большей степени на напряженное состояние в образце влияет схема приложения нагрузок. В общем виде механическое подобие заключается в том, что в сходственных сечениях рабочей части образцов возникают тождественное напряженное состояние и одинаковая относительная деформация.

Следует отметить, что сформулированные условия геометрического и механического подобия обеспечивают тождество напряженных состояний и относительных деформаций не во всех случаях. Отклонения наблюдаются, в частности, при хрупком разрушении, при очень больших различиях в абсолютных размерах образков (масштабный фактор) и в ряде других случаев, каждый из которых имеет свое объяснение. Например, влияние масштабного фактора можно объяснить на основе статистических теорий прочности. Снижение механических свойств при увеличении размеров образцов связывают с увеличением вероятности существования опасных поверхностных и внутренних дефектов—концентраторов напряжений, вызывающих преждевременную деформацию н разрушение.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

1. Механические испытания

2. Пневматические испытания

1. Механические испытания

Разрушающие методы контроля сварных соединений. К разрушающим методам контроля относятся способы испытания контрольных образцов с целью получения необходимых характеристик сварного соединения.

Эти методы могут применяться как на контрольных образцах, так и на отрезках, вырезанных из самого соединения. В результате разрушающих методов контроля проверяют правильность подобранных материалов, выбранных режимов и технологий, осуществляют оценку квалификации сварщика.

Механические испытания являются одним из основных методов разрушающего контроля. По их данным можно судить о соответствии основного материала и сварного соединения техническим условиям и другим нормативам, предусмотренным в данной отрасли.

К механическим испытаниям относят: испытание сварного соединения в целом на различных его участках (наплавленного металла, основного металла, зоны термического влияния) на статическое (кратковременное) растяжение;

ударный изгиб (на надрезанных образцах);

на стойкость против механического старения;

измерение твердости металла на различных участках сварного соединения.

Контрольные образцы для механических испытаний варят из того же металла, тем же методом и тем же сварщиком, что и основное изделие.

В исключительных случаях контрольные образцы вырезают непосредственно из контролируемого изделия. Варианты образцов для определения механических свойств сварного соединения показаны на рис 1.


рис 1. Варианты образцов для определения механических свойств (размеры в мм): А-Б - на растяжение наплавленного металла (А) и сварного соединения (Б); В - на изгиб; Г - на ударную вязкость.

Статическим растяжением испытывают прочность сварных соединений, предел текучести, относительное удлинение и относительное сужение. Статический изгиб проводят для определения пластичности соединения по величине угла изгиба до образования первой трещины в растянутой зоне. Испытания на статический изгиб проводят на образцах с продольными и поперечными швами со снятым усилением шва заподлицо с основным металлом.

Ударный изгиб - испытание, определяющее ударную вязкость сварного соединения. По результатам определения твердости можно судить о прочностных характеристиках, структурных изменениях металла и об устойчивости сварных швов против хрупкого разрушения. В зависимости от технических условий изделие может подвергаться ударному разрыву. Для труб малого диаметра с продольными и поперечными швами проводят испытания на сплющивание. Мерой пластичности служит величина просвета между поджимаемыми поверхностями при появлении первой трещины. Металлографические исследования сварных соединений проводят для установления структуры металла, качества сварного соединения, выявляют наличие и характер дефектов. По виду излома устанавливают характер разрушения образцов, изучают макро- и микроструктуру сварного шва и зоны термического влияния, судят о строении металла и его пластичности.

Макроструктурный анализ определяет расположение видимых дефектов и их характер, а также макрошлифы и изломы металла. Его проводят невооруженным глазом или под лупой с 20-ти кратным увеличением.

Микроструктурный анализ проводится с увеличением в 50-2000 раз с помощью специальных микроскопов. При этом методе можно обнаружить окислы на границах зерен, пережог металла, частицы неметаллических включений, величину зерен металла и другие изменения в его структуре, вызванные термической обработкой. При необходимости делают химический и спектральный анализ сварных соединений.

Специальные испытания выполняют для ответственных конструкций. Они учитывают условия эксплуатации и проводятся по методикам, разработанным для данного вида изделий.

2. Пневматические испытания

Пневматические испытания в случаях, когда невозможно выполнить гидравлические испытания. Пневматические испытания предусматривают заполнение сосуда сжатым воздухом под давлением, превышающим на 10-20 кПа атмосферное или 10 - 20% выше рабочего. Швы смачивают мыльным раствором или погружают изделие в воду. Отсутствие пузырей свидетельствует о герметичности. Существует вариант пневматических испытаний с гелиевым течеискателем. Для этого внутри сосуда создают вакуум, а снаружи его обдувают смесью воздуха с гелием, который обладает исключительной проницаемостью. Попавший внутрь гелий отсасывается и попадает на специальный прибор - течеискатель, фиксирующий гелий. По количеству уловленного гелия судят о герметичности сосуда. Вакуумный контроль проводят тогда, когда невозможно выполнить другие виды испытаний.

Герметичность швов можно проверить керосином. Для этого одну сторону шва при помощи пульверизатора окрашивают мелом, а другую - смачивают керосином. Керосин имеет высокую проникающую способность, поэтому при неплотных швах обратная сторона окрашивается в темный тон или появляются пятна.

Испытание сжатым воздухом (пневматическое испытание). Это испытание применяется для проверки сосудов и труба ­ проводов на герметичность, как правило, только при рабочем давлении изделия. Плотность сварных соединений проверяют мыльным раствором или погружением сосуда в воду. В местах пропуска газа появляются пузыри.

Внешний осмотр - наиболее распространенный и доступный вид контроля, не требующий материальных затрат. Данному контролю подвергают все виды сварных соединений, несмотря на использования дальнейших методов. При внешнем осмотре выявляют практически все виды наружных дефектов. При этом виде контроля определяют не провары, наплывы, подрезы и другие дефекты, доступные обозрению. Внешний осмотр выполняют невооруженным глазом или используют лупу с 10-ти кратным увеличением. Внешний осмотр предусматривает не только визуальное наблюдение, но и обмер сварных соединений и швов, а также замер подготовленных кромок. В условиях массового производства существуют специальные шаблоны, позволяющие с достаточной степенью точности измерить параметры сварных швов.

В условиях единичного производства сварные соединения обмеряют универсальными мерительными инструментами или стандартными шаблонами, пример которых приведен на рис.2.


Рис. 2 Измерение разделки кромок, зазоров и размеров швов шаблоном ШС-2

Набор шаблонов ШС-2 представляет собой комплект стальных пластинок одинаковой толщины, расположенных на осях между двумя щеками. На каждой из осей закреплено по 11 пластин, которые с двух сторон поджимаются плоскими пружинами. Две пластины предназначены для проверки узлов разделки кромок, остальные - для проверки ширины и высоты шва. С помощью этого универсального шаблона можно проверять углы разделки кромок, зазоры и размеры швов стыковых, тавровых и угловых соединений.

Непроницаемость емкостей и сосудов, работающих под давлением, проверяют гидравлическими и пневматическими испытаниями. Гидравлические испытания бывают с давлением, наливом или поливом водой. Для испытания наливом сварные швы сушат или протирают насухо, а емкость заполняют водой так, чтобы влага не попала на швы. После наполнения емкости водой все швы осматривают, отсутствие влажных швов будет свидетельствовать об их герметичности.

Испытаниям поливом подвергают громоздкие изделия, у которых есть доступ к швам с двух сторон. Одну сторону изделия поливают водой из шланга под давлением и проверяют герметичность швов с другой стороны.

При гидравлическом испытании с давлением сосуд наполняют водой и создают избыточное давление, превышающее в 1,2-2 раза рабочее давление. В таком состоянии изделие выдерживают в течение 5 - 10 минут. Герметичность проверяют по наличию влаги наливах и величине снижения давления. Все виды гидравлических испытаний проводят при положительных температурах.

Список литературы

Наклеп может быть также следствием холодной обработки металла. Например, при изготовлении клепаных конструкций отверстия для заклепок зачастую продавливают (пробивают) на специальных прессах. В результате материал у краев отверстия оказывается наклепанным, обладает повышенной хрупкостью и при действии переменных напряжений в этой зоне возможно появление трещин. Поэтому целесообразно пробивать… Читать ещё >

  • техническая механика: сопротивление материалов

Испытание материалов па растяжение и сжатие. Основные механические характеристики материалов ( реферат , курсовая , диплом , контрольная )

Конструктор, выбирая материал для проектируемой детали, а затем рассчитывая ее на прочность (жесткость, устойчивость), должен располагать данными о механических свойствах материала, т. е. его прочности, пластичности и т. п.

В связи с этим создано много различных видов испытаний, но основными и наиболее распространенными являются испытания на растяжение и сжатие. С их помощью удается получить наиболее важные характеристики материала, находящие прямое применение в расчетной практике.

Для испытания на растяжение используют специально изготовленные образцы (рис. 11), основной особенностью которых является наличие усиленных мест захвата и плавного перехода к сравнительно узкой ослабленной рабочей части. Начальную расчетную длину /0 образца принимают обычно раз в 10 большей диаметра d.

Стандартный образец для испытаний на растяжение.

Рис. 11. Стандартный образец для испытаний на растяжение.

Испытания на растяжение и сжатие проводят на специальных машинах, где усилие создают либо при помощи груза, действующего на образец через систему рычагов (рычажная машина), либо при помощи гидравлического давления, передаваемого на поршень (гидравлическая машина). Современные испытательные машины обычно снабжены прибором для автоматической записи диаграммы растяжения — сжатия. Это дает возможность сразу после испытаний получить вычерченную в определенном масштабе кривую F = / (At), которую называют диаграммой растяжения образца.

Диаграмма растяжения образца.

Рис. 12. Диаграмма растяжения образца.

На рис. 12 показан примерный вид диаграммы растяжения, полученной при испытании образца из малоуглеродистой стали. На диаграмме точка 0 соответствует началу растяжения образца. В начальной стадии испытания (до точки А с ординатой F"4) зависимость между силой и удлинением линейна, т. е. справедлив закон Гука. При растягивающей силе Fy (т. В), почти не отличающейся от Fm, в образце возникают первые остаточные деформации. При некотором значении растягивающей силы FT наблюдается рост удлинения образца без увеличения нагрузки. Это явление называется текучестью металла. Соответствующий участок диаграммы (почти горизонтальная линия) называется площадкой текучести.

В этой стадии деформации полированная поверхность образца становится матовой и на ней можно обнаружить сетку линий, наклоненных к оси образца под углом примерно 45°. Это так называемые линии Людерса — Чернова, представляющие собой следы сдвигов частиц материала. Направление указанных линий соответствует площадкам, на которых при растяжении образца возникают наибольшие касательные напряжения.

По окончании стадии текучести материал вновь начинает сопротивляться деформации (т. L), здесь связь между силой и удлинением нелинейна: удлинение растет быстрее нагрузки. Этот участок диаграммы называют зоной упрочнения. При силе, примерно равной Fmax, на образце появляется местное утоньшение — шейка (т. С), в результате сопротивление образца падает и его разрыв (т. D) происходит при силе, меньшей Fmax.

Пользоваться построенной диаграммой растяжения образца неудобно, так как она существенно зависит от размера поперечного сечения образца и длины выбранной измерительной базы /0. Для того чтобы исключить влияние этих факторов, диаграмму Д/ = /(F) перестраивают: все ординаты делят на начальную площадь поперечного сечения Аа, а все абсциссы — на начальную расчетную длину /а. В результате получают так называемую условную диаграмму растяжения материала 5%. К числу пластичных материалов можно отнести медь, алюминий, латунь, малоуглеродистую сталь и др. Менее пластичными являются дюраль и бронза. К числу слабопластичных материалов относится большинство легированных сталей.

На рис. 14, а представлены диаграммы растяжения различных пластичных материалов. Как видим, некоторые пластичные материалы не имеют ярко выраженной площадки текучести.

Диаграммы растяжения различных материалов.

Рис. 14. Диаграммы растяжения различных материалов: а) пластичные материалы; б) хрупкий материал Противоположным свойству пластичности является свойство хрупкости, т. е. способность материала разрушаться при незначительных остаточных деформациях. Для таких материалов величина остаточного удлинения при разрыве не превышает 2−5%, а в ряде случаев измеряется долями процента. Типичные хрупкие материалы — серый чугун, высокоуглеродистая инструментальная сталь, камень и др. Хрупкие материалы дают иного рода диаграммы растяжения (см. рис. 14, б).

Такая диаграмма не имеет явно выраженного прямолинейного участка, т. е. прямой пропорциональности между напряжением и относительным удлинением не наблюдается. У хрупкого материала отсутствует явление текучести, и деформации упруги почти вплоть до разрушения. Следует отметить, что деление материалов на пластичные и хрупкие является условным, так как в зависимости от условий испытания (скорость нагружения, температура и т. п. ) и вида напряженного состояния хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.

Остановимся дополнительно еще на некоторых вопросах, связанных со статическими испытаниями малоуглеродистой стали (и других пластичных материалов) на растяжение. Опытным путем установлено, что при разгрузке образца, растянутого так, что в нем возникают напряжения выше предела упругости и даже выше предела текучести (например, от точки N диаграммы на рис. 15), линия разгрузки оказывается прямой, параллельной начальному участку ОА диаграммы. Следовательно, полная деформация образца состоит из двух частей — упругой, исчезающей после снятия нагрузки, и остаточной (пластической).

Закон упругой разгрузки.

Рис. 15. Закон упругой разгрузки.

Полное удлинение, соответствующее нагрузке в точке N, выражается отрезком OL, упругое — отрезком ML и пластическое — отрезком ОМ оси абсцисс диаграммы (см. рис. 15).

Упругая деформация и при напряжениях, больших предела пропорциональности, может быть также определена по закону Гука. Это следует из того, что линия разгрузки — прямая. Параллельность этой линии начальному участку диаграммы указывает, что модуль упругости Е при разгрузке имеет то же значение, что и при нагружении в пределах справедливости закона Гука.

Если подвергнуть повторному нагружению образец, который был предварительно растянут до возникновения в нем напряжений, больших предела текучести, то оказывается, что линия нагрузки практически совпадает с линией разгрузки, а часть диаграммы, лежащая левее точки, от которой производилась разгрузка, не повторяется. Таким образом, в результате предварительной вытяжки материала за предел текучести его свойства изменяются: повышается предел пропорциональности и уменьшается пластичность. Это явление называется наклепом. В определенном смысле можно сказать, что в результате наклепа материал упрочняется.

Уменьшение пластичности материала при наклепе подтверждается следующим. Пластичность материала характеризуется значением относительного остаточного удлинения при разрыве Показать весь текст Стоимость уникальной работы

Читайте также: