Материалы с высоким сопротивлением реферат

Обновлено: 04.07.2024

Файлы: 1 файл

Реферат по физике.docx

Калининградский рыбопромышленный колледж

Самостоятельная работа по физике

Курсанта: Фёдорова Н.А.

Преподаватель: Усейнова Д.В.

Калининград 2015-2016 год.

1. Проводниковые материалы

1.1. Общие сведения

В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. К проводниковым материалам в электротехнике относятся металлы, их сплавы, контактные металлокерамические композиции и электротехнический уголь. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы, характеризующиеся электронной проводимостью; основной параметр для них – удельное электрическое сопротивление в функции температуры.

Диапазон удельных сопротивлений металлических проводников весьма узок и составляет от 0,016 мкОм٠м для серебра до 1,6 мкОм٠м для жаростойких железохромоалюминиевых сплавов. Электрическое сопротивление графита с увеличением температуры проходит через минимум с последующим постепенным повышением.

По роду применения проводниковые материалы подразделяются на группы:

проводники с высокой проводимостью – металлы для проводов линий электропередачи и для изготовления кабелей, обмоточных и монтажных проводов для обмоток трансформаторов, электрических машин, аппаратуры и пр.;

конструкционные материалы – бронзы, латуни, алюминиевые сплавы и т.д., применяемые для изготовления различных токоведущих частей;

сплавы высокого сопротивления – предназначаемые для изготовления дополнительных сопротивлений к измерительным приборам, образцовых сопротивлений и магазинов сопротивлений, реостатов и элементов нагревательных приборов, а также сплавы для термопар, компенсационных проводов и т.п.;

контактные материалы – применяемые для пар неразъемных, разрывных и скользящих контактов;

материалы для пайки всех видов проводниковых материалов.

Механизм прохождения тока в металлах обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода.

Электрическое сопротивление проводников

Электрическое сопротивление обусловлено тем, что свободные электроны при дрейфе взаимодействуют с положительными ионами кристаллической решетки металла. При повышении температуры учащаются соударения электронов с ионами, поэтому сопротивление проводников зависит от температуры. Сопротивление проводников зависит от материала проводника, т.е. строение его кристаллической решетки. Для однородного цилиндрического проводника длиной l и площадью поперечного сечения S сопротивление определяется по формуле

где ρ=RS/l – удельное сопротивление проводника (сопротивление однородного цилиндрического проводника, имеющего единичную длину и единичную площадь поперечного сечения).

Единица сопротивления – Ом.

1 Ом: Ом – сопротивление проводника, по которому при напряжении 1 В течет ток 1 Ом=1 В/А.

Величина σ=1/ρ, обратная удельному сопротивлению, называется удельной электрической проводимостью проводника.

Единица электрической проводимости – сименс (См).

Сименс – электрическая проводимость проводника сопротивлением 1 Ом, т.е. 1 См=1 Ом־¹.Из формулы (1.1) следует, что единицей удельного сопротивления является Ом-метр (Ом ٠м).

Таблица 1.1 Удельное сопротивление наиболее распространенных проводников

Материал ρ, 10־ Ом∙м Характеристика материала

Серебро 1,6 Наилучший проводник

Медь 1,7 Применяется наиболее часто

Алюминий 2,9 Применяется часто

Железо 9,8 Применяется редко

Удельное электрическое сопротивление проводника зависит не только от рода вещества, но и от его состояния. Зависимость удельного сопротивления ρ от температуры выражается формулой

ρ = ρ 0 (1+ α t ), (1.2)

где ρ0 – удельное сопротивление при 0°C; t – температура (по шкале Цельсия); α – температурный коэффициент сопротивления, характеризующий относительное изменение сопротивления проводника при нагревании его на 1°C или 1 K:

α = (ρ-ρ 0 )/ρ 0 t . (1.3)

Температурные коэффициенты сопротивления веществ различны при разных температурах. Однако для многих металлов изменение α с температурой не очень велико. Для всех чистых металлов α ≈ 1/273 K־¹ (или °C־¹).

Зависимость сопротивления металлов от температуры положена в основу устройства термометров сопротивления. Они используются как при очень высоких, так и при очень низких температурах, когда применение жидкостных термометров невозможно.

Из понятия о проводимости проводника следует, что чем меньше сопротивление проводника, тем больше его проводимость. При нагревании чистых металлов их сопротивление увеличивается, а при охлаждении – уменьшается.

В 1911 г. Голландский физик Камерлинг-Оннес провел опыты с ртутью, которую можно получить в чистом виде. Он столкнулся с новым, совершенно неожиданным явлением. Удельное сопротивление ртути при температуре 4,2 K (около -269°C) резко упало до такой малой величины, что его практически стало невозможно измерить. Это явление обращения электрического сопротивления в нуль Камерлинг-Оннес назвал сверхпроводимостью.

В настоящее время сверхпроводимость обнаружена у более чем 25 металлических элементов, большого числа сплавов, некоторых полупроводников и полимеров. Температура Tкр перехода проводника в сверхпроводящее состояние для чистых металлов лежит в пределах от 0,14 K для иридия до 9,22 K для ниобия.

Движение электронов в металле, находящемся в состоянии сверхпроводимости, является до такой степени упорядоченным, что электроны, перемещаясь по проводнику, почти не испытывают соударений с атомами и ионами решетки. Полное объяснение явления сверхпроводимости можно дать с позиций квантовой механики.

Кроме чисто электротехнических свойств, для проведения необходимой технологической обработки и обеспечения заданных сроков службы в эксплуатации, проводниковые материалы должны обладать достаточной нагревостойкостью, механической прочностью пластичностью.

Чистая медь по электрической проводимости занимает следующее место после серебра, обладающего из всех известных проводников наивысшей проводимостью. Высокая проводимость и стойкость к атмосферной коррозии в сочетании с высокой пластичностью делают медь основным материалом для проводов.

На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси CuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ SO2, сероводород H2S, аммиак NH3, окись азота NO, пары азотной кислоты и некоторые другие реактивы.

Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси даже в ничтожных количествах, резко снижают электропроводность меди, делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяют лишь две ее марки МО и М1.

Почти все изделия из проводниковой меди изготавливаются путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.

Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).

При температурах термообработки выше 900°C вследствие интенсивного роста зерна механические свойства мели резко ухудшаются.

В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07 – 0,15%, а также магнием, кадмием, цирконием и другими элементами.

Медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большой мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.

Сплавы меди с цинком, называемые латунями, широко используются в электротехнике. Цинк растворяется в меди в пределах до 39%.

В различных марках латуни содержание цинка может доходить до 43%. Латуни, содержащие до 39% цинка, имеют однофазную структуру твердого раствора и называются α-латунями. Эти латуни обладают наибольшей пластичностью, поэтому из них изготавливают детали горячей или холодной прокаткой и волочением: листы, ленты, проволоку. Без нагрева из листовой латуни методом глубокой вытяжки и штамповкой можно изготовить детали сложной конфигурации.

Латуни с содержанием цинка свыше 39% называют α+β-латунями или двухфазными и применяют главным образом для фасонных отливок.

Двухфазные латуни являются более твердыми и хрупкими и обрабатываются давлением только в горячем состоянии.

Присадка к латуням олова, никеля и марганца повышает механические свойства и антикоррозионную устойчивость, а добавки алюминия в композиции с железом, никелем и марганцем сообщают латуням кроме улучшения механических свойств и коррозионной стойкости высокую твердость. Однако присутствие в латунях алюминия затрудняет пайку, а проведение пайки мягкими припоями становится практически невозможным.

Латуни марок Л68 и Л63 вследствие высокой пластичности хорошо штампуются и допускают гибку, легко паяются всеми видами припоев. В электромашиностроении широко применяются для различных токоведущих частей;

латунь ЛА67-2,5 применяется для литых токоведущих деталей повышенной механической прочности и твердости, не требующих пайки мягкими припоями;

латуни ЛК80-3Л и ЛС59-1Л широко применяются для литых токоведущих деталей электрической аппаратуры, для щеткодержателей и для заливки роторов асинхронных двигателей. Хорошо воспринимают пайку различными припоями.

1.4. Проводниковые бронзы

Проводниковые бронзы относятся к медным сплавам, необходимость применения которых в основном вызвана недостаточной в ряде случаев механической прочностью и термической устойчивостью чистой меди.

Общая номенклатура бронз весьма обширна, но высокой электропроводностью обладают лишь немногие марки бронз.

Кадмиевая бронза относится к наиболее распространенным проводниковым бронзам. Из числа всех марок кадмиевая бронза обладает наивысшей электрической проводимостью. Вследствие повышенного сопротивления истиранию и более высокой нагревостойкости эта бронза широко применяется для изготовления троллейных проводов и коллекторных пластин;

бериллиевая бронза относится к сплавам, приобретающим прочность в результате стирания. Она обладает высокими упругими свойствами, устойчивыми при нагревании до 250°C, и электрической проводимостью в 2 – 2,5 раза большей, чем проводимость других марок бронз общего назначения. Эта бронза нашла широкое применение для изготовления различных пружинных деталей, выполняющих одновременно и роль проводника тока, например: токоведущие пружины, отдельные виды щеткодержателей, скользящие контакты в различных приборах, штепсельные приборы и т.п.;

фосфористая бронза обладает высокой прочностью и хорошими пружинными свойствами, из-за малой электропроводности применяется для изготовления пружинных деталей с низкими плотностями тока.

Материалы высокого сопротивления, электрическое сопротивление. Материалы высокого напряжения. Электроизмерительные приборы, их применение в энергетике, связи, промышленности, классификация, обозначения и история. Нормативно-техническая документация.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 09.11.2017
Размер файла 324,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Электротехническое и конструкционное материаловедение

Материалы высокого сопротивления. Электроизмерительный приборы.

Исполнитель студент гр. БАЭ-13-21

Руководитель Конесев С. Г.

Содержание

1. Материалы высокого сопротивления

1.1 Что такое электрическое сопротивление

1.2 Материалы высокого напряжения

2. Электроизмерительные приборы

2.1 Что такое электроизмерительные приборы

2.6 Нормативно-техническая документация

1. Материалы высокого сопротивления

высокий сопротивление электрический напряжение

1.1 Что такое электрическое сопротивление?

Любые устройства, служащие для получения, передачи или потребления электроэнергии, обладают сопротивлением.

Электрическое сопротивление -- это способность элемента электрической цепи противодействовать в той или иной степени прохождению по нему электрического тока. Сопротивление, в общем случае, зависит от материала элемента, его размеров, температуры, частоты тока и измеряется в омах (Ом). Различают активное (омическое), реактивное и полное сопротивления. Они обозначаются, соответственно, r, х, z. Используются также прописные буквы R, X, Z, чаще всего для обозначения элементов на электрических схемах:

Активное сопротивление элемента -- это сопротивление постоянному току, (Ом),

где - удельное сопротивление материала, (Ом Ч м).

Природу активного или омического сопротивления, связанного с нагревом материала, по которому протекает ток, объясняют столкновением носителей заряда с узлами кристаллической решетки этого материала. Если электрическое сопротивление цепи или его элемента не зависит от величины проходящего тока, то такие цепи или элементы называют линейными. В противном случае говорят о нелинейных цепях.

Индуктивное сопротивление - это сопротивление элемента, связанное с созданием вокруг него переменного или изменяющегося магнитного поля. Оно зависит от конфигурации и размеров элемента, его магнитных свойств и частоты тока:

Индуктивность можно определить как меру магнитной инерции элемента в отношении электромагнитного поля. По смыслу индуктивность в электротехнике можно уподобить массе в механике. Например, чем больше индуктивность элемента, тем медленнее и тем большую энергию магнитного поля он запасает. Следует отметить, что индуктивным сопротивлением и, следовательно, индуктивностью обладают в разной мере все элементы электрической цепи переменного тока: обмотки электрических машин, провода, шины, кабели и т. д. В цепях постоянного тока индуктивное сопротивление проявляется лишь в переходных режимах.

Емкостное сопротивление -- это сопротивление элемента, связанное с созданием внутри и вокруг него электрического поля. Оно зависит от материала элемента, его размеров, конфигурации и частоты тока; измеряется в Омах (Ом). Электрическую емкость можно определить как меру инертности элемента электрической цепи по отношению к электромагнитному полю. Электрическое поле между обкладками конденсатора создается вследствие разделения зарядов. Разделение зарядов происходит благодаря токам смещения, протекающим в диэлектрике между обкладки конденсатора под воздействием внешнего напряжения. Ток смещения следует понимать как процесс переориентации электрических диполей диэлектрика вдоль электромагнитного поля. Как видно, определение для тока, предложенное Фарадеем, наиболее привлекательно для понимания сути токов смещения.

1.2 Материалы высокого сопротивления

Материалы высокого электрического сопротивления используются для поглощения электрической энергии и преобразования ее в тепло. Очевидно, что к таким материалам будут предъявляться следующие требования: высокое удельное сопротивление, механическая прочность, технологичность (способность к сварке, пайке, высокая пластичность). Высокая коррозионная стойкость, низкая стоимость, низкое значение термо - Э.Д.С. в паре с медью, малый температурный коэффициент сопротивления. Очевидно, что для того, чтобы материал имел высокое удельное сопротивление, он должен представлять собой твердый раствор одного металла в другом. Причем хотя бы один из компонентов сплава должен быть переходным металлом. Из теории сплавов известно, что неограниченное растворение одного металла в другом возможно при близости размеров ионов и одинаковом типе кристаллических решеток. Рассмотрим некоторые материалы высокого сопротивления.

Сплавы на основе меди.

Константан. Твердый раствор 40% никеля в меди, точнее 40%Ni, 1,5%Mn, остальное медь. Этот сплав маркируется как НММц 58,5-1,5. Наименование этого сплава подчеркивает неизменность его сопротивления при изменении температуры. Его удельное сопротивление остается постоянным, то есть температурный коэффициент сопротивления равен 0. У данного сплава довольно-таки высокое удельное сопротивление, он пластичен и прочен. При нагреве на его поверхности образуется окисная пленка, обладающая изоляционными свойствами. Оксидная изоляция позволяет плотно навивать константановую проволоку если напряжение между витками не превышает 1 В. Применение константана для изготовле-ния прецизионных резисторов ограничено высоким значением термо- Э.Д.С. в паре с медью.

Никелин. МНМц30-1,5 (68,5% Cu; 30%Ni; 1,5% Mn). Из-за меньшего содержания никеля сплав более дешев, однако его удельное сопротивление меньше чем у константана. Кроме того, температурный коэффициент удельного электросопро-тив¬ления сплава отличен от нуля. Главным образом этот сплав используют для изготовления пусковых и регулировоч-ных реостатов. Нихромы. Классическим никель-хромовым сплавом является сплав Х20Н80 (20%Cr, 80%Ni). При комнатной температу-ре в никеле растворяется 20% хрома. При этом хотя и сохраняется ГЦК решетка никеля, но она сильно искажается ионами хрома. Это обстоятельство в сочетании с тем, что и никель и хром являются переходными металлами приводит к высокому удель¬ному сопротивлению сплава. Поверхность нихрома покрыта химически стойкими окислами, которые затрудняют пайку нихрома и защищают его от окисления при высоких температурах. Для повышения механической прочности в нихром вводят титан, молибден, кремний.

Сплавы на основе благородных металлов.

В ряде случаев требуется высокая стойкость к окислению материала. В этом случае используют материалы высокого сопротивления на основе благородных металлов: серебра, платины, палладия. Типичным представителем таких материалов является серебряный манганин. Из проволок такого сплава изготавливают миниатюрные потенциометры и резисторы.

2. Электроизмерительные приборы

2.1 Что такое электроизмерительные приборы?

Электроизмерительные приборы -- класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений -- меры, преобразователи, комплексные установки.

Рис. Амперметр переменного тока

Рис. Вольтметр переменного тока

Рис. Мультиметр (тестер)

2.2 Применение

Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту -- для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования неэлектрических величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения.

2.3 Классификация

Наиболее существенным признаком для классификации электроизмерительной аппаратуры является измеряемая или воспроизводимая физическая величина, в соответствии с этим приборы подразделяются на ряд видов:

- амперметры -- для измерения силы электрического тока;

- вольтметры -- для измерения электрического напряжения;

- омметры -- для измерения электрического сопротивления;

- мультиметры (иначе тестеры, авометры) -- комбинированные приборы

- частотомеры -- для измерения частоты колебаний электрического тока;

- магазины сопротивлений -- для воспроизведения заданных сопротивлений;

- ваттметры и варметры -- для измерения мощности электрического тока;

- электрические счётчики -- для измерения потреблённой электроэнергии

- и множество других видов

Кроме этого существуют классификации по другим признакам:

- по назначению -- измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства;

- по способу представления результатов измерений -- показывающие и регистрирующие ( в виде графика на бумаге или фотоплёнке, распечатки, либо в электронном виде);

- по методу измерения -- приборы непосредственной оценки и приборы сравнения;

- по способу применения и по конструкции -- щитовые (закрепляемые на щите или панели), переносные и стационарные;

- по принципу действия:

2.4 Обозначения

В зарубежных странах обозначения средств измерений устанавливаются предприятиями-изготовителями, в России (и частично в других странах СНГ) традиционно принята унифицированная система обозначений, основанная на принципах действия электроизмерительных приборов. В состав обозначения входит прописная русская буква, соответствующая принципу действия прибора, и число -- условный номер модели. Например: С197 -- киловольтметр электростатический. К обозначению могут добавляться буквы М (модернизированный), К (контактный) и другие, отмечающие конструктивные особенности или модификации приборов.

· В -- приборы вибрационного типа (язычковые)

· Д -- электродинамические приборы

· Е -- измерительные преобразователи

· И -- индукционные приборы

· К -- многоканальные и комплексные измерительные установки и системы

· М -- магнитоэлектрические приборы

· Н -- самопишущие приборы

· П -- вспомогательные измерительные устройства

· Р -- меры, измерительные преобразователи, приборы для измерения параметров элементов электрических цепей

· С -- электростатические приборы

· Т -- термоэлектрические приборы

· У -- измерительные установки

· Ф -- электронные приборы

· Х -- нормальные элементы

· Ц -- приборы выпрямительного типа

· Ш -- измерительные преобразователи

· Э -- электромагнитные приборы

2.5 История

В 1733--1737 гг французский учёный Ш. Дюфе создал электроскоп. В 1752--1754 гг его работы продолжили М. В. Ломоносов и Г. В. Рихман в процессе исследований атмосферного электричества. В середине восьмидесятых годов XVIII века Ш. Кулон изобрёл крутильные весы -- электростатический измерительный прибор.

В первой половине XIX века, когда уже были заложены основы электродинамики (законы Био -- Савара и Фарадея, принцип Ленца), построены гальванометры и некоторые другие приборы, изобретены основные методы электрических измерений -- баллистический (Э. Ленц, 1832 г.), мостовой (Кристи, 1833 г.), компенсационный (И. Поггендорф, 1841)

В середине XIX века отдельные ученые в разных странах создают меры электрических величин, принимаемые ими в качестве эталонов, производят измерения в единицах, воспроизводимых этими мерами, и даже проводят сличение мер в разных лабораториях. В России в 1848 г. академик Б. С. Якоби предложил в качестве эталона единицы сопротивления применять медную проволоку длиной 25 футов (7,61975 м) и весом 345 гран (22,4932 г), навитую спирально на цилиндр из изолирующего материала. Во Франции эталоном единицы сопротивления служила железная проволока диаметром в 4 мм и длиной в 1 км (единица Бреге). В Германии таким эталоном являлся столб ртути длиной 1 м и сечением 1 ммІ при 0°

Вторая половина XIX века была периодом роста новой отрасли знаний --электротехники. Создание генераторов электрической энергии и применение их для различных практических целей побудили крупнейших электротехников второй половины XIX в. заняться изобретением и разработкой различных электроизмерительных приборов, без которых стало немыслимо дальнейшее развитие теоретической и практической электротехники.

- В 1871 году А. Г. Столетов впервые применил баллистический метод для магнитных измерений и исследовал зависимость магнитной восприимчивости ферромагнетиков от напряженности магнитного поля, создав этим основы правильного подхода к расчету магнитных цепей. Этот метод используется в магнитных измерениях и в настоящее время

- В 1880--1881 гг. французские инженер Депре и физиолог д'Арсонваль построили ряд высокочувствительных гальванометров с зеркальным отсчетом

- В 1881 г. немецкий инженер Ф. Уппенборн изобрел электромагнитный прибор с эллиптическим сердечником, а в 1886 г. он же предложил электромагнитный прибор с круглой катушкой и двумя цилиндрическими сердечниками

- В 1894 г. немецкий инженер Т. Бругер изобрел логометр

В развитии электроизмерительной техники конца второй половины XIX и начала XX ст. значительные заслуги принадлежат М. О. Доливо-Добровольскому. Он разработал электромагнитные амперметры и вольтметры, индукционные приборы с вращающимся магнитным полем (ваттметр, фазометр) и ферродинамический ваттметр

2.6 Нормативно-техническая документация

Подобные документы

Электроизмерительные приборы и измерение сопротивлений. Изучение электростатического поля и электростатической индукции. Определение емкости конденсатора по изучению его разряда. Температурная зависимость сопротивления проводников и полупроводников.

книга [332,0 K], добавлен 01.11.2008

Основные сведения о термометрах сопротивления и металлах, применяемых для их изготовления. Автоматические компенсационные приборы для работы с малоомными термометрами сопротивления. Общие сведения об автоматических уравновешенных мостах. Логометры.

реферат [513,9 K], добавлен 27.02.2009

Тепловой баланс кожухотрубного подогревателя высокого давления; разбивка его на зоны с различными условиями теплообмена. Результат программных вычислений с последней итерации. Расчёт гидравлического сопротивления трубного пучка и межтрубного пространства.

курсовая работа [545,2 K], добавлен 31.01.2013

Изучение истории развития электроприборостроения и российской метрологии. Общие детали устройства измерения электрических величин. Условные обозначения принципа действия прибора, требования и погрешности. Персональный компьютер в измерительной технике.

отчет по практике [6,2 M], добавлен 13.07.2014

Борьба с помехами, использование методов компенсации (параллельная, последовательная, путем вычисления отношения, в цепях обратной связи). Классическая теория проводимости. Характеристика сплавов высокого сопротивления, термоэлектрические явления.

презентация [7,4 M], добавлен 02.08.2012

Классификация электротехнических материалов. Энергетические уровни. Проводники. Диэлектрические материалы. Энергетическое отличие металлических проводников от полупроводников и диэлектриков. Полупроводниковые материалы. Магнитные материалы и магнетизм.

реферат [1022,4 K], добавлен 15.04.2008

Комплектные трансформаторные подстанции. Выключатели высокого напряжения. Короткозамыкатели и отделители. Ограничители перенапряжения, разрядники. Контакторы высокого напряжения. Комплектные распределительные устройства. Токоограничивающие реакторы.

Материалы высокого удельного сопротивления
При изготовлении реостатов и нагревательных элементов используют сплавы с высоким удельным сопротивлением. Материалами высокого сопротивления (резистивными) называют проводниковые материалы, у которых значения ρ в нормальных условиях составляют не менее 0,3 мкОм·м. По области применения резистивные материалы разделяют на три основные группы: 1)материалы для резисторов (медные, медно-никелевые, никелевые, никель- хромовые; пленочные, проволочные, углеродистые); 2) материалы для электродов термопар и удлиняющих проводов (сплавы на основе Ni, Pt систем, Cu-Ni, Pt-Rh, W-Re; неметаллические порошковые материалы); 3) материалы для нагревателей (сплавы на основе систем Ni-Cr, Fe-Cr-Al, порошковые керамические материалы). В зависимости от области применения крезистивным материалам предъявляют дополнительные требования, например, по температурному коэффициенту электрического сопротивления αρ, жаростойкости и др. При использовании сплавов в электроизмерительной технике от них требуется не только высокое удельное сопротивление, но и возможно меньшее значение αρ а также малая термо-э.д.с. относительно меди. Проводниковые материалы в электронагревательныхприборах должны длительно работать на воздухе при температурах порядка 1000°С.
3.1 Материалы для резисторов (резистивные материалы общего назначения). Основные требования к материалам для резисторов: низкий температурный коэффициент электрического сопротивления, низкая термоэлектродвижущая сила в паре с медью, высокая стабильность электрического сопротивления во времени. Различаютсплавы для проволочных, ленточных резисторов (технических и прецизионных) и материалы для непроволочных резисторов (пленочные, углеродистые). Резистивные материалы общего назначения широко используют в приборостроении, электротехнике для изготовления технических резисторов (регулирующие и пусковые реостаты, нагрузочные элементы), для прецизионных резисторов (образцовые сопротивления, различныеэлементы электроизмерительных приборов, катушки сопротивления, шунты, обмотки потенциометров). Сп л а вы д л я п р о в о л о ч ных р е з и сто р о в . Для технических резисторов основными являются сплавы на основе системы Cu-Ni (сплав МН16, мельхиор МН19, нейзильбер МНЦ 15-20); для прецизионных резисторов ‒ сплавы на медной основе (манганин МНМц 3-12, МНМцАЖ 3-12-0,3-0,3, константан МНМц 40-1,5) и сплавына никелевой основе (Х20Н80-ВИ, 80ХЮД-ВИ, Х15Н60, ЭП277-ВИ). Для изготовления высокоточных прецизионных сопротивлений используют резистивные сплавы на основе благородных металлов (Au, Ag, Pt, Pd). Манганин – основной сплав на медной основе для электроизмерительных приборов и образцовых резисторов. Манганин отличается желтоватым оттенком, хорошо вытягивается в тонкую проволоку до диаметра 0,02 мм. Изманганина изготавливают также ленту толщиной 0,01 – 1 мм и шириной 10 – 300 мм. Для получения малого αρ и высокой стабильности сопротивления во времени манганин подвергают специальной термической обработке – отжигу при 350 – 550°С в вакууме с последующим медленным охлаждением и дополнительной длительной выдержкой при комнатной температуре.2 Константан – сплав меди и никеля с небольшим содержаниеммарганца. Содержание никеля в сплаве примерно соответствует максимуму ρ и минимуму αρ для сплавов Cu-Ni. Константан хорошо поддается обработке; его можно протягивать в проволоку и прокатывать в ленту тех же размеров, что и из манганина. Значение αρ константана близко к нулю и обычно имеет отрицательный знак. Константан применяют для изготовления реостатов и электронагревательных элементов в техслучаях, когда рабочая температура не превышает 400-450°С. При нагреве до достаточно высокой температуры на поверхности константана образуется пленка окисла, которая обладает электроизоляционными свойствами (оксидная изоляция). Покрытую такой изоляцией константановую проволоку можно наматывать плотно, виток к витку, без особой изоляции между витками, если только напряжение между.

Чтобы читать весь документ, зарегистрируйся.

Связанные рефераты

Проводниковые материалы с малым удельным сопроти

. По агрегатному состоянию проводниковые материалы делятся на газообразные жидкие и твердые. В.

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

.  СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ВАРИАНТ 22 ЗАДАНИЕ 1 Задача А Дано: a=0.04 м; Р2=30.

Сопротивление материалов

. Сопротивление материалов. 1. Какие вопросы рассматриваются в дисциплине.

Сопротивление материалов

. БОЧАРОВ, В.И. БАЛАБАНОВ, В.И. БАШКИРЦЕВ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Задания и.

Сопротивление материалов

. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ОСНОВЫ ТЕОРИИ И ПРИМЕРЫ.

СОДЕРЖАНИЕ
Введение…..……………………………………………………………………….3
1 Классификация проводниковых материалов…………………..…….………..4
2 Характеристики и применение проводниковых материалов………………. 6
3 Классификация электроизоляционных материалов…………………………10
4 Характеристики электроизоляционных материалов………………………. 12
Заключение……………………………………………………………………….18
Список использованных источников…………………………………………. 19


Введение
Современную технику невозможно представить без проводниковых и электроизоляционных материалов.
Проводниковые материалы находят применение в качестве проводов и жил кабелей, термоэлементов, припоев, предохранителей, нагревателей, для изготовления резисторов.
Электрические устройства имеют надёжную изоляцию токонесущих проводов, проводников и корпусов электрооборудования. Основными задачами электроизоляционных материалов являются предотвращение утечки электрических зарядов, разделение токопроводящих элементов и электрических цепочек, а также обеспечение безопасных схем электроснабжения и условий работы технического персонала.
Целью данной работы являлось изучение классификации, характерных свойств и областей применения проводниковых и электроизоляционных материалов.
1 Классификация проводниковых материалов
По агрегатному состоянию проводниковые материалы длятся на газообразные, жидкие и твёрдые.
Газообразные проводниковые материалы при низких значения напряжённости электрического поля не являются проводниками. При высоких значениях напряжённости электрического поля, начинается ударная ионизация – носители заряда электроны и ионы. При сильной ионизации и равенстве в единице объеме электронной и ионов – плазма. Применение: газоразрядные приборы.
Жидкие проводниковые материалы
а) электролиты (водные растворы кислот, щёлочей, солей) – носители заряда ионы вещества, состав электролита постепенно изменяется, и на электродах выделяются продукты электролиза. Применение: электролитические конденсаторы, покрытие металлов слоем другого металла (гальваностегия), получение копий с предметов (гальванопластика), очистка металлов (рафинирование);
б) расплавленные металлы (имеют высокую температуру, ртуть Hg tплав Hg=-39 оС и галлий Ga tплав Ga=29,7 оС) – носители заряда электроны. Применение: в литейном производстве, ртутные лампы, галлий в полупроводниковой технике (легирующий элемент для германия), низкотемпературные припои.
Твёрдые проводниковые материалы
Металлы и сплавы – носители заряда электроны. Применение: токопроводящие части электрических машин, аппаратов и сетей.
По удельному электрическому сопротивлению различают:
- материалы высокой проводимости (удельное электрическое сопротивление ρ≤0,05 мкОм∙м): серебро Ag (применение: контакты, электроды конденсаторов, радиочастотные кабели); медь Cu (жилы проводов и кабелей); золото Au (контакты, электроды, фотоэлементы); алюминий Al (провода для ЛЭП, жилы проводов и кабелей); железо Fe (провода ЛЭП не большой мощности); металлический натрий Na (провода и кабели в полиэтиленовой оболочке);
- материалы высокого сопротивления (ρ≥0,3 мкОм∙м): манганин сплав Cu – Mn – Ni (применение: образцовые резисторы); константан сплав Cu – Ni – Mn (реостаты и электронагревательные приборы); сплавы на основе железа – нихромы Fe – Ni – Cr, фехрали Fe – Cr – Al (электронагревательные элементы);
- сверхпроводники (ρ=0) при температурах близких к абсолютному нулю по шкале Кельвина -273,15 оС (алюминий Al, олово Sn, свинец Pb);
- криопроводники (ρ≈0) при температурах ниже -173 оС, но не переходя в сверхпроводящее состояние (алюминий Al, медь Cu, бериллий Be).
Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты).
Классификация проводниковых материалов представлена на рис. 1.
Рисунок 1 – Классификация проводниковых материалов
2 Характеристики и применение проводниковых материалов
К электрическим характеристикам проводниковых материалов можно отнести: удельное сопротивление или обратную величину – удельную проводимость; контактную разность потенциалов и термоэлектродвижущую силу (термоЭДС); работу выхода электронов из металла.
Удельная проводимость выражается в сименсах на метр (См/м):
, (1)
где q – заряд электрона (1,6 ·10-19Кл); n0 – число свободных электронов в единице объема металла; λ – средняя длина свободного пробега электрона между двумя соударениями с узлами решетки; m – масса электрона; vт – средняя скорость теплового движения свободного электрона.
Удельное сопротивление проводников:
ρ = ρтепл + ρост, (2)
где ρтепл – удельное сопротивление, обусловленное в основном тепловыми колебаниями решетки; ρост – удельное сопротивление, вызванное наличием дефектов в кристаллической решетке.
Характерная для металлов зависимость удельного сопротивления от температуры приведена на рис.2. При температурах, превышающих температуру Дебая Θ, которая для металлов равна 400 – 800оС, удельное сопротивление возрастает линейно и обусловлено в основном усилением тепловых колебаний решетки. В области низких (криогенных) температур удельное сопротивление почти не зависит от температуры и определяется только сопротивлением ρост.
Рисунок 2 – Зависимость удельного сопротивления металлов от температуры
Изменение удельного сопротивления металлических проводников с температурой принято характеризовать температурным коэффициентом удельного сопротивления ТК ρ или αρ (К-1). Если температура изменяется в узких пределах, то пользуются средним температурным коэффициентом удельного сопротивления:
(3)
где ρ0 – удельное сопротивление при температуре Т0, принятой за начальную; ρ1 – то же при температуре Т1.
Для металлов αρ составляет 4·10-3К-1, а для сплавов значительно меньше – 10-4 – 10-6 К-1. Основные характеристики проводниковых материалов представлены в табл. 1.
Металлы и сплавы высокой проводимости должны иметь достаточную прочность, пластичность, коррозионную стойкость, хорошо свариваться и подвергаться пайке. Практическое применение имеют химически чистые металлы: медь, алюминий, серебро.
Медь обладает рядом ценных свойств: малым удельным сопротивлением; достаточно высокой механической прочностью; удовлетворительной стойкостью к коррозии; хорошей обрабатываемостью давлением; хорошей способностью к пайке и сварке. Для изделий с большей прочностью используют латуни и бронзы с кадмием и бериллием.
Таблица 1 – Основные характеристики проводниковых материалов
Алюминий окисляется на воздухе, покрываясь прочной оксидной пленкой, которая защищает металл от дальнейшего окисления и обусловливает его высокую коррозионную стойкость. Удельное электрическое сопротивление алюминия не должно превышать 0,028 мкОм·м, обладает высокой пластичностью.
Серебро обладает минимальным удельным сопротивлением 0,016 мкОм·м; невысокие прочность и твердость, но хорошая пластичность. По сравнению с другими благородными металлами (золотом, платиной) серебро имеет пониженную химическую стойкость, тенденцию диффундировать в материал подложки.
Припои – сплавы, используемые при пайке металлов. Кроме высокой проводимости должны обеспечивать небольшое переходное сопротивление (сопротивление контакта). Различают два типа припоев: для низкотемпературной пайки с температурой плавления до 400оС и для высокотемпературной пайки. Используют припои на основе олова, свинца, цинка, серебра, имеющие хорошую проводимость и сопротивление которых мало отличается от сопротивления металлов, образующих сплав.
Материалы с большим удельным сопротивлением широко применяются при изготовлении различных электроизмерительных и электронагревательных приборов, образцовых сопротивлений, реостатов и т.д.
Для изготовления электроизмерительных приборов, образцовых сопротивлений и реостатов применяются, как правило, сплавы, отличающиеся высокой стабильностью удельного сопротивления во времени и малым температурным коэффициентом сопротивления. К числу таких материалов относятся манганин, константан и нихром. Среди сплавов с высоким сопротивлением, которые (кроме нихрома) широко используются для изготовления различных нагревательных элементов, необходимо отметить жаростойкие сплавы фехрали и хромали. Эти сплавы отличаются высокой стойкостью к химическому разрушению поверхности под воздействием различных газообразных сред при высоких температурах.
Сверхпроводники (чистые металлы) по физико-химическим свойствам делятся на мягкие (Hg, Sn, Pb, In) и жесткие (Та, Ti, Zr, Nb). Для мягких сверхпроводников характерны низкие температуры плавления, отсутствие внутренних механических напряжений, жесткие – имеют значительные внутренние напряжения. Сверхпроводники используют для создания сверхсильных магнитных полей в достаточно большой области пространства; изготовления обмоток электрических машин и трансформаторов малой массы, но с очень высоким КПД и др.
Криопроводники при сильном охлаждении (ниже -173°С) приобретают высокую электрическую проводимость, но не переходят в сверхпроводящее состояние. Минимальным сопротивлением при температуре жидкого азота обладает бериллий, однако он отличается плохой технологичностью, дорог и высокотоксичен. Более доступен и технологичен алюминий марки А999, при температуре жидкого гелия имеет удельное сопротивление не более 1…2·10-6мкОм·м).
3 Классификация электроизоляционных материалов
Электроизоляционные материалы – класс электротехнических материалов, предназначенных для электрической изоляции, являющейся неотъемлемой частью электрической цепи и необходимой для того, чтобы не пропускать ток по не предусмотренным электрической схемой путям.
Электроизоляционные материалы классифицируют:
• по агрегатному состоянию: газообразные (воздух, азот, вакуум), жидкие (нефтяные и природные масла, синтетические жидкости), твердые (бумага, фибра, гетинакс, фарфор, слюда, стекло) и твердеющие (канифоль, поливинилхлорид, винипласт, парафин). К группе твердых также относят твердеющие материалы, которые вводятся в электрическую изоляцию в жидком или пластичном состоянии, но в работающей изоляции являются твердыми;
• по структуре твердые электроизоляционные материалы можно классифицировать как кристаллические и аморфные;
• по химическому составу электроизоляционные материалы делятся на органические и неорганические;
• по электрическому состоянию молекул электроизоляционные материалы подразделяют на неполярные и полярные. Диэлектрики подразделяются также на гетерополярные (ионные), молекулы которых сравнительно легко диссоциируют, и гомеополярные, для которых диссоциация на ионы не характерна;
• по происхождению: природные, применяемые без химической переработки; искусственные, получаемые путем химической переработки природного сырья; синтетические, получаемые методом химического синтеза.
Классификация электроизоляционных материалов представлена на рис. 3.
Рисунок 3 – Классификация электроизоляционных материалов
4 Характеристики электроизоляционных материалов
В современной технике широко применяют разнообразные изоляционные материалы. Все они отличаются друг от друга электрическими, механическими и химическими свойствами. Важнейшими электрическими характеристиками электроизоляционных материалов являются электрическая прочность, удельное электрическое сопротивление (объемное и поверхностное), диэлектрическая проницаемость и значение диэлектрических потерь. Однако для практических целей немаловажное значение имеют и другие характеристики этих материалов: механическая прочность, гибкость и эластичность, нагревостойкость, морозостойкость, гигроскопичность, химическая стойкость и т. п.
Газообразные материалы широко применяются при изготовлении аппаратов высокого напряжения (выключатели, разрядники и т.п.), кроме того, воздух окружает большинство электротехнических установок, а на ЛЭП является основной изолирующей средой. Оценивая свойства газообразных диэлектриков (табл. 2), следует отметить малую диэлектрическую проницаемость εr (при расчетах принимается равной 1), высокое удельное сопротивление ρ и особенно очень малое значение tgδ. Однако большинство газов при атмосферном давлении имеют невысокую электрическую прочность Епр. Достоинствами газообразных диэлектриков являются восстановление ими электрической прочности после пробоя и отсутствие старения.
Жидкие материалы используют для заполнения внутреннего пространства силовых трансформаторов, реакторов, кабелей, масляных выключателей, конденсаторов и др. Они хорошо пропитывают пористую изоляцию, картоны, бумаги, существенно повышая при этом электрическую прочность изоляции и улучшая теплоотвод. Наиболее широкое применение получили нефтяные электроизоляционные масла, являющиеся смесью различных углеводородов. Достоинства нефтяных масел: хорошие изолирующие свойства, доступность, дешевизна и достаточная химическая стойкость, недостатки – малый интервал рабочих температур, пожаро- и взрывоопасность.
Таблица 2 – Основные характеристики газообразных диэлектриков
Наиболее простым распространенным твердым полимером является полиэтилен (табл. 3) – термопластичный материал, химически стойкий, обладает водоотталкивающими свойствами, гибкостью, стойкостью к растворителям (до температур 100 - 120 °С). Недостатки – невысокая нагревостойкость. Применение: для изоляции проводов и кабелей, при изготовлении изоляционных шлангов, трубок, липких лент, каркасы катушек, платы.
Поливинилхлоридный пластикат широко применяют в качестве основной изоляции монтажных проводов, для изготовления защитных оболочек кабелей, гибких изоляционных трубок и липкой изоляционной ленты.
Эпоксидные смолы являются термопластичными материалами, могут равномерно отверждаться в весьма толстом слое, образуя при этом монолитную, водонепроницаемую, термореактивную изоляцию. Применяют для изготовления клеев, лаков, заливочных компаундов, герметиков и т.д.
Резину широко применяют для изоляции установочных и монтажных проводов, гибких проводов и кабелей, электроизоляционных лент и т.п.
Большое значение в электротехнике имеют лаки и эмали. По назначению различают лаки пропиточные, покровные и клеящие.
Таблица 3 – Основные характеристики электроизоляционных материалов
Электроизоляционные бумаги делятся на кабельные, конденсаторные, пропиточные, намоточные, микалентные, крепированные.
Лакоткани представляют собой гибкие рулонные материалы, тканевая основа которых пропитана электроизоляционным лаком.
По назначению керамические материалы разделяют на пять основных групп – изоляторная, конденсаторная, сегнетоэлектрическая, полупроводниковая и магнитная керамика. Одним из широко применяемых электрокерамических материалов является электротехнический фарфор (применяется для изготовления различных электрических изо­ляторов и покрышек высоковольтных вводов).
Стекла – неорганические вещества. Электротехнические стекла по назначению бывают конденсаторные, установочные, ламповые.
Заключение
Электротехнические материалы имеют существенное значение в конструкциях самых разнообразных электротехнических и радиотехнических устройств и аппаратов.
Учитывая тенденцию в современной электротехнике к увеличению напряжений и мощностей, уменьшению габаритов и веса отдельных машин и аппаратов и повышению их надежности, роль электроматериалов становится более значительной.
В данной работе были изучены различные виды проводниковых и электроизоляционных материалов, их свойства и назначение.
Список использованных источников
1. Богородицкий Н. П. Электротехнические материалы/ Н. П. Богородицкий, В. В. Пасынков, Б. М. Тареев - Л.: Энергоатомиздат, 1985. – 304 с.
2. Тареев Б. М. Физика диэлектрических материалов. - М.: Энергия, 1982. – 320 с.
3. Справочник по электротехническим материалам: Справ. / Под ред. Ю. В. Корицкого и др. - М.: Энергоатомиздат, 1987. - Т. 1-3.
4. Конструкционные и электротехнические материалы / В. Н. Бородулин, А. С. Воробьев, С. Я. Попов и др. Под ред. В. А Филикова. - М.: Выш. шк., 1990. – 226 с.
5. Электротехнический справочник: Справ. Т.1 / Под общ. ред. профессоров МЭИ. - М.: Энергоатомиздат, 1985. – 448 с.
6. Арзамасов Б. Н., Сидорин И. И., Косолапов Г. Ф. и др. Материаловедение: Учебник для вузов. – М.: Машиностроение, 1986 – 384 с.
7. Конструкционные и электротехнические материалы / В. Н. Бородулин, А. С. Воробьев, С. Я. Попов и др.; под ред. В. А. Филикова. – М.: Высшая школа, 1990 – 296 с.
8.Корицкий Ю.В. Электротехнические материалы. 3-е изд.- М.: Высшая школа, 1990.-306 с.
9.Новиков, Ю.Н. Электротехническое материаловедение: Учебное пособие / Ю.Н. Новиков. - СПб.: Лань, 2016. - 200 c.
10.Электротехнические и конструкционные материалы. / Под общ. ред. В. А. Филикова. М.: Академия, 2009. – 385 с.

Нет нужной работы в каталоге?


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Любые устройства, служащие для получения, передачи или потребления электроэнергии, обладают сопротивлением.

Электрическое сопротивление — это способность элемента электрической цепи противодействовать в той или иной степени прохождению по нему электрического тока. Сопротивление, в общем случае, зависит от материала элемента, его размеров, температуры, частоты тока и измеряется в омах (Ом). Различают активное (омическое), реактивное и полное сопротивления. Они обозначаются, соответственно, r, х, z. Используются также прописные буквы R, X, Z, чаще всего для обозначения элементов на электрических схемах:



Активное сопротивление элемента — это сопротивление постоянному току, (Ом),


,


где – удельное сопротивление материала, (Ом × м).

Природу активного или омического сопротивления, связан­ного с нагревом материала, по которому протекает ток, объ­ясняют столкновением носителей заряда с узлами кристал­лической решетки этого материала. Если электрическое сопротивление цепи или его элемента не зависит от величины проходящего тока, то такие цепи или элементы называют линейными. В противном случае говорят о нелинейных цепях.

Индуктивное сопротивление - это сопротивление эле­мента, связанное с созданием вокруг него переменного или из­меняющегося магнитного поля. Оно зависит от конфигурации и размеров элемента, его магнитных свойств и частоты тока:


Индуктивность можно определить как меру магнитной инерции элемента в отношении электромагнитного поля. По смыслу индуктивность в электротехнике можно уподобить массе в механике. Например, чем больше индуктивность элемента, тем медленнее и тем большую энергию магнитного поля он за­пасает. Следует отметить, что индуктивным сопротивлением и, сле­довательно, индуктивностью обладают в разной мере все эле­менты электрической цепи переменного тока: обмотки электри­ческих машин, провода, шины, кабели и т. д. В цепях посто­янного тока индуктивное сопротивление проявляется лишь в переходных режимах.

Емкостное сопротивление — это сопротивление элемента, связанное с созданием внутри и вокруг него электрического поля. Оно зависит от материала элемента, его размеров, конфигурации и частоты тока; измеряется в Омах (Ом). Электрическую емкость можно определить как меру инертности элемента электрической цепи по отношению к электромагнитному полю. Электрическое поле между обклад­ками конденсатора создается вследствие разделения зарядов. Разделение зарядов происходит благодаря токам смещения, протекающим в диэлектрике между обкладки конденсатора под воздействием внешнего напряжения. Ток смещения следует понимать как процесс переориентации электрических диполей диэлектрика вдоль электромагнитного поля. Как видно, опреде­ление для тока, предложенное Фарадеем, наиболее привле­кательно для понимания сути токов смещения.

Читайте также: