Материалы для трубопроводов реферат

Обновлено: 04.07.2024

На предприятиях химической промышленности трубопроводы являются неотъемлемой частью технологического оборудования. Затраты на их сооружение достигают 30% от стоимости предприятия. Суммарная длина всех трубопроводов завода составляет десятки и сотни километров.

С помощью трубопроводов передаются продукты в самых различных состояниях: жидкости, пары и газы, пластические и сыпучие материалы. Температура этих сред может находиться в пределах от низких (минусовых) до чрезвычайно высоких, а давление - от глубокого вакуума до десятков мегапаскаль.

Обычно трубопроводы классифицируют в зависимости от основного назначения:

- технологические, служащие для транспортировки различных химических соединений;

- тепловые и газовые сети, используемые для подвода инертного газа или пара;

В зависимости от расположения по отношению к оборудованию трубопроводы делят на внутренние и внешние. Внутренние трубопроводы располагаются внутри агрегата и связывают в единое целое его отдельные элементы, например трубы котла или теплообменника. Внешние трубопроводы связывают отдельные агрегаты в единый производственный комплекс.

В зависимости от параметров транспортируемой среды трубопроводы делят на пять категорий, которые подчиняются правилам Госгортехнадзора и Госстроя. Каждая категория трубопроводов характеризуется предельно-допустимыми значениями давлений и температур, причем самые низкие их значения соответствуют первой категории. Так, для транспортировки токсичных веществ применяют трубопроводы только 1-й и 2-й категории, легковоспламеняющихся веществ и горючих газов - трубопроводы первых четырех категорий, негорючих жидкостей и паров -трубопроводы всех пяти категорий.

Все трубопроводы после монтажа и испытания окрашивают масляной краской. Трубопроводы, покрытые изоляцией, допускается окрашивать клеевой краской. Окраска не только защищает трубы от коррозии и придает им эстетический вид, но и облегчает работу обслуживающего персонала, связанную с эксплуатацией и ремонтом трубопроводных систем. В табл. 14.1 приведены цвета окраски трубопроводов в зависимости от их назначения.

При проектировании к трубопроводам предъявляются следующие требования:

- надежность и минимум расчетных затрат;

- унификация узлов и деталей;

- высокая маневренность (быстрое включение в работу);

- уменьшение тепловых потерь в трубах,

- снижение шумовых эффектов;

- уменьшение длины труб и соответственно гидравлических сопротивлений.

Таблица 14.1. Цвета окраски трубопроводов в зависимости от назначения

Транспортируемая среда или назначение трубопровода Цвет окраски трубопровода и отличительные знаки
Азот Черный с коричневыми полосами
Вакуум Белый с желтыми полосами
Вода горячая Зеленый с красными полосами
Вода питьевая Зеленый без полос
Вода производственная Черный без полос
Водород Темно-зеленый
Воздух сжатый Синий
Канализация Черный с желтыми полосами
Кислоты крепкие Красный с белыми полосами
Кислоты разбавленные Красный с двумя белыми полосами
Пар насыщенный Красный с желтыми полосами
Рассол прямой Темно-коричневый с черными полосами
Рассол обратный Темно-красный с желтыми полосами
Хлор Защитный с зелеными полосами
Щелочи крепкие Вишневый без полос
Щелочи разбавленные Вишневый с белыми полосами

Для нахождения оптимального решения необходимо выполнить вариантные проектные разработки и произвести выбор наиболее выгодного в технико-экономическом отношении варианта.

Рабочее проектирование, по существу, сводится к подбору соответствующих элементов по действующим стандартам и нормалям. При этом важное значение имеют характеристики - условный проход и условное давление.

Условный проход (Dу) - величина, условно характеризующая внутренний диаметр элемента трубопровода, не обязательно совпадающая с его действительной величиной (ГОСТ 355-67). Если два элемента имеют одинаковые значения условного прохода, то они имеют присоединительные размеры, обеспечивающие их стыковку.

Условное давление (ру) - величина, характеризующая пригодность элемента для надежной эксплуатации при данных рабочих параметрах среды. При умеренной рабочей температуре (до 200 °С) условное давление равно рабочему. При более высокой рабочей температуре значение условного давления больше рабочего. Имеется специальный стандарт (ГОСТ 356-68) на условные, рабочие и пробные давления. При определении условного давления учитывается и марка материала.

Достаточно важным для обеспечения надежности и работоспособности трубопроводов является вопрос о правильном выборе материалов для труб и фасонных деталей. Для изготовления трубопроводов в химической промышленности применяются чугуны, углеродистые и легированные стали, медь и ее сплавы, фарфор, стекло, пластмассы, углеграфит и т.д.

Основными факторами, определяющими выбор материала для труб и арматуры, являются: достаточная механическая прочность, температуростойкость, коррозионная стойкость.

К частям трубопроводных систем относятся: трубы, их фасонные части, детали для крепления и соединения труб, компенсаторы температурных напряжений и трубопроводная арматура.

Трубы. Основным составляющим элементом трубопроводов являются трубы того или иного типа и размера, в зависимости от технологического назначения трубопровода.

В трубопроводах используются трубы бесшовные, сварные (с продольным или спиральным сварным швом), кованно-прессованные и кованно-сверленные.

Сварные трубы имеют сварные швы, поэтому они менее надежны и используются для транспортировки воды, сжатого воздуха, газа, пара низкого давления и других веществ при температурах от - 15 до +200 °С и давлениях до 1 МПа (обыкновенные) или до 1,6 МПа (усиленные).

Бесшовные трубы - цельнотянутые или цельнокатанные - более надежны и используются для транспортировки самых разных веществ в широком интервале температур (от - 180 до 800 °С) и давлений до 200 МПа.

Способы соединения труб. Трубы соединяются между собой и с арматурой. Трубные соединения делятся на разъемные и неразъемные. К неразъемным относятся соединения пайкой, сваркой и склеиванием. К разъемным - раструбное соединение, которое может быть разобрано только путем разрушения элементов, заполняющих раструб.

К основным факторам, лежащим в основе выбора типа соединения, относятся следующие:

- материал соединяемых деталей;

- характер передаваемой среды (токсичность, огнеопасность, наличие осадка, склонность к застыванию);

- необходимость частых разборок - сборок:

- температура и давление рабочей среды.

Стальные, алюминиевые, свинцовые и титановые трубы чаще всего соединяются сваркой встык (рис. 14.1).


Рис. 14.1. Соединение труб встык: 1, 2 - трубы; 3 - сварной шов

Рис. 14.2. Раструбное соединение: 1, 2 - трубы: 3 - набивка

Трубы из цветных металлов, их сплавов и пластмасс соединяются пайкой внахлестку или склеиванием с помощью надвижных муфт. Для чугунных, керамических, графитовых, а иногда и для фаолитовых труб используют раструбные соединения (рис. 14.2). Гладкий конец одной трубы вставляется в раструб другой. Кольцевое пространство заполняется пеньковой прядью, а затем увлажненным цементом.

Резьбовое соединение применяется преимущественно для стальных труб, но иногда и для винипластовых (рис. 14.3). Наиболее распространенным разъемным соединением труб является фланцевое (рис. 14.4).


Рис. 14.3. Резьбовое соединение: 1, 2 - трубы; 3 - муфта

Рис. 14.4. Фланцевое соединение: 1,6 - трубы; 2 - болт; 3,4 - фланцы; 5 - прокладка

Конструкция фланцев меняется в зависимости от материала трубы, рабочего давления в трубопроводе, температуры рабочей среды и от других факторов. Герметичность фланцевых соединений достигается с помощью прокладок, устанавливаемых между фланцами.

Фасонные части трубопроводов - служат для соединения отдельных отрезков труб или же выполняют следующие функции: изменение диаметра или направления трубопровода; ответвление от трубопровода одной или двух линий того же или меньшего диаметра. К ним относятся: отвод (а), колено (б), двойник (в), тройник (г), крестовина (д) и переход (е) - на рис. 14.5.


Рис 14.5. Фасонные части трубопроводов

Колена, отводы и угольники применяют для изменения направления трубопровода, переходы - для соединения труб разного диаметра, а тройники и крестовины - для создания одного или двух ответвлений. Соединительные части изготовляют путем гнутья труб или сварки заготовок из листового материала или отрезков труб.

Опоры трубопроводов. Внутрицеховые трубопроводы крепятся к стенам, колоннам, балкам и перекрытиям. Межцеховые трубопроводы часто укладываются на эстакадах.

Все виды опор делятся на неподвижные и скользящие. Скользящие опоры поддерживают вес трубопровода и одновременно позволяют ему свободно перемещаться в осевом направлении для компенсации температурных удлинений. На рис. 14.6 показаны примеры крепления трубопроводов на горизонтальных опорах. На рис. 14.7 изображена подвеска, позволяющая крепить трубопровод к высоко расположенным элементам здания.


Рис. 14.6. Конструкции горизонталь- ных опор: а - неподвижная; б – под- вижная; 1, 4 - опорные уголки; 2 - хомут; 3 - башмак

Рис. 14.7. Крепление горизонтальных и вертикальных трубопроводов на подвес- ках

Подвески могут применяться для крепления труб малого диаметра к трубопроводу большого диаметра. Крепление труб к стенке осуществляется с помощью кронштейна.

Температурные компенсаторы. Трубопроводы подвержены колебаниям температуры в зависимости от времени года, температуры транспортируемой среды и состояния теплоизоляции.

При изменении температуры трубопровода, жестко закрепленного в опорах, по сравнению с температурой, при которой производился его монтаж, в стенке труб возникают температурные напряжения и деформации. Для их компенсации используют специальные устройства - компенсаторы (рис.14.8).


Рис. 14.8. Компенсаторы: а - волнообразный: 1 - трубы, 2 - кожух, 3 - ограничительные кольца, 4 - гофрированный гибкий элемент, 5 – стакан. б – сальниковый: 1 - опора, 2 - набивка, 3 -корпус сальника, 4 - грунд-букса, 5 - внутренняя труба

По принципу действия и особенностям устройства компенсаторы можно разделить на два класса: компенсаторы деформирования (гофрированные) и компенсаторы проскальзывания (сальниковые). Компенсаторы первого класса понижают температурные напряжения в трубопроводе за счет деформации своих гибких элементов. Компенсаторы второго класса являются разрезными и допускают проскальзывание концов трубопровода.

Трубопроводная арматура. Арматура - это устройства, устанавливаемые на трубопроводах, аппаратах, емкостях и обеспечивающие управление потоком сред. По функциональному назначению трубопроводную арматуру подразделяют на следующие классы:

- запорная - для перекрытия потока среды (составляет около 80% от всей арматуры),

- регулирующая - для изменения параметров среды (температуры, давления и т.д.);

- предохранительная - для предотвращения аварийного повышения давления в системе;

- защитная (отсечная) - для защиты оборудования от аварийных изменений параметров среды отключением обслуживающей линии,

- фазоразделительная - для удаления конденсата из паро- и газопроводов.

Арматура любого класса включает три основных элемента: корпус, привод и рабочий орган (запорный, регулирующий и т.д.), состоящий из седла и перемещающегося или поворачивающегося относительно него затвора (золотника).

По конструкции корпуса арматуру подразделяют на проходную, в которой среда не меняет направления своего движения на выходе по сравнению со входом, и угловую, в которой это направление меняется на угол до 90°.

В зависимости от способа герметизации рабочего органа в корпусе различают сальниковую, сильфонную и мембранную арматуру. В первой герметичность обеспечивается сальником, во второй - сильфоном, а в третьей - мембраной. В зависимости от конструкции привода рабочего органа арматуру подразделяют на автоматически действующую, в которой привод осуществляется самим потоком среды, и управляемую, с ручным или механическим (электрическим, пневматическим и др.) приводом.

Запорная арматура. Серийно выпускают запорную арматуру следующих типов: краны, вентили, задвижки и заслонки.

Вентили представляют собой запорную арматуру с затвором в виде плоской или конической тарелки (золотника), которая перемещается возвратно-поступатель

но вместе со шпинделем относительно седла (рис. 14.10). Вентили выполняются с ручным управлением или с электроприводом. Вентили на трубопроводе устанавливаются так, чтобы среда в них попадала из-под золотника. Область применения вентилей весьма обширна.

Заслонками называют арматуру, в которой затвор выполнен в виде диска, поворачивающегося на оси, перпендикулярной потоку и проходящей через диаметр диска. Их используют обычно на трубопроводах большого диаметра при малом давлении среды и нежестких требованиях к герметичности запорного органа. Их устанавливают на паро- и водопроводах, на линиях транспортиро­вания, не загрязненных осадками жидкостей, так как твердые частицы, попадая под седло, могут нарушить его герметичность.

Задвижка - это арматура, в которой затвор в виде диска или клина перемещается вдоль уплотнительной поверхности перпендикулярно оси потока (рис. 14.11).


Рис.14.9 Конический пробковый кран: 1 - кор- пус; 2 - пробка; 3 - сальник

Рис. 14.10. Проходной вентиль: 1- корпус; 2 - уп- лотнительное кольцо; 3 - золотник; 4 - проклад- ка, 5 - крышка

Рис. 14.11. Задвижка параллельная: 1 - корпус; 2 - клин; 3 - шибер

Предохранительная арматура исключает возможность возникновения недопустимо больших давлений в трубопроводах и в аппаратах. Предохранительные клапаны бывают рычажно-грузовыми (рис. 14.12) и пружинными (рис. 14.13).


Рис. 14.12. Рычажно-грузовой клапан: 1 - груз; 2 - рычаг; 3 - крышка; 4- шток; 5 - корпус; 6 - золотник

Рис. 14.13. Пружинный клапан: 1 - резьбовая втулка; 2 - колпак; 3 - пру жина; 4 - крышка; 5 - корпус; 6 - золот ник

Регулирующая арматура. Это, прежде всего, регулирующие клапаны и вентили, смесительные клапаны, редукционные клапаны и регуляторы уровня. В системах автоматического регулирования регулирующие клапаны управляют расходом среды в соответствии с поступающей командой.

Фазоразделительная арматура состоит в основном из отводчиков конденсата, используемых для вывода из трубопроводной системы конденсата. В настоящее время преимущественно используют термостатические и поплавковые конденсато - отводчики.

Выбор трубопроводной арматуры. Основной тип запорной арматуры, рекомендуемый для трубопроводов диаметром от 50 мм и более, - задвижка; она имеет минимальное гидравлическое сопротивление, надежное уплотнение затвора и допускает изменение направления движения среды.

Вентили рекомендуется устанавливать на трубопроводах диаметром до 50 мм; при диаметре более 50 мм вентили используют главным образом в случаях, когда по условиям технологического процесса требуется ручное дросселирование. Основное преимущество вентилей - отсутствие трения уплотнительных поверхностей, что позволяет их использование при более высоких давлениях. В связи с этим вентили устанавливаются на трубопроводах высокого давления.

Краны используют, когда требуются запорные устройства, обладающие незна­чительным гидравлическим сопротивлением или способные управлять несколькими расходящимися потоками, в последнем случае используют трех - или четырехходовые краны.

Универсального теплоизоляционного материала, который бы подходил для всех трубопроводов на сегодняшний день нет. Для каждого отдельного проекта необходимо подбирать свой теплоизоляционный материал, который обеспечит необходимые задачи теплоизоляции трубопровода.

На сегодняшний день на Российском рынке представлено довольно много утеплителей для трубопроводов, они производятся в виде матов, трубок, сегментов, цилиндров и полуцилиндров, рулонная изоляция, в виде мастик и красок, в виде услуги по напылению теплоизоляции. Так же трубопроводы могут быть предизолированы, т. е. на рынке предлагается готовое решение приобрести трубу, на которой уже присутствует теплоизоляция и гидроизоляция (если она необходима).

Для тепловой изоляции трубопроводов, как правило, следует применять полносборные или комплектные конструкции заводского изготовления, а также трубы с тепловой изоляцией полной заводской готовности.

На предизолированные трубы в России действует Межгосударственный стандарт ГОСТ 30732-2001

"Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке. Технические условия"

Изделия предназначенные для подземной бесканальной прокладки тепловых сетей с расчетными параметрами теплоносителя: рабочим давлением до 1,6 МПа и температурой до 130°С (допускается кратковременное повышение температуры до 150°С).

Изделия предназначены для использования в качестве тепловой изоляции наружной поверхности газонефтепродуктопроводов диаметром 32 -530 мм и более, подземной прокладки, в том числе в районах с вечномерзлыми грунтами, транспортирующих среду с температурой от минус 50°С до плюс 75 °С, а также трубопроводов и воздуховодов в зданиях, сооружениях и при наружной прокладке.

Минераловатные теплоизоляционные цилиндры rockwool:

Цилиндры изготавливаются из минеральной ваты на основе базальтовых пород.

Цилиндры могут выпускаться кашированными армированной алюминиевой фольгой.

Основная область применения - тепловая изоляция технологических трубопроводов на объектах различных отраслей промышленности (включая пищевую промышленность) и строительного комплекса. Следует отметить, что основной областью применения являются трубопроводы, по которым транспортируется пар (паропроводы), а так же технические жидкости, которые имеют высокую температуру, до + 400 °С.

Сегменты и полуцилиндры из экструзионного пенополистирола ТИСплэкс:

Производятся по ТУ 2244-010-55182353-2008.

Изделия предназначены для использования в качестве теплоизоляции наружной поверхности газонефтепродуктопроводов диаметром 32 - 1420 мм подземной прокладки, в том числе в районах с вечномерзлыми грунтами, транспортирующих среду с температурой от минус 50 °С до плюс 75 °С, а также трубопроводов и воздуховодов в зданиях, сооружениях и при наружной прокладке. Особенно перспективно использовать данный вид теплоизоляции при прокладке газопроводов, такие изделия выдерживают большую механическую нагрузку, соответственно не только теплоизолируют трубопровод, но и защищают его от механических повреждений.

Вспененный синтетический каучук Kaiflex:

Kaiflex выпускается в виде трубок с толщиной от 6 до 32 мм и внутренним диаметром от 6 до 160 мм, а также в виде рулонов с толщиной 6, 10, 13, 16, 19, 25 и 32 мм. Изоляция может выпускаться с самоклеющимся слоем или в комбинации со специальными покрытиями Kaiflex.

Kaiflex представляет собой вспененный каучук, предназначенный для изоляции холодильных установок, морозильных систем, систем кондиционирования, вентиляции, водоснабжения, канализации и отопления.

Теплоизоляционные материалы Kaiflex являются высококачественными изделиями с закрытой пористой структурой, выпускаемые в форме трубок различного диаметра и листов. Является идеальным теплоизолятором для работающих технических устройств и для промышленных холодильных и кондиционирующих установок. Благодаря специальному составу и герметичной ячеистой структуре, гарантируются долговременные изоляционные свойства.

Теплоизоляция для труб, из жесткого ППУ ТИС

Изделия из пенополиуретана марки "ТИС"- это жесткая, не плавкая термореактивная пластмасса с сильно сетчатой структурой, только 3% от объема занимает твердый материал, который образует каркас из стенок и ребер. Именно он придает материалу механическую прочность. Остальные 97% объема занимают поры, они то и берегут тепло или холод Ваших строений и коммуникаций.

Пенополиуретан (ППУ) - легкий и прочный гидротеплоизоляционный материал, имеющий своеобразную структуру, благодаря которой обладает самым низким коэффициентом теплопроводности и самым малым водопоглощением в сравнении с другими теплоизоляционными материалами.

Теплоизоляция "ТИС"® для трубопроводов - это полуцилиндры из жесткого пенополиуретана для утепления труб любого диаметра стандартных и нестандартных размеров с продольными и торцевыми замками в четверть. На внешней стороне теплоизоляции для трубопроводов предусмотрен защитно-покровный слой из стеклоткани, фольги и бумаги, пропитанной битумом.

Эксплуатация изделий допускается при температуре от минус 70 до плюс 130°С.

Теплоизоляция "ТИС"® для трубопроводов имеет закрытоячеистую поверхность - обладает тонкой коркой, которая препятствует проникновению влаги.

Жидкий керамический теплоизоляционный материал (Астратек):

Астратек представляет собой высокотехнологичный композиционный материал на водной основе, состоящий из вакуумированных керамических сфер, находящихся в смеси акриловых полимеров. Эта комбинация делает материал легким, гибким, растяжимым, обладающим отличной адгезией к покрываемым поверхностям. Материал по консистенции напоминающий обычную краску, является суспензией белого цвета, которую можно наносить на любую поверхность. После высыхания образуется эластичное полимерное покрытие, которое обладает Уникальными теплоизоляционными свойствами и обеспечивает антикоррозийную защиту.

Он используется для исключения конденсата на трубах холодного водоснабжения, а так же с целью обеспечения заданной температуры на поверхности теплоизоляции, для исключения ожогов рабочими, обслуживающими трубопроводы с высокими температурами.

Рабочий температурный режим материала Астратек® от -60 до +230 ºС, допускаются кратковременные тепловые нагрузки до +260 ºС. Астратек® наносится как краска. Материал можно наносить с помощью воздушного и безвоздушного распылителя или с помощью кисти. После полимеризации Астратек® устойчив к агрессивным средам, не смывается щелочными растворами и водой. Грязь с поверхности смывается водой.

Материал теплоизоляционный, напыляемый из пенополиуретана "ТИС-Н":

Процесс нанесения ППУ покрытия сходен по сложности с процессом окраски пульверизатором.

Температура окружающей среды при напылении ППУ должна быть не менее +5 С. Отвержденение материала наступает через 7-12 секунд. При напылении на горячие поверхности работы можно проводить круглый год. Температурная стойкость напыляемых материалов составляет от - 60 С до + 130 С, с кратковременным повышением температуры до +150 С. Решающее приемущество метода напыления ППУ состоит в том, что помимо напыления теплоизоляции производится герметизация и гидроизоляция поверхности.

Вспененный полиэтилен Порилекс:

Изготовлен по ТУ 2246-029-002034430-2003

Порилекс® НПЭ Т изготавливается из полиэтилена высокого давления методом вспенивания по экологически безопасной технологии (без применения фреона). Имеет структуру с закрытыми порами. За счет высокого содержания воздуха имеет высокие теплоизолирующие свойства. Не впитывает влагу, имеет отличные пароизоляционные параметры. Поглощает удары и шум, является превосходным звукоизолятором. Экологически безопасен, не имеет ограничений в применении (вплоть до пищевой и медицинской промышленности).

ПОРИЛЕКС НПЭ-Т выпускается в виде полых труб цилиндрической формы, длиной 2 метра.

Порилекс® НПЭ Т значительно снижает теплопотери, уменьшает структурный и акустический шумы, защищает от образования конденсата. Трубная изоляция ПОРИЛЕКС® НПЭ-Т применяется для эффективной изоляции стальных, медных и пластиковых труб в системах горячего и холодного водоснабжения, отопления, кондиционирования, канализвции, вентиляционных и холодильных установках. Изоляция труб холодного водоснабжения, кондиционирования и холодильного оборудования позволяет предотвратить конденсат и коррозию, утепление труб горячего водоснабжения и отопления снижает потери тепла на 80%, при этом поглощаются неприятные звуковые колебания и вибрации в трубах водоснабжения при перепадах давления, что немаловажно в бытовых условиях. Подходит как для изоляции новых, монтирующихся трубопроводов, так и для усиления изоляции уже существующих, эксплуатируемых объектов. Трубная изоляция ПОРИЛЕКС® НПЭ-Т - это материал с хорошей гибкостью, стойкий к механическим повреждениям, к воздействию масел, извести, гипса, цемента, бензина, выдерживающий температуру теплоносителя до 800C.

Трубки ПОРИЛЕКС® НПЭ-Т монтируются на отдельные трубы простым натяжением. При необходимости установки теплоизоляции на готовые трубопроводы трубки разрезаются по специальному продольному разрезу. Швы проклеиваются специальным клеем. Благодаря продольному надрезу трубки ПОРИЛЕКС® НПЭ-Т разрезаются легко и ровно, обеспечивая простой и быстрый монтаж.

Базальтовая теплоизоляция Батиз:

БАТИЗ" - это марка высокоэффективной экологичной негорючей изоляции, производимой омским заводом. Основой всех преимуществ изделий торговой марки являются базальтовые супертонкие и микротонкие волокна с длиной 50-90 мм и толщиной до 3 мкм. Базальтовые волокна в изделиях ТМ "БАТИЗ" расположены хаотично, под разными углами друг к другу. Такие параметры базальтовых волокон наделяют изделия ТМ "БАТИЗ" лучшими теплофизическими и эксплуатационными свойствами по сравнению с изделиями из тонкого базальтового волокна, а так же минерального и стекловолокна. Производится по ТУ 5769-002-13949929-2005

При теплоизоляции трубопроводов Батиз Мат оборачивают вокруг конструкции и, как правило, дополнительно фиксируют при помощи металлической проволоки или бандажных колец.

Все соединения матов между собой должны быть дополнительно прошиты металлической проволокой. В качестве покровного слоя используется оцинкованный или алюминиевый лист.

В зависимости от выбора марки теплоизоляции Батиз, область применения материалов до +400 °С, а так же до +1000 °С, что делает Батиз незаменимым для теплоизоляции трубопроводов с температурой теплоносителя до +1000 °С.

В состав конструкции тепловой изоляции трубопроводов для поверхностей с отрицательной температурой в качестве обязательных элементов должны входить:

Пароизоляционный слой следует предусматривать при температуре изолируемой поверхности ниже 12°С.

Необходимость устройства пароизоляционного слоя при температуре выше 12°С следует предусматривать для трубопроводов с температурой ниже температуры окружающей среды. Необходимость установки пароизоляционного слоя в конструкции тепловой изоляции для поверхностей с переменным температурном режимом (от положительной к отрицательной температуре и наоборот) определяется расчетом для исключения накопления влаги в теплоизоляционной конструкции.

При теплоизоляции трубопроводов помимо Батиз Мата может использоваться Батиз- Шнур.

Батиз- Шнур применяется при теплоизоляции трубопроводов малых диаметров (до 57 мм.). Шнур наматывают плотно виток к витку, качество обмотки проверяют теплопровизером.

Батиз Шнур производится из чистого базальтового супертонкого волокна (без добавления в расплав примесей). Формируется он из холста (на основе базальтового супертонкого волокна) идущего сразу с приемного барабана на формирующую установку. Шнур производится с высокой плотностью оплетки. Применяемый способ оплетки - это перекрестное плетение.

Раздел: Строительство
Количество знаков с пробелами: 36638
Количество таблиц: 0
Количество изображений: 4

Рациональное использование топливно-энергетических ресурсов является одной из приоритетных задач в развитии российской экономики. Существенная роль в решении проблемы энергосбережения принадлежит высокоэффективной промышленной тепловой изоляции.

Содержание

Введение. 3
ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ТЕПЛОИЗОЛЯЦИОННЫМ МАТЕРИАЛАМ, И ИХ СВОЙСТВА. 4
ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, ИЗДЕЛИЯ И КОНСТРУКЦИИ ПРИ НАДЗЕМНОЙ И ПОДЗЕМНОЙ ПРОКЛАДКАХ ТЕПЛОВЫХ СЕТЕЙ В КАНАЛАХ. 7
ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ И КОНСТРУКЦИИ БЕСКАНАЛЬНЫХ ПРОКЛАДОК. 14
Заключение. 19
Список использованной литературы. 22

Работа содержит 1 файл

Реферат по инж сетям.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра теплогазоснабжения и вентиляции

Выполнил: ст.гр.08ЭС402 Гизатуллина Д.Р.

Проверил: Фаттахов А.Р.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ТЕПЛОИЗОЛЯЦИОННЫМ МАТЕРИАЛАМ, И ИХ СВОЙСТВА. 4

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, ИЗДЕЛИЯ И КОНСТРУКЦИИ ПРИ НАДЗЕМНОЙ И ПОДЗЕМНОЙ ПРОКЛАДКАХ ТЕПЛОВЫХ СЕТЕЙ В КАНАЛАХ. 7

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ И КОНСТРУКЦИИ БЕСКАНАЛЬНЫХ ПРОКЛАДОК. 14

Список использованной литературы. 22

ТЕПЛОИЗОЛЯЦИЯ ТРУБОПРОВОДОВ ТЕПЛОСЕТЕЙ

Рациональное использование топливно- энергетических ресурсов является одной из приоритетных задач в развитии российской экономики. Существенная роль в решении проблемы энергосбережения принадлежит высокоэффективной промышленной тепловой изоляции.

Тепловая изоляция трубопроводов и оборудования определяет техническую возможность и экономическую эффективность реализации технологических процессов и широко применяется в энергетике, ЖКХ, химической, нефтеперерабатывающей, металлургической, пищевой и других отраслях промышленности.

В энергетике объектами тепловой изоляции являются паровые котлы, паровые и газовые турбины, теплообменники, баки-аккумуляторы горячей воды, дымовые трубы.

В промышленности тепловой изоляции подлежат вертикальные и горизонтальные технологические аппараты, насосы, теплообменники, резервуары для хранения воды, нефти и нефтепродуктов. Особенно высокие требования предъявляются к эффективности тепловой изоляции низкотемпературного и криогенного оборудования.

Тепловая изоляция обеспечивает возможность проведения технологических процессов при заданных параметрах, позволяет создать безопасные условия труда на производстве, снижает потери легко испаряющихся нефтепродуктов в резервуарах, дает возможность хранить сжиженные и природные газы в изотермических хранилищах.

Теплоизоляционные материалы и конструкции предназначены для уменьшения потерь тепла трубопроводами и оборудованием тепловых сетей, поддержания заданной температуры теплоносителя, а также недопущения высокой температуры на поверхности теплопроводов и оборудования.

Уменьшение транспортных потерь тепла является главнейшим средством экономии топлива. Учитывая сравнительно небольшие затраты на теплоизоляцию трубопроводов (5. 8% от капиталовложений в строительство тепловых сетей), очень важным в вопросах сохранения транспортируемого тепла по трубопроводам является их покрытие высококачественными и эффективными теплоизоляционными материалами.

Теплоизоляционные материалы и конструкции непосредственно контактируют с окружающей средой, характеризующейся колебаниями температуры, влажности, а при подземных прокладках - агрессивными действиями грунтовых вод по отношению к поверхности труб

Теплоизоляционные конструкции изготавливают из специальных материалов, главное свойство которых - малая теплопроводность. Различают три группы материалов в зависимости от теплопроводности: низкой теплопроводности до 0,06 Вт/(мв°С) при средней температуре материала в конструкции 25°С и не более 0,08 Вт/(м*°С) при 125°С; средней теплопроводности 0,06.. 0,115 Вт/(мв°С) при 25°С и 0,08.. .0,14 Вт/(мв°С) при 125°С; повышенной теплопроводности 0,115. ОД75 Вт/(мв°С) при 25°С и 0,14 .0,21 Вт/( мв°С) при 125°С.

Для основного слоя теплоизоляционных конструкций для всех видов прокладок кроме бесканальной, следует применять материалы со средней плотностью не более 400 кг/м3, и теплопроводностью не более 0,07 Вт/(м*°С) при температуре материала 25°С. При бесканальной прокладке - соответственно не более 600 кг/м3 и 0,13 Вт/(мв°С)

Другим важным свойством теплоизоляционных материалов является их устойчивость к действию температур до 200°С, при этом они не теряют своих физических свойств и структуры. Материалы не должны разлагаться с выделением вредных веществ, а также веществ, способствующих коррозии поверхности труб и оборудования (кислоты, щелочи, агрессивные газы, сернистые соединения и т.п.)

По этой причине для изготовления тепловой изоляции не допускается применение котельных шлаков, содержащих в своем составе сернистые соединения.

Также важным свойством является водопоглощение и гидрофобность (водоотталкивание) Увлажнение тепловой изоляции резко повышает ее коэффициент теплопроводности вследствие вытеснения воздуха водой. Кроме того, растворенные в воде кислород и углекислота способствуют коррозии наружной поверхности труб и оборудования.

Воздухопроницаемость теплоизоляционною материала также необходимо учитывать при проектировании и изготовлении теплоизоляционной конструкции, которая должна обладать соответствующей герметичностью, не допуская проникновения влажного воздуха

Теплоизоляционные материалы также должны обладать повышенным электросопротивлением, не допускающим попадания блуждающих токов к поверхности трубопроводов, особенно при бесканальных прокладках, что вызывает электрокоррозию труб

Теплоизоляционные материалы должны быть достаточно биостойкими, т.е. не подвергаться гниению, действию грызунов и изменениям структуры и свойств во времени

Индустриальность в изготовлении теплоизоляционных конструкций является одним из главных характеристик теплоизоляционных материалов Покрытие трубопроводов тепловой изоляцией по возможности должно осуществляться на заводах механизированным способом. Это существенно уменьшает трудозатраты, сроки монтажа и повышает качество теплоизоляционной конструкции. Изоляция стыковых соединений, оборудования, ответвлений и запорной арматуры должна производиться ранее заготовленными частями с механизированной сборкой на месте монтажа.

Теплотехнические свойства теплоизоляционных материалов ухудшаются при увеличении их плотности, поэтому минераловатные изделия не следует подвергать чрезмерному уплотнению Детали крепления тепловой изоляции (бандажи, сетка, проволока, стяжки) должны применять из агрессивно стойких материалов или с соответствующим покрытием, противостоящим коррозии.

И, наконец, теплоизоляционные материалы и конструкции должны иметь невысокую стоимость, применение их должно быть экономически оправданным.

Теплоизоляционные материалы

Основным теплоизоляционным материалом в настоящее время для тепловой изоляции трубопроводов и оборудования теплосетей является минеральная вата и изделия из нее. Минеральная вата представляет собой тонковолокнистый материал, получаемый из расплава горных пород, металлургических шлаков или их смеси. В частности, широкое применение находит базальтовая вата и изделия из нее.

Из минеральной ваты изготавливают путем уплотнения и добавки синтетических или органических (битум) связующих или прошивки синтетическими нитями различные маты, плиты, полуцилиндры, сегменты и шнуры.

Маты минераловатные прошивные изготавливают без обкладок и с обкладками из асбестовой ткани, стеклоткани, стекловолокнистого холста, гофрированного или кровельного картона; упаковочной или мешочной бумаги.

В зависимости от плотности различают жесткие, полужесткие и мягкие изделия. Из жестких материалов изготавливают цилиндры с разрезом по образующей, полуцилиндры для изоляции труб малых диаметров (до 250 мм) и сегменты - для труб диаметром более 250 мм. Для изоляции труб больших диаметров применяют маты вертикальнослоистые, наклеенные на покровный материал, а также маты прошивные из минеральной ваты на металлической сетке.

Для теплоизоляции на месте монтажа стыков трубопроводов, а также компенсаторов, запорной арматуры изготавливается шнур теплоизоляционный из минеральной ваты, который представляет собой сетчатую трубку, как правило, из стеклоткани, плотно наполненную минеральной ватой. Теплопроводность изделий из минеральной ваты зависит от марки (по плотности) и колеблется в пределах 0,044. 0,049 Вт/(м*°С) при температуре 25°С и 0,067. ..0,072 Вт/(м*°С) при температуре 125°С.

Стеклянная вата представляет собой тонковолокнистый материал, получаемый из расплавленной стеклянной шихты путем непрерывного вытягивания стекловолокна, а также центробежно-фильерно-дутьевым способом. Из стеклянной ваты методом формования и склеивания синтетическими смолами изготавливают плиты и маты жесткие, полужесткие и мягкие. Изготавливаются также маты и плиты без связующего, прошивные стеклянной или синтетической нитью.

Величина коэффициента теплопроводности изделий из стекловаты также зависит от плотности и колеблется в пределах 0,041. 0,074 Вт/(мв°С)

Находят широкое применение в качестве оберточного и покровного материала холст стекловолокнистый (нетканый рулонный материал на синтетическом связующем) и полотно холстопрошивное из отходов стекловолокна, представляющее собой многослойный холст, прошитый стеклонитями.

Вулканитовые изделия получают смешиванием диатомита, негашеной извести и асбеста, формованием и с обработкой в автоклавах. Изготавливают плиты, полуцилиндры и сегменты для изоляции трубопроводов Ду 50 ..400 Теплопроводность изделий от 0,077 Вт/(м*°С) при 25°С до 0,1 Вт/(мв°С)при 125°С. Известково-кремнистые материалы -тонкоизмельченная смесь негашеной извести, кремнеземистого материала (трепел, кварцевый песок) и асбеста Выпускают изделия также в виде плит, сегментов и полуцилиндров для изоляции трубопроводов Ду 200.. .400. Теплопроводность материала от 0,058 Вт/(мв°С) при 25°С до 0,077 Вт/(м*°С) при 125°С.

Перлит - пористый материал, получаемый при термической обработке вулканического стекла с включениями полевых шпатов, кварца, плагиоклазов Сырьем для получения вспученного перлита служат и другие силикатные породы вулканического происхождения (обсидиан, пемза, туфы и пр.) В виде щебня и песка перлит используется как заполнитель для приготовления теплоизоляционных бетонов и других теплоизоляционных изделий, как например, битумоперлит.

Смешивая перлитный песок с цементом и асбестом путем формования получают перлитоцементные изделия в виде полуцилиндров, плит и сегментов. Коэффициент теплопроводности от 0,058 Вт/(м*°С) при 25°С до 128 Вт/(м*°С) при 300°С.

Все более широкое применение в качестве основного теплоизоляционного слоя находят пенопласты. Пенопласты представляют собой пористый газонаполненный полимерный материал. Технология их изготовления основана на вспенивании полимеров газами, образующимися в результате химических реакций между отдельными смешивающимися компонентами. К пенопластам, допускаемым к применению для изоляции теплопроводов, следует отнести фенолформальдегидные пенопласты ФРП-1 и резолен, изготавливаемые из резольной смолы ФРВ-1А или резоцела и вспенивающего компонента ВАГ-3. Из этого материала изготавливаются цилиндры, полуцилиндры, сегменты, изолированные фасонные части марок ФРП-1 и резолен. Теплопроводность составляет 0,043. 0,046 при 20°С.

Десятки, сотни, тысячи километров трубопроводов протянулись по всей России, по одним транспортируется газ, по другим нефть, некоторые транспортируют тепло и воду в наши жилища, а другие удаляют использованную жидкость из наших жилищ. Трубы трудятся везде, на заводах и фабриках, школах и институтах, больницах, прачечных, охлаждают турбины ГРЭС, они словно вены человеческого организма опоясали всю Россию, без них никуда.

Содержание

Введение. Тепловая изоляция оборудования и трубопроводов ………….…. 3
Цели использования теплоизоляции труб ………………………………….…4
1.1. Обеспечения заданной температуры на поверхности изоляции. …..….…4
1.2. Предотвращения замерзания содержащейся в них жидкости ……….…4
1.3. Предотвращения конденсации влаги на поверхности изоляции ……. …5
1.4. Теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки……………………………………………..…5
Виды и материалы теплоизоляции для трубопроводов…………………..……5
2.1. .Предизолированные трубопроводы: ………………………………………7
2.2. Минеральная вата……………………………………………………..……10
2.3.Базальтовая теплоизоляция Батиз……………………………….…………12
2.4 .Батиз- Шнур……………………………………………………………. …14
2.5. Вспененный синтетический каучук ……………………. ………………15
2.6. Порилекс НПЭ-Т ………………………………………….………………17
2.7. Астратек……………………………………………………….……………18
2.8. Засыпучие уплотнители……………………………………. ……………19
2.9. . Монолитные теплоизоляционные конструкции. ………….……………20
2.10. Пенополимерминерал (полимербетон) …………………………………23
Подведение итогов………………………………………………………………23
Литература………………………………

Прикрепленные файлы: 1 файл

popytka_3.doc

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Инженерные системы зданий и сооружений

Реферат на тему

Выполнил студент 2 курса гр.1206 ВалетовД.С

Проверил Старший преподаватель: Семикова Е.Н.

Введение. Тепловая изоляция оборудования и трубопроводов ………….…. 3

1.1. Обеспечения заданной температуры на поверхности изоляции. …..….…4

1.2. Предотвращения замерзания содержащейся в них жидкости ……….…4

1.3. Предотвращения конденсации влаги на поверхности изоляции ……. …5

1.4. Теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки……………………………………………..…5

  1. Виды и материалы теплоизоляции для трубопроводов…………………..……5

2.1. .Предизолированные трубопроводы: ………………………………………7

2.3.Базальтовая теплоизоляция Батиз……………………………….…………12

2.5. Вспененный синтетический каучук ……………………. ………………15

2.8. Засыпучие уплотнители……………………………………. …… ………19

2.9. . Монолитные теплоизоляционные конструкции. ………….……………20

2.10. Пенополимерминерал (полимербетон) …………………………………23

Введение. Тепловая изоляция оборудования и трубопроводов

Десятки, сотни, тысячи километров трубопроводов протянулись по всей России, по одним транспортируется газ, по другим нефть, некоторые транспортируют тепло и воду в наши жилища, а другие удаляют использованную жидкость из наших жилищ. Трубы трудятся везде, на заводах и фабриках, школах и институтах, больницах, прачечных, охлаждают турбины ГРЭС, они словно вены человеческого организма опоясали всю Россию, без них никуда.

Что же такое трубопровод?

Трубопроводом называется устройство предназначенное для транспортировки жидких, газообразных или сыпучих веществ. Основные виды трубопроводов приведены на рисунке ниже.

В зависимости от транспортируемой среды применяются термины: водопровод, газопровод, паропровод, нефтепровод, воздухопровод, маслопровод, кислотопровод, кислородопровод, бензопровод, молокопровод и т.д.

Основными общими параметрами трубопровода и арматуры являются: условный диаметр

1. цели использования теплоизоляции труб

На большей части перечисленных трубопроводов необходимо применять теплоизоляционные материалы и в зависимости от особенностей трубопровода область применения теплоизоляции может быть разной:

1.1 теплоизоляция трубопроводов с целью обеспечения заданной температуры на поверхности изоляции.

Тепловую изоляцию трубопроводов по заданной температуре на поверхности выполняют в случае, когда тепловые потери трубопровода не регламентированы, но в соответствии с требованиями техники безопасности необходимо защитить обслуживающий персонал от ожогов или снизить тепловыделения в помещении. В соответствии с санитарными нормами и требованиями СНиП 2.04.14-88 температура поверхности расположенных в помещении изолированных трубопроводов при температуре теплоносителя ниже 100°С не должна превышать 35°С, а при температуре теплоносителя 100°С и более не должна превышать 45°С.
В обслуживаемой зоне на открытом воздухе температура поверхности изоляции не должна превышать 60°С.

1.2 теплоизоляция трубопроводов с целью предотвращения замерзания содержащейся в них жидкости

Тепловую изоляцию с целью предотвращения замерзания жидкости при прекращении ее движения предусматривают для трубопроводов, расположенных на открытом воздухе. Как правило, это актуально для трубопроводов малого диаметра, имеющих малый запас аккумулированного тепла. Время, на которое тепловая изоляция может предохранить транспортируемую жидкость от замерзания при остановке её движения, зависит от температуры жидкости и окружающего воздуха, скорости ветра, внутреннего диаметра, толщины и материала стенки трубопровода, параметров транспортируемой жидкости. К параметрам, влияющим на длительность периода до начала замерзания, относятся: плотность, температура замерзания, удельная теплоемкость, скрытая теплота замерзания.

Чем больше скорость ветра и ниже температура жидкости (холодной воды) и окружающего воздуха, меньше диаметр трубопровода, тем больше вероятность замерзания жидкости. Уменьшает вероятность замерзания холодной воды применение изолированных неметаллических трубопроводов.

1.3 ьеплоизоляция трубопроводов с целью предотвращения конденсации влаги на поверхности изоляции

Применение тепловой изоляции с целью предотвращения конденсации влаги из воздуха на поверхности изоляции выполняют для трубопроводов, расположенных в помещении, содержащих вещества с температурой ниже температуры окружающего воздуха, в том числе холодную воду. На величину толщины теплоизоляционного слоя для предотвращения конденсации влаги из воздуха на поверхности теплоизоляционной конструкции влияют относительная влажность окружающего воздуха, температура воздуха в помещении и вид защитного покрытия. При использовании покрытия с высоким коэффициентом излучения (неметаллического) расчетная толщина изоляции существенно ниже.

1.4 теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки

На сегодняшний день вопрос теплоизоляции трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки, с ростом стоимости энергоносителей, вопрос энергосбережения стоит особенно остро.

2.виды и материалы теплоизоляции для трубопроводов

Универсального теплоизоляционного материала, который бы подходил для всех трубопроводов на сегодняшний день - нет. Для каждого отдельного проекта необходимо подбирать свой теплоизоляционный материал, который обеспечит необходимые задачи теплоизоляции трубопровода.

К основным требованиям, предъявляемым к теплоизоляционным материалам и конструкциям, относят следующие:

- эксплуатационная надежность и долговечность;

- пожарная и экологическая безопасность.

Основными показателями, характеризующими физико-технические и эксплуатационные свойства теплоизоляционных материалов, являются: плотность, теплопроводность, температуростойкость, сжимаемость и упругость (для мягких материалов), прочность на сжатие при 10 % деформации (для жестких и полужестких материалов), вибростойкость, формостабильность, горючесть, водостойкость и стойкость к воздействию химически агрессивных сред, содержание органических веществ и биостойкость[1].

Теплотехническая эффективность конструкций промышленной тепловой изоляции определяется в первую очередь коэффициентом теплопроводности теплоизоляционного материала, который определяет требуемую толщину теплоизоляционного слоя, а следовательно, и нагрузки на изолируемый объект, конструктивные и монтажные характеристики конструкции. Расчетные значения коэффициента теплопроводности принимаются с учетом его зависимости от температуры, степени уплотнения теплоизоляционных материалов в конструкции, шовности конструкции, наличия крепежных деталей. При выборе теплоизоляционного материала учитывают: температуростойкость теплоизоляционных материалов, возможную линейную усадку, потери прочности и массы, степень выгорания связующего при нагреве, прочностные и деформационные характеристики изолируемого объекта, допустимые нагрузки на опоры и изолируемые поверхности и другие влияющие факторы.

Долговечность теплоизоляционных конструкций зависит от их конструктивных особенностей и условий эксплуатации, включающих месторасположение изолируемого объекта, режим работы оборудования, степень агрессивности окружающей среды, интенсивность механических воздействий. Срок службы теплоизоляционного материала и теплоизоляционной конструкции в целом в значительной степени определяется качеством защитного покрытия[6].

Санитарно-гигиенические требования особенно важны при проектировании объектов с технологическими процессами, требующими высокой чистоты, например, в микробиологии, радиоэлектронике, фармацевтической промышленности. В этих условиях применяются материалы или конструкции, не допускающие загрязнения воздуха в помещениях.На сегодняшний день на Российском рынке представлено довольно много утеплителей для трубопроводов, они производятся в виде матов, трубок, сегментов, цилиндров и полуцилиндров, рулонная изоляция, в виде мастик и красок, в виде услуги по напылению теплоизоляции. Так же трубопроводы могут быть предизолированы, т. е. на рынке предлагается готовое решение пробрести трубу, на которой уже присутствует теплоизоляция и гидроизоляция (если она необходима)[2].

2.1 предизолированные трубопроводы:

На предизолированные трубы в России действует Межгосударственный стандарт ГОСТ 30732-2001

"Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке. Технические условия"

Изделия предназначенные для подземной бесканальной прокладки тепловых сетей с расчетными параметрами теплоносителя: рабочим давлением до 1,6 МПа и температурой до 130°С (допускается кратковременное повышение температуры до 150°С).

2.1.1 трубы в пенополиуретановой изоляции

Преимущества: В них сочетаются эластичность и, в то же время, твердость, которые дают широкий диапазон использования; Низкий коэффициент теплопроводности (0,027 ват/мк); Долговечность и надежность службы 25-30 лет; Высокая технологичность на современном оборудовании; устойчивость против коррозии; Биологически нейтральна, химически стойка к воздействию слабых кислот и щелочей, морской воды и действию микроорганизмов, плесени, гниению; Низкое водопоглощение; За счет наличия системы ОДК, контроль целостности трубы во время эксплуатации осуществляется без проведения земляных работ; Трубы в ППУ изоляции могут эксплуатироваться при температуре окружающей среды от -80°C до +130°C; Минимальная глубина при бесканальном способе прокладки принимается в пределах 0,5 - 0,7м от поверхности грунта. Максимальное залегание тепломагистрали рассчитывается, исходя из условия соблюдения прочности конструкции. Обычно оно не превышает 3 м. Имеется возможность вариации толщиной слоя изоляции для учета требований различных климатических условий, это использование более толстого слоя изоляции для северных районов страны. Возможность бестраншейной прокладки.

Читайте также: