Медь реферат по геологии

Обновлено: 30.06.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Министерство образования и науки РФ

1.Общая характеристика меди.

Природная медь состоит из двух стабильных нуклидов 63 Cu (69,09% по массе) и 65 Cu (30,91%). Конфигурация двух внешних электронных слоев нейтрального атома меди 3s 2 p 6 d 10 4s 1 . Образует соединения в степенях окисления +2 (валентность II) и +1 (валентность I), очень редко проявляет степени окисления +3 и +4.

В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро (Ag) и золото (Au).

Радиус нейтрального атома меди 0,128 нм, радиус иона Cu + от 0,060 нм (координационное число 2) до 0,091 нм (координационное число 6), иона Cu 2+ — от 0,071 нм (координационное число 2) до 0,087 нм (координационное число 6). Энергии последовательной ионизации атома меди 7,726; 20,291; 36,8; 58,9 и 82,7 эВ. Сродство к электрону 1,8 эВ. Работа выхода электрона 4,36 эВ. По шкале Полинга электроотрицательность меди 1,9; медь принадлежит к числу переходных металлов. Стандартный электродный потенциал Cu/Cu 2+ 0,339 В. В ряду стандартных потенциалов медь расположена правее водорода (H) и ни из воды, ни из кислот водорода не вытесняет.

Простое вещество медь — красивый розовато-красный пластичный металл.

Название: латинское название меди происходит от названия острова Кипра (Cuprus), где в древности добывали медную руду; однозначного объяснения происхождения этого слова в русском языке нет.

2.Физические и химические свойства:

Кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см 3 , температура плавления 1083,4°C, температура кипения 2567°C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20°C удельное сопротивление 1,68·10–3 Ом·м).

При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO.

Красновато-коричневый оксид меди (I) Cu2O при растворении в бромо- и иодоводородной кислотах образует, соответственно, бромид меди (I) CuBr и иодид меди (I) CuI. При взаимодействии Cu2O с разбавленной серной кислотой возникают медь и сульфат меди:

При нагревании на воздухе или в кислороде Cu2O окисляется до CuO, при нагревании в токе водорода - восстанавливается до свободного металла.

Черный оксид меди (II) CuO, как и Cu2O, c водой не реагирует. При взаимодействии CuO с кислотами образуются соли меди (II):

При сплавлении со щелочами CuO образуются купраты, например:

Нагревание Cu2O в инертной атмосфере приводит к реакции диспропорционирования:

Такие восстановители, как водород, метан, аммиак, оксид углерода (II) и другие восстанавливают CuO до свободной меди, например:

CuO + СО = Cu + СО2.

Кроме оксидов меди Cu2O и CuO, получен также темно-красный оксид меди (III) Cu2O3, обладающий сильными окислительными свойствами.

Медь реагирует с галогенами, например, при нагревании хлор реагирует с медью с образованием темно-коричневого дихлорида CuCl2. Существуют также дифторид меди CuF2 и дибромид меди CuBr2, но дииодида меди нет. И CuCl2, и CuBr2 хорошо растворимы в воде, при этом ионы меди гидратируются и образуют голубые растворы.

При реакции CuCl2 с порошком металлической меди образуется бесцветный нерастворимый в воде хлорид меди (I) CuCl. Эта соль легко растворяется в концентрированной соляной кислоте, причем образуются комплексные анионы [CuCl2] – , [CuCl3] 2– и [СuCl4] 3– , например за счет процесса:

При сплавлении меди с серой образуетcя нерастворимый в воде сульфид Cu2S. Сульфид меди (II) CuS выпадает в осадок, например, при пропускании сероводорода через раствор соли меди (II):

В присутствии окислителей, прежде всего кислорода, медь может реагировать с соляной кислотой и разбавленной серной кислотой, но водород при этом не выделяется:

С азотной кислотой различных концентраций медь реагирует довольно активно, при этом образуется нитрат меди (II) и выделяются различные оксиды азота. Например, с 30%-й азотной кислотой реакция меди протекает так:

С концентрированной серной кислотой медь реагирует при сильном нагревании:

Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):

Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.

Ионы меди Cu 2+ легко образуют комплексы с аммиаком, например, состава [Cu(NH3)] 2+. При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2.

Гидроксид меди Cu(OH)2 характеризуется преобладанием основных свойств. Он реагирует с кислотами с образованием соли и воды, например:

Но Сu(OH)2 реагирует и с концентрированными растворами щелочей, при этом образуются соответствующие купраты, например:

Если в медноаммиачный раствор, полученный растворением Сu(OH)2 или основного сульфата меди в аммиаке, поместить целлюлозу, то наблюдается растворение целлюлозы и образуется раствор медноаммиачного комплекса целлюлозы. Из этого раствора можно изготовить медноаммиачные волокна, которые находят применение при производстве бельевого трикотажа и различных тканей.

3.Нахождение в природе

В земной коре содержание меди составляет около 5·10–3% по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит, или медный колчедан, CuFeS2 (30% меди), ковеллин CuS (64,4% меди), халькозин, или медный блеск, Cu2S (79,8% меди), борнит Cu5FeS4 (52-65% меди). Существует также много и оксидных руд меди, например: куприт Cu2O, (81,8% меди), малахит CuCO3·Cu(OH)2 (57,4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.

Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо (Fe), цинк (Zn), свинец (Pb), и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото. Для промышленных разработок используют руды, в которых содержание меди составляет немногим более 1 % по массе, а то и менее. В морской воде содержится примерно 1·10–8 % меди.

Одновременно сульфид меди (I) Cu2S окисляется:

Образовавшийся на этой стадии Cu2О далее реагирует с Cu2S:

В результате возникает так называемая черновая медь, в которой содержание самой меди составляет уже 98,5-99,3% по массе. Далее черновую медь подвергают рафинированию. Рафинирование на первой стадии — огневое, оно заключается в том, что черновую медь расплавляют и через расплав пропускают кислород. Примеси более активных металлов, содержащихся в черновой меди, активно реагируют с кислородом и переходят в оксидные шлаки. На заключительной стадии медь подвергают электрохимическому рафинированию в сернокислом растворе, при этом черновая медь служит анодом, а очищенная медь выделяется на катоде. При такой очистке примеси менее активных металлов, присутствовавшие в черновой меди, выпадают в осадок в виде шлама, а примеси более активных металлов остаются в электролите. Чистота рафинированной (катодной) меди достигает 99,9% и более.

Медь, как полагают, — первый металл, который человек научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (конец 4 — начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах. Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы.

С 20 века главное применение меди обусловлено ее высокой электропроводимостью. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь — незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике — для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др.

Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития (см. Биогенные элементы). В растениях и животных содержание меди варьируется от 10–15 до 10–3%. Мышечная ткань человека содержит 1·10–3% меди, костная ткань — (1-26)·10–4 %, в крови присутствует 1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных - участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления. Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза. Другой медьсодержащий белок, гемоцианин, выполняет роль гемоглобина у некоторых беспозвоночных. Так как медь токсична, в животном организме она находится в связанном состоянии. Значительная ее часть входит в состав образующегося в печени белка церулоплазмина, циркулирующего с током крови и деставляющего медь к местам синтеза других медьсодержащих белков. Церулопламин обладает также каталитической активностью и участвует в реакциях окисления. Медь необходима для осуществления различных функций организма — дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ. Недостаток меди вызывает болезни как растений, так и животных и человека. С пищей человек ежедневно получает 0,5-6 мг меди.

Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека. ПДК для аэрозолей меди составляет 1 мг/м 3 , для питьевой воды содержание меди должно быть не выше 1,0 мг/л.

Синонимы: Купрокупритом были названы тонкие смеси самородной меди и куприта (Вернадский, 1910). Витнеит—whitneyite (Гент, 1859) и дарвинит (Форбс, 1860) — мышьяковистая медь, образующая смеси с альгодонитом.

Латинское наименование меди cuprum происходит от названия острова Кипр, откуда в древности ввозили медь. Происхождение русского названия неясно.

Английское название минерала Медь - Copper

Медь самородная

Медный самородок

  • Химический состав
  • Разновидности
  • Кристаллографическая характеристика
  • Форма нахождения в природе
  • Физические свойства
  • Химические свойства. Прочие свойства
  • Диагностические признаки. Спутники.
  • Происхождение минерала
  • Месторождения
  • Практическое применение
  • Физические методы исследования
  • Кристаллооптические свойства в тонких препаратах (шлифах)
  • Купить

Формула

Химический состав

Содержит иногда примеси Fe, Ag, Pb, Au, Hg, Bi, Sb, V, Ge 3 (серебристая медь с 3—4% Ag, железистая—2,5% Fe и золотистая—2—3% Au). Примеси наблюдаются чаще в первичной самородной меди; вторичная медь обычно более чистая. Состав самородной меди из Шамлугского месторождения (Армения): Cu — 97,20 —97,46%, Fe — 0,25%; в меди из месторождений Алтая определено 98,3% Cu и более.

Кристаллографическая характеристика

Сингония. Кубическая.

Класс. Гексоктаэдрический.

Кристаллическая структура

Для кристаллической структуры характерна гранецентрированная решетка; по углам и в центрах граней элементарного куба расположены атомы меди. Это формальное выражение того, что в структуре меди имеется плотнейшая упаковка (так называемая кубическая плотнейшая упаковка) из атомов металла с радиусом 1,27 А и расстоянием между ближайшими атомами 2,54 А при выполнении пространства в 74,05%. Каждый атом Cu окружен 12 ему подобными (координационное число 12), располагающимися вокруг него по вершинам так называемого Архимедова кубооктаэдра.

Главные формы:а (100), d (110), о (111), l (530), е (210), h (410).

Форма нахождения в природе

Облик кристаллов. Облик кристаллов кубический, тетрагексаэдрический, додекаэдрический, реже — октаэдрический (возможно, псевдоморфозы по куприту). Грани часто шероховатые, с углублениями или возвышениями. Простые кристаллы редки.

Двойники. Двойники срастания по (111) обычны, иногда полисинтетические, часто пластинчатые в направлении двойники оси или удлиненные паралелльны диагонали двойники плоскости. Обычно кристаллы (простые и двойники) неравномерно развиты: вытянуты, укорочены или деформированы. Характерны дендритовидные формы, представляющие собой однообразные срастания множества кристаллов (единообразно деформированных или правильных) по какому-либо одному направлению. Таковы, например, двойниковые по (111) кристаллы, вытянутые по оси симметрии 2-го порядка и сросшиеся параллельно граням ромбического додекаэдра) или срастания правильных двойниковых кристаллов, разветвляющиеся по направлению ребер и диагоналей октаэдрических граней, а также параллельные срастания кристаллов, вытянутых в направлении осей 4-го порядка. В сплошных выделениях самородной меди при травлении обнаруживаются признаки собирательной кристаллизации с развитием крупных зерен за счет более мелких зональных зерен неправильной формы.

Агрегаты. Искаженные кристаллы, в одиночных неправильных зернах, дендритовидные сростки, нитевидные, проволочные, моховидные образования, тонкие пластинки, конкреции, порошковатые скопления и сплошные массы весом до нескольких сотен тонн.

Дендриты

Дендриты

Физические свойства

Оптические

Цвет в свежем изломе светло-розовый, быстро переходящий в медно-красный, затем в коричневый; часто с желтой или пестрой побежалостью.

Черта медно-красная, блестящая.

Прозрачность. Непрозрачна. В тончайших пластинках просвечивает зеленым цветом.

Механические

Спайность не наблюдается.

Излом занозистый, крючковатый.

Химические свойства

Легко растворяется в разбавленной HNO 3 и в царской водке, в H 2 SO 4 — при нагревании, в НСl — с трудом. В водном растворе аммиака растворяется, окрашивая его в синий цвет. В полированных шлифах травится всеми основными реактивами. Внутреннее строение легко выявляется с помощью NH 4 OH + Н 2 O 2 или НСl+ CrO 3 (50%-ный раствор).

Прочие свойства

Медный самородок

Очень ковка и тягуча. Электропроводность очень высокая; существенно понижается от примесей.

Поведение при нагревании. Чистая медь плавится при 1083°. Теплопроводность несколько меньше, чем у серебра.

Искусственное получение минерала.

Может быть легко получена из расплавов или путем электролиза из растворов солей меди.

Диагностические признаки

Сходные минералы

Узнается по красному цвету свежей поверхности, блестящей черте, средней твердости и ковкости, обычно покрыта зеленоватыми, черными, синими налетами окисленных минералов меди. Под микроскопом в отраженном свете легко определяется по цвету и отражательной способности.

Сопутствующие минералы. Медистое золото, халькозин, кальцит, диопсид, апатит, сфен, магнетит, малахит, барит, кварц, халькопирит.

Происхождение и нахождение

Гидротермальное. Накапливается в россыпях. Как уникальные явления описаны самородки массой до 450 т.

Самородная медь образуется в восстановительных условиях при различных геологических процессах; значительная часть ее выделяется из гидротермальных растворов. В виде микроскопических выделений наблюдается во многих, преимущественно основных, изверженных породах, подвергшихся воздействию гидротермальных растворов, например, в серпентинизированных перидотитах, дунитах и серпентинитах. В этом случае возникновение самородной меди, возможно, связано с разложением ранее образовавшихся медных сульфидов, например, кубанита (Урал, Закавказье). Аналогичное происхождение можно приписать самородной меди в амфиболитизированных основных породах Серовского района Свердловской области. В Карабашском месторождении медистого золота Челябинской области самородная медь наблюдается в жилообразных телах диопсидо-гранатовых пород, залегающих среди серпентинитов; для самородной меди здесь характерна ассоциация с медистым золотом, халькозином, кальцитом, диопсидом, апатитом, сфеном, магнетитом и др.
В некоторых древних вулканических породах (мелафирах, диабазах и др.), метаморфизованных под воздействием паров, газов и гидротермальных растворов, медь выполняет миндалины, образует цемент между минералами измененной лавы, заполняет пустоты и трещины; сопровождается гидротермальными минералами: анальцимом, ломонтитом, пренитом, датолитом, адуляром, хлоритом, эпидотом, пумпелиитом, кварцем, кальцитом. Крупнейшие месторождения этого типа находятся на полуострове Кивино в районе Верхнего озера (штат Мичиган, США), где оруденение приурочено к верхнепротерозойской толще. Главная масса меди добывается из мелафиров и конгломератов, но наиболее крупные выделения меди (до 400 т и более) встречены в кальцитовых жилах, содержащих самородное серебро и домейкит.

Медь

Медный самородок

Изменение минерала.

Наиболее обычными продуктами изменения самородной меди являются куприт, малахит и азурит.

Месторождения

Выделения самородной меди наблюдались в диабазах Новой Земли, в траппах Сибирской платформы, среди основных эффузивных пород в Италии, на Фарерских островах (Дания), в Новой Шотландии (Канада) и в других местах. Представителями редких типов гипогенных месторождений самородной меди являются цинково-марганцовое месторождение Франклин (штат Нью-Джерси, США) и марганцовые месторождения Лонгбан и Якобсберг (Швеция). Гипогенными, по-видимому, являются выделения самородной меди весом до нескольких тонн из ранее разрабатывавшегося месторождения Калмактас в Казахстане, представленные в музеях прекрасными образцами.
В зоне окисления, особенно в ее нижних частях, самородная медь в основном является ранним продуктом изменения сульфидных медных минералов, главным образом халькозина. Она слагает преимущественно выделения неправильной формы, реже — кристаллы и дендритовидные агрегаты.
Наиболее часто самородная медь сопровождается халькозином, купритом, кальцитом, лимонитом. Наблюдается в ряде месторождений Казахстана (Джезказган, Беркара, Успенское и др.), Рудного Алтая (Белоусовское, Зыряновское, Чудак, Таловское и др.), США (Бисби и Клифтон- Моренси в штате Аризона, Тинтик в штате Юта и др.).
Частью самородная медь в зоне окисления возникает путем отложения из растворов, содержащих сульфат меди. Такова, например, самородная медь, образующая выделения в полостях среди агрегатов лимонита, иногда в ассоциации с купритом (Меднорудянекое месторождение Свердловской обл. и др.). Известны псевдоморфозы самородной меди, образовавшиеся в зоне окисления по халькозину, куприту, антлериту, халькантиту, азуриту, кальциту, арагониту и другим минералам.
Особенно красивые образцы самородной меди (кристаллы и дендритовидные сростки) происходят из Турьинских рудников Свердловской области.
В некоторых горных выработках из медьсодержащих вод на железных предметах выделяется так называемая цементная медь в виде пленок и корочек. Известны также случаи образования меди на полусгнивших остатках крепежной древесины.
В повышенном количестве самородная медь наблюдается в некоторых осадочных породах (песчаниках, глинах, мергелях), содержащих растительные остатки, в виде выделений неправильной формы, иногда в псевдоморфозах по древесине или в виде конкреций. Таковы, например, пермские медистые песчаники отдельных районов России (Приуралье, Татарстан и др.), песчаники Науката в Киргизияи меловые медистые песчаники Корокоро и Кобрицос в Боливии и др.
С восстановительными процессами связано также образование самородной меди в некоторых торфяниках, например,в Свердловской области— по реке Лёвихе в бассейне реки Тагила и в Сысертском районе.
В виде галек и зерен самородная медь встречается в России в некоторых россыпях: на Урале, по Енисею, по реке Б. Сархой в Бурятия, по реке Чорох в Грузии, на Командорских островах и в других местах. В штате Коннектикут (США) самородная медь обнаружена в ледниковых отложениях в виде выделений весом до 75 кг. Мелкие, неправильной формы выделения самородной меди отмечены в самородном железе метеорита Венгерово в ассоциации с троилитом.

Медь

Медь

Практическое применение

Важная составная часть некоторых медных руд, иногда главный медный минерал таких руд.

Применяется в электротехнике, приборостроении; широко применяются различные сплавы с медью (бронза, латунь, мельхиор).

Физические методы исследования

Дифференциальный термический анализ

Главные линии на рентгенограммах:

Старинные методы. Под паяльной трубкой плавится. При температуре белого каления постепенно окисляется, окрашивая пламя в зеленый цвет.

Кристаллооптические свойства в тонких препаратах (шлифах)

В полированных шлифах в отраженном свете розовая. Отражательная способность (в %): для зеленых лучей — 61, для оранжевых — 83, для красных — 89. Изотропна. Показатели преломления (по Кундту) в призмах для красного света — 0,45, для белого — 0,65, для голубого — 0,95; в отражательном свете (по Друде) для Na-света 0,641,для красного — 0,580. Коэфиэциент поглощения для Na-света — 4,09, для красного света — 5,24.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Магматические сульфидные медно-никелевые месторождения

Технология переработки никелевых руд

Месторождения медных и никелевых руд на территории России

Медные руды. Характеристика

Магматические месторождения представлены сульфидными медно-никелевыми рудами и медно-ванадиевыми комплексными рудами, из которых, кроме меди (содержание 1-2%) и никеля, добывают также кобальт, золото, платину и рассеянные элементы. Нерудные минералы представлены главным образом плагиоклазом и пироксеном.

К таким месторождениям относятся в России: Печенга, Аллареченское, Мончегорское (Кольский полуостров); Талнах, Октябрьское, Норильск (Красноярский край); в Финляндии — Пори; Швеции — Клевая; Канаде — Садбери, Томпсон; США — Стиллуотер и в ЮАР — Бушвельд, Инсизва.

Характерной особенностью медно-никелевых месторождений всего мира является выдержанный минеральный состав руд: пирротин , пентландит , халькопирит , магнетит ; кроме них в рудах встречаются пирит , кубанит , полидимит , никелин , миллерит , виоларит , минералы группы платины , изредка хромит , арсениды никеля и кобальта, галенит , сфалерит , борнит , макинавит , валлерит , графит , самородное золото

Магматические сульфидные медно-никелевые месторождения .

Рудообразование — первоначальное накопление и обособление сульфидов — происходит в процессе внедрения, дифференциации и ликвации первоначально однородного никеленосного расплава на две жидкости: силикатную и сульфидную составляющие. Сульфидный расплав, благодаря большему весу опускается и концентрируется в придонных частях интрузивов и кристаллизуется после кристаллизации силикатного расплава. Подъём никеленосной магмы совершается по глубинным разломам , глубоко проникающим в мантию , которые и определяют геологическую позицию рудных районов и полей медно-никелевых месторождений. Месторождения сульфидных медно-никелевых руд связаны с лополитоподобными или плитообразными массивами расслоенных габброидов , приуроченных к зонам глубинных разломов на древних щитах и платформах .

Форма рудных тел наиболее крупных месторождений пластообразная (Фруд-Стоби, Томпсон и др. в Канаде; Норильск 1, Талнахское и Октябрьское в СНГ; Камбалда в Австралии и др.), часто совпадающая с направлением расслоенности интрузивных массивов. Многие месторождения (Мончегорское, Каула в СНГ; Линн-Лейк в Канаде; Пилансберг в ЮАР; ряд месторождений Австралии) имеют жильную , столбообразную или более сложную форму рудных тел, определяемую разрывными нарушениями.

В них содержится (%): Ni 0.6-5, Cu 0.2-6, Co 0.01-0.1, металлы группы платины. Отношение Ni:Cu= 1,5-2,5:1, но может быть и иным. Отношение Co:Ni=1:20-1:40. Бедные руды (Ni до 1,5 % — в основном вкрапленные руды) обогащаются. Богатые руды (Ni более 1,5 %) могут идти в плавку без обогащения. Из медно-никелевых руд извлекают медь , никель , кобальт , металлы группы платины, золото , серебро , серу , селен , теллур .

Никелевые руды

Никелевая руда – вид полезных ископаемых, содержащих химический элемент никель в таких количествах и химических соединениях, что его извлечение является не только возможным, но и экономически выгодным. Обычно таковыми являются месторождения сульфидных (содержание никеля 1-2%) и силикатных (содержание никеля 1-1,5%) руд. К наиболее важным относят часто встречающиеся минералы: сульфиды (пентландит, миллерит, никелин, никелистый пирротин, полидимит, кобальт-никелевый пирит и другие), водные силикаты (гарниерит, аннабергит, ховахсит, ревдинскит, шухардит, никелевые нонтрониты) и никелевые хлориты. Технология переработки никелевых руд

Богатые сульфидные медно-никелевые руды с содержанием никеля более 1 % при отношении никеля к меди не менее 1:1 и с пониженным (менее 25 %) содержанием железа направляются непосредственно в плавку. При содержании железа более 25 % и серы более 20 % богатые руды перед плавкой флотируют для разделения на медный и никелевый концентраты и вывода пирротина в отдельный продукт.

Рядовые медно-никелевые руды с содержанием никеля менее 1 % обогащаются; при этом получают коллективный медно-никелевый или селективные никелевый и медный концентраты. Содержащийся в медно-никелевых рудах кобальт в процессе обогащения накапливается в медно-никелевом, медном и никелевом концентратах. Вредными примесями сульфидных медно-никелевых руд являются цинк, свинец и мышьяк; их предельные содержания устанавливаются техническими условиями.

Медные руды

Медными рудами называются природные минеральные образования, содержание меди в которых достаточно для экономически выгодной добычи этого металла. Из множества известных содержащих медь минералов используются в промышленных масштабах около 17: медь самородная, борнит, халькопирит (медный колчедан), халькозин (медный блеск), ковеллин, бурнонит, блёклые руды (куприт, тенорит, малахит, азурит и другие).

Промышленное значение имеют такие типы месторождений: медноколчеданные, скарновые медно-магенетитовые, медно-титаномагнетитовые и медно-порфировые. Они залегают среди вулканических пород древнего периода. В этот период действовали многочисленные наземные и подводные вулканы. Вулканы выделяли сернистые газы и горячие воды, насыщенные металлами – железом, медью, цинком и др. Из них на морском дне и в подстилающих породах отлагались руды, состоящие из сульфидов железа, меди и цинка, получившие название колчеданов. Основным минералом колчеданных руд является пирит, или серный колчедан, который составляет преобладающую часть (50–90%) объема колчеданных руд. Большая часть добываемого никеля используется для производства жаропрочных, конструкционных, инструментальных, нержавеющих сталей и сплавов. Небольшая часть никеля расходуется на производство никелевого и медно-никелевого проката, для изготовления проволоки, лент, разнообразной аппаратуры для промышленности, а также в авиации, ракетостроении, при производстве оборудования для атомных электростанций, изготовлении радиолокационных приборов. В промышленности сплавы никеля с медью, цинком, алюминием, хромом и другими металлами.

Типы месторождений никеля: Магматические сульфидные медно-никелевые месторождения. Первоначальное накопление сульфидов происходит в процессе внедрения, дифференциации и ликвации первоначально однородного никеленосного на две жидкости: силикатную и составляющие. Сульфидный опускается, концентрируется и после силикатного расплава. никеленосной магмы по глубинным разломам, проникают в и определяют геологическую рудных районов и медно-никелевых месторождений. сульфидных руд сосредоточены в зонах разломов на древних и платформах. Руды в залегают . Бедные руды (до 1,5% ) обогащаются. Богатые (содержащие более 1.5% ) идут в без обогащения. Из медно-никелевых руд никеля также медь, кобальт, группы , золото, серебро, , селен, теллур.

медных и никелевых руд на России:

Расположено в части Уфалейского в зоне субмеридионального внутри . Серпентиниты в зоне раздроблены и частично карбонатами и охрами, а кремнисто-охристыми . Мощность составляет м. На глубинах 100–150 м тело резко в мощности.

в Карелии. Содержания от 0,4-0,5% во вкрапленных до 3-4% в и массивных рудах. В также присутствуют: 0,22-0,31% и кобальт Запасы составляют около 12,9 тонн при среднем никеля 1,25%. За изучения горизонтов (более 300 м), увеличение запасов .

Медно-никелевые располагаются в пределах зон: Восточной и Центральной. зона, в которой наиболее руды. В пределах развито сингенетическое и оруденение при преобладающей последнего. лентообразной формы, 1700 м, мощностью 0,2-25,5 м. В рудах от 0,41 до 8% (в среднем никеля и 0,31-0,57% . Запасы никеля в 20,7 тысяч тонн ( среднем 1,33%).Верхняя залежь формы, протяженность — до м, мощность 1,7-49,1 м. никеля в пределах 0,34-1,39%. месторождение медно-никелевых руд

в восточной части -Светлоозерского , представлено залежью линзовидной формы, до 1200 м, мощностью м. Руды , густовкрапленные и прожилково-вкрапленные. никеля составляют Запасы никеля в 25 тысяч .

Единственное крупное не месторождение меди на территории . Расположено к востоку от Байкал, в Читинской . Удоканское месторождение от 25% до 60% национальных медной руды и одним из крупнейших в .

Медные руды.

Медь – металл цвета, имеющий 8,94 г/см 3 (харак изменение плотности в от чистоты м); обладает высокой тро- и теплопроводностью, стойкостью; хорошо давлением как в , так и в холодном состоянии.

принадлежит к группе элементов, ее среднее (кларк) в коре составляет %. В большинстве месторождений медь в виде соединений. Известно 200 медьсодержащих , из них промышленное значение только 15 (. 1). Около 90 % мировых и добычи меди на четыре сульфида – , борнит, и кубанит.

До 50 % производимой используется в электротехнической сти для производства кабелей, , изготовления , деталей холо, вакуумной аппаратуры. 40 % меди расходуется на сплавов с , оловом, алюминием, , железом, марганцем, , кремнием и элементами. известны сплавы с цинком – латунь, с оловом, , кремнием и бериллием – , с никелем и – мельхиор, с никелем и – никелин, константан и . Указанные сплавы используются в , машиностроении, авиац, судостроительной и приборостроительной промышленности, для изготовления инстру, бытовых предметов и изделий, а также для ч монет. Соли меди в качестве , для борьбы с вредителями и нями растений, в и текстильной промышленности. По производства и среди других медь занимает место после и алюминия.

По характеристике медные разделяются следующим : весьма богатые с меди 3–5 %; богатые, содержащие 2 % меди (для руд месторождений – более 1 %); качества () с содержанием меди 1 % (для руд меднопорфировых – более 0,4 %); бедные, от 0,7 до 1 % (для руд месторождений – менее 0,4 %). По окисления руды месторождений на суль, смешанные и окисленные. для отнесения руд к тому или типу служит содержание в оксидной : для сульфидных руд – до 10 %; смешанных – %; окисленных – более 50 %; для о месторождения эта цифра няется в технологических исследований. Так, для месторождения разработаны пределы: к сульфидным руды, до 30 % окисленных меди, к смешанным – % и к окисленным – более 70 %. В рудах, где промышленное значение другие металлы (, свинец, цинк, , железо, , вольфрам, золото, ), медь часто важным попутно компонентом.

меди многочисленны и разнообразны. В настоящее выделяется шесть промыш типов месторождений .

Выявленные мировые ресурсы медной руды , в пересчёте на металл) по 94 странам составили 1683,6 . т, крупнейшие мировых)

сосредоточены в 2 частях света – в Америке и Азии 21,3%; в Афри – 9,9%, в Австралии и Океании – 6,5%, в Евро – 4,6%.

Подтверждённые запасы, учтённые по 59 нам, – 554,3 млн. т, из них: в Америке Азии 26,5%, Африке Европе 7%, Австралии и Океании 3,7%; по 12 странам с наиболее ными подтверными

запасами (млн. т): в Чили 150, США 35, Индонезии 33,9, Мексике 30, Перу 30, ше 26,7, Китае 26, Демократической Республике Конго 25,8,

Замбии 19, России 18,5, Казахстане 18,1, Австралии 18,1.

Добыча медных руд ведётся в 49 странах Среднее содержание меди в добываемых рудах 0,6–0,7%. Общемировое прово медных

концентратов (включая получение металла методом выщелачивания из и отвалов) составило 17,8 млн. т (в пересчёте на ), в т. ч. по основным добывающим странам (. т): в Чили 7,1, США 1,8, Перу 1,2, Австралии 0,9, Индонезии 0,8, Китае 0,8, России 0,7, Замбии 0,7, Канаде 0,6, Польше 0,5, Мексике 0,5, Казахстане 0,4, Иране 0,2, Папуа–Новой

Гвинее 0,2, Аргентине 0,2. Медные концентраты перерабатываются на медепланых заводах с получением промежуточного продукта – черновой меди.

Мировое про черновой меди (2015, млн. т) – св. 14,

осуществля в 43 странах, в т. ч.: в Китае Японии (1,6), Чили (1,6), Индии Польше Германии (0,5), Канаде (0,5), США

Республике Корея (0,5), Казахстане (0,4), Перу Австралии (0,4),

Замбии (0,3), Мексике Испании (0,3), Болгарии Иране (0,2),

Филиппинах (0,2), Бразилии Швеции (0,2), Индонезии (0,2),

Финляндии Узбекистане (0,1). Объём производства конечного

продук – рафинированной меди в 47 нах (млн. т, без учёта

производства из вторичного сы) составляет 17,4, в т. ч.: в Китае 3, Чили 2,8, Японии 1,5, США 1,3, России 0,9, Германии 0,7, Индии 0,6,

Республике Корея 0,6, Польше 0,6, Перу 0,5, Канаде 0,5, Замбии 0,5,

Австралии 0,4, Казахстане 0,4, Мексике 0,4, гии и Люксембурге 0,4. Кроме того, из вторичного сырья добывается 2,1 млн. т рафини меди.

Разведка медных руд простого на глубину проводится в скважинами (месторождений строения – в сочетании с горными ), с использованием геофизических исследований: наземных, в и горных . Методика разведки – объемов горных и бурения, виды выработок и бурения, геометрия и разведочной сети, и способы опробования – обеспечивать подсчета запасов по , соответствующим сложности геологического ия месторождения. Она ется исходя из особенностей рудных тел с возможностей горных, и геофизических разведки, а также разведки и разработки рождений аналогичного . При выборе варианта разведки ет учитывать сравнительные тех показатели и сроки работ по различным разведки.

Для меди из и забалансовых руд или хвостов широко используют и подземное выщелачивание, а чановое ра с перемешиванием или . Основным растворителем при выщелачивании явля растворы оксида железа, получаются при орошении куч в результате окисления . Орошение последовательно водой и раствором с цементацией меди скрапом. Для интенсификации гидрометаллургической сульфидных руд в качестве могут быть микрооганизмы, окисляющее вие которых разложение сульфидов. ичные результаты предварительный обжиг. концентраты перерабатываются способом: сначала с черновой меди, а электролитическим производится медь чистоты.

в Свердловской области меди состоит из участков: геотехнологического , где идет процесс насыщения раствора меди, и экстракции и электровининга, где из раствора высококачественные медные марки М00К.

острой проблемой в настоящий является обеспечение . В правительстве решается о допуске или недопуске компаний к в конкурсах на разработку месторождений меди, так как на мировом рынке очень : имеется избыток мощностей. То есть, ситуация, при которой компаниям выгодно заморозить перспективных российских , таких как Удоканское, и тем убрать — уральских металлургов с рынка меди. в этом случае осуществлять меры по отношению к производителям и хотя бы инвестировать разработку меди, которой требует 400 млн долл., а срок проекта довольно — 5 лет.

Также районом меди является . Большая часть Урала относится к горно-металлургической (УГМК). В нее входит 20 предприятий в шести России и за рубежом. единая цепочка от добычи до производства готовой — медной катанки, проката, и агрегатов для автомобильной , кабели, проводники. идет интеграция со секторами: металлургией, машиностроением, промышленностью. Годовой УГМК — 1,4 млрд ., в производстве более 65 тыс. чел. УГМК выпуск 40% российской меди, 20% металлопродукции на медных , 50% европейского рынка порошков. Обогащение и никелевых руд наиболее в цветной из-за низкого металла в сырье, расхода топлива, энергии (от тысяч до десятков киловатт-часов на 1 т готовой ), многостадийности процесса, нескольких (сера, медь, и др.).

Самым крупным никеля, является , в нем сосредоточенно 35,8 % запасов. Так же добываются медно-никелевые руды на полуострове и окисленные никелевые на (Буруктальское и Черемшанское .). важнейшее свойство состоит в том, что его незначительная придает прочность, твердость и стойкость. Отрасль в размещении на источники .

Объем руды на медно-никелевых Заполярного филиала ГМК "" в 2005 году 14 тыс. тонн. добычи руды на медно-никелевом месторождении филиала ОАО ГМК "Норильский " в 2005 составил 9172,3 тыс. . На Талнахском медно-никелевом за прошедший год добыто тыс. тонн , на медно-никелевом месторождении -1 - 2751,2 тыс. тонн . Об этом говорится в отчете .

Добыча и переработка руд ведется не только на комплексе Норильского комбината, а так же на металлургическом комбинате. используют энергетическую Усть-Хантайской ГЭС, газ Мессояхского и местные .

особенностью месторождений России комплексный состав руд, из кроме никеля ряд других : меди, металлов группы, а так же золото, , селен, теллур, что повышает этих руд, несмотря на себестоимость добычи и .

hello_html_3d3bf55f.jpg

Запасы никеля на начало прошлого года учтены в рудах 39, а кобальта - 59 месторождений. Большая часть разведанных запасов этих металлов сосредоточена в месторождениях сульфидных медно-никелевых руд (89 процентов запасов никеля и 71 процент кобальта) и в месторождениях силикатных руд (11 процентов никеля и 26 процентов кобальта).


Самая распространенная медная руда на нашей планете – это борнит. Но кроме него медь добывают и из других руд, о которых мы и поговорим в рамках данной статьи.

Медная руда: свойства и характеристики


Медь — пластичный элемент золотисто-розового оттенка. На открытом воздухе металл сразу покрывается кислородной пленкой, которая придает ему специфический красно-желтый цвет.

Характерные свойства: коррозийная устойчивость, высокая тепло- и электропроводность.

При этом элемент отличается высокими антибактериальными свойствами, уничтожает вирусы гриппа и стафилококки.

В промышленном комплексе чаще всего медь используется в сплавах с другими компонентами: никелем, цинком, оловом, золотом и т.д.

Минеральная база для извлечения металла

Сырьем для добычи медной руды являются естественные образования минералов, в которых металлический компонент содержится в количестве, необходимом для экономически выгодной промышленной разработки.


Сырье для добычи медной руды.

Рудные месторождения представлены силикатными, карбонатными, сульфатными соединениями, оксидами, образовавшимися в зоне окисления.

Среди разведанных минералов для промышленной разработки можно выделить:

  • халькопирит;
  • халькозин;
  • борнит;
  • куприт;
  • самородная медь;
  • брошантит;
  • азурит;
  • кубанит;
  • малахит;
  • хризотил.

В руде концентрация металла составляет 0,3–5%, а в минералах показатель концентрации составляет 22–100% (самородный металл). Месторождения меди находятся в генетической взаимосвязи с другими ценными компонентами, которые добываются как дополнительные химические элементы к основному процессу.

Среди попутных компонентов встречаются:

  • платаноиды;
  • серебро;
  • золото;
  • теллур;
  • галлий;
  • молибден;
  • висмут;
  • никель;
  • титан;
  • цинк.

Руда для извлечения меди содержит мышьяк, сурьму, реже ртуть. В зависимости от вида попутных химических элементов различают типы месторождений, среди которых главное значение имеют:

  • медно-никелевый;
  • медно-колчеданный;
  • медистых песчаников и сланцев;
  • медно-порфировый.

Скарновые месторождения металла и кварцево-сульфидные образования имеют подчиненное значение. В перспективе в качестве сырья для промышленного производства металла рассматриваются железомарганцевые конкреции, находящиеся в донных отложениях Мирового океана.

Месторождения медных руд

Медные руды – это скопление минералов, в которых, кроме меди, содержатся и другие элементы, формирующие их свойства, в частности никель. К категории медных причисляют те типы руд, в которых данного металла содержится такое количество, чтобы его было экономически целесообразно извлекать промышленными методами. Таким условиям удовлетворяют руды, содержание меди в которых находится в пределах 0,5–1%. Наша планета располагает запасом медесодержащих ресурсов, основную часть из которых (90%) составляют медно-никелевые руды.

Большая часть запасов медных руд в России находится в Восточной Сибири, на Кольском полуострове, в Уральском регионе. В списке лидеров по суммарным запасам таких руд находится Чили, также разрабатываются месторождения в следующих странах: США (порфировые руды), Казахстане, Замбии, Польше, Канаде, Армении, Заире, Перу (порфировые руды), Конго, Узбекистане. Специалисты подсчитали, что в крупных месторождениях всех стран меди суммарно содержится порядка 680 миллионов тонн. Естественно, вопрос о том, как добывают медь в различных странах, необходимо рассматривать отдельно.

Все месторождения медных руд делятся на несколько категорий, различающихся по генетическим и промышленно-геологическим характеристикам:

  • стратиформная группа, представленная медными сланцами и песчаниками;
  • руды колчеданного типа, к которым относятся самородная и жильная медь;
  • гидротермальные, включающие руды, называемые медно-порфировыми;
  • магматические, которые представлены наиболее распространенными рудами медно-никелевого типа;
  • руды скарнового типа;
  • карбонатовые, представленные рудами железомедного и карбонатитового типа.

В России добыча меди осуществляется преимущественно на месторождениях сланцевого и песчаного типа, в которых руда содержится в медноколчеданной, медно-никелевой и медно-порфировой формах.

Разновидности медных руд

Классификация руды по генетическим и геологическим особенностям:

  • стратиформная — это песчаники и сланцы;
  • колчеданная – жильная медь и самородки;
  • гидротермальная — ее называют медно-порфировой формой;
  • скарновые породы;
  • магматические — эта руда содержит никель;
  • карбонатные — имеют железомедный и карбонатитовый состав.

Природные соединения с содержанием меди в своем составе

Самородки чистой меди в нашей Земле содержатся в небольших количествах. В основном она добывается в соединении с другими элементами, вот самые известные из них:

  1. Борнит – это такой минерал, который был назван в честь чешского ученого Борна. Он представляет собой сульфидную руду. У него имеются и альтернативные названия, например, медный пурпур. Добывается в двух видах: низкотемпературный тетрагонально-скаленоэдрический и высокотемпературный кубически-гексаоктаэдрический. Различие видов этого материала зависит от того, где он произошел. Экзогенный борнит – это вторичный ранний сульфид, обладает неустойчивостью и подлежит разрушению при воздействии на него ветров. Эндогенный борнит обладает сменным химическим составом, в нем могут присутствовать различные элементы, например, халькозин и галенит. В теории в состав борнита может входить 11 % железа и более 63 % меди, но, к сожалению, на практике данный состав не сохраняется.
  2. Халькопирит — данный вид минерала первоначально носил название — медный колчедан, зарождается он гидротермальным путем. Относят халькопирит к категории полиметаллических руд. Помимо меди, такой минерал имеет у себя в составе железо и серу. Образуется он в результате метаморфических процессов, и присутствует в метасоматических типах медных руд.
  3. Халькозин — такая руда имеет у себя в составе большое количество меди, практически 80 %, оставшееся место занимает сера. Нередко такой вид по-другому называют медным блеском, так как его поверхность похожа на блестящий металл, переливающийся несколькими оттенками. В рудах халькозин образуется как мелкозернистое или плотное включение.
  4. Куприт — этот минерал относится к группе оксидных, а зарождается он в тех местах, где содержится самородная медь или малахит.
  5. Ковеллин — такой минерал формируется только метасоматическим путем. Медь в нем содержится практически на 67 %. Крупное месторождение медных руд есть на территории Сербии, Италии и США.
  6. Малахит, или, как его еще называют, поделочный камень, обладает большой популярностью, представляет собой он медную углекислую зелень. Если где-то находят этот минерал, значит, рядом можно найти и иные, с содержанием в своем составе меди.


Способы добычи минерала

Для отделения породы, не содержащей ценный компонент, используют метод флотации. Только незначительное количество сырья, содержащего медь в повышенной концентрации, подвергается непосредственной плавке. Выплавка металла предполагает сложный процесс, включающий такие операции:

  • обжиг;
  • плавка;
  • конвертирование;
  • рафинирование огневое и электролитическое.


В процессе обжига сырья содержащиеся в нем сульфиды и примеси превращаются в оксиды (пирит превращается в оксид железа). Газы, выделяющиеся при обжиге, содержат оксид серы и используются для производства кислоты.

Оксиды металлов, образованные в результате влияния температурного градиента на породу, при обжиге отделяются в виде шлака. Жидкий продукт, полученный при переплавке, подвергается конвертированию.

Из черновой меди извлекают ценные компоненты и удаляют вредные примеси путем огневого рафинирования и другие металлы путем насыщения жидкой смеси кислородом с последующим разливом в формы. Отливки используются в качестве анода для электролитического способа очистки меди.

Сырье, в котором находятся медь и никель, подвергается обогащению по схеме выборочной флотации с целью получения концентрата металлов. Железомедные руды подвергаются магнитной сепарации.

Руды медистых песчаников и сланцев, жильных пород и самородного металла перерабатываются с целью извлечения медного концентрата. Обогащение производится гравитационным способом.

Метод флотации применяется для смешанных и окисленных руд, но чаще используется химический способ и бактериальное выщелачивание.

Высокое содержание меди характерно для концентратов, извлеченных из халькозина и борнита, а низкое — для халькопирита.

Обогащение руды с незначительным содержанием меди могут проводить гидрометаллургическим способом, состоящим в выщелачивании меди серной кислотой. Из полученного в результате процесса раствора выделяют медь и сопутствующие металлы, в том числе драгоценные.

Из каких руд получают медь


Интересно! Медь очень редко встречается в природе в виде самородков. На сегодняшний день самой крупной такой находкой считается самородок, обнаруженный в Северной Америке на территории США массой 420 тонн.

Существует почти 250 видов меди, но из них всего 20 видов используются в промышленности. Самые распространенные из них:

Халькозин

Халькопирит

Металл имеет гидротермальное происхождение, встречается в скарнах и грейзенах. Чаще всего входит в состав полиметаллической руды вместе с галенитом и сфалеритом.

Борнит

Распространенный в природе минерал класса сульфидов, один из главных элементов медных руд. Имеет характерный синевато-пурпурный оттенок. Содержит в себе медь (63,33%), железо (11,12%), серу (25,55%) и примеси серебра. Встречается в виде плотных мелкозернистых масс.

Альтернативный способ обогащения меди

Существует еще один хороший способ для обогащения меди, делается он с использованием серной кислоты для того, чтобы выделить необходимый металл.


В результате получается раствор, из которого в дальнейшем извлекают медные руды, золото можно получить таким же способом. Такой метод используют в тех случаях, когда наличие меди в составе руды не такое уж и большое.

Добыча медной руды

Вследствие низкого содержания меди в руде ее добыча связанна с переработкой больших объемов горных пород. Для того, чтобы выплавить 1 т меди нужно переработать свыше 200 т руды.
Методы добычи меди:

  • открытый способ. Если рудные месторождения находятся близко к земной поверхности, то их разрабатывают таким способом глубина открытых разработок составляет 150-300 м. Метод характеризуется более низкими потерями
  • подземный способ. Этим методом руду добывают с глубины 500 м, а иногда и с 800-1000 м.

Существует пять технологических систем разработки месторождений:

  • при помощи самоходного оборудования. Эта технология широко применяется
  • при помощи вибрационных механизмов непрерывного действия
  • при помощи твердеющей закладки выработанного пространства. При этом происходит сплошная выемка запасов мощных залежей с наименьшими потерями. С применением подобных систем снижаются потери в 3-4 раза
  • метод выемки руды горизонтальными пластами. Во время наполнения выработанного пространства (в рудниках под землей) твердеющими соединениями применяют футерованные резиной или базальтом трубы, период эксплуатации которых в 50-100 раз выше, чем у стальных
  • циклично-поточная технология реализации горных работ.

Применение меди

Проще указать сферы, где медь не применяется, чем охватить все области ее применения. Ведь даже в организме человека имеется потребность к ежедневной дозе меди (около 0,9 мг. в день).

Благодаря низкому показателю удельного сопротивления, Купрум используют для производства проводов, кабелей, электрических катушек, трансформаторов и другого электрооборудования.

Из-за высокой теплопроводности, в свою очередь, медь участвует при конструировании элементов систем охлаждения, отопления, кондиционирования.

В одной сфере транспорта, а именно в трубопроводном, бесшовные медные трубы стали идеальным вместилищем как для транспортировки по ним воды, так и газа.

Ювелиры используют сплав золота и меди для укрепления первого. Так как золото, само по себе, весьма мягкий металл, и изделия без примеси меди были бы крайне подвержены деформациям.

В связи с выявлением бактерицидного свойства меди, она в будущем имеет шансы получить широчайшее применение в медицине, как для изготовления инструментов и рабочих поверхностей, так и для материала к обычным дверным ручкам.

Можно ли выплавлять медь в домашних условиях?

Возможно, что вы сомневаетесь в осуществлении данного мероприятия, поскольку у вас нет всех тех химических реактивов, необходимых для травли меди, однако вы можете взять уже готовый медный брусок и расплавить его. Медь, как правило, можно найти в толстых проводах, электромагнитных катушках в виде все той же проволоки, а также с деталей компьютеров.


Плавление меди может быть осуществлено при высокой температуре, поэтому в данном деле потребуется горн – специальная камера сгорания закрытого типа, в которую под высоким давлением поступает газ и там же воспламеняется, но при этом направляется соплом, дабы тепло излишне не уходило в стенки.

В заключение

Надеемся, что после прочтения данной статьи вы поняли то, насколько же это важный труд – добывать и очищать медь. Мы вам настоятельно не рекомендуем лично использовать описанные методы травления, а также плавки, поскольку в данных случаях вы можете нанести непоправимый вред вашему здоровью.

Кол-во блоков: 19 | Общее кол-во символов: 18367
Количество использованных доноров: 8
Информация по каждому донору:

Читайте также: