Математика как язык и метод познания мира реферат

Обновлено: 05.07.2024

Наука не может ограничиться констатацией фактов и отдельных эмпирических законов. На определенном этапе ее развития необходим переход от чувственно-эмпирического исследования к рационально-теоретическому. На этой стадии выдвигаются гипотезы для объяснения фактов и эмпирических законов, установленных с помощью наблюдений и экспериментов. В процессе разработки и проверки гипотез приходится обращаться не только к логическим, но и к математическим методам.

Содержание работы

Введение. 3
1. Сущность математики и история ее развития. 4
2. Математика как специфический язык естествознания. 7
3. Математика в естествознании. 10
4. Приложение математики к разным отраслям естествознания 11
Заключение. 13
Список литературы. 14

Содержимое работы - 1 файл

реферат ксе.docx

Математика как язык естествознания

1. Сущность математики и история ее развития. 4

2. Математика как специфический язык естествознания. 7

3. Математика в естествознании. 10

4. Приложение математики к разным отраслям естествознания 11

Список литературы. 14

Введение.

Наука не может ограничиться констатацией фактов и отдельных эмпирических законов. На определенном этапе ее развития необходим переход от чувственно-эмпирического исследования к рационально-теоретическому. На этой стадии выдвигаются гипотезы для объяснения фактов и эмпирических законов, установленных с помощью наблюдений и экспериментов. В процессе разработки и проверки гипотез приходится обращаться не только к логическим, но и к математическим методам. Поэтому естествознание тесно связано с математикой, которая, исследуя формы и отношения, встречающиеся в природе, обществе, а также в мышлении, отвлекается от содержания и исключает из допускаемых внутри нее аргументов наблюдение и эксперимент. Математику нельзя причислить к естествознанию или общественным наукам: естествознание непосредственно изучает природу, а математика изучает не сами объекты действительности, но математические объекты, которые могут иметь прообразы в действительности

1. Сущность математики и история ее развития.

В средневековой Европе главенствующую роль заняла теологическая ветвь науки, а исследование природы любыми средствами, в том числе математическими, трактовалось как предосудительное занятие. Центр научной мысли переместился в Индию, а несколько позже - в арабские страны. В Индии того времени вводятся в широкое употребление десятичная позиционная система счисления и нуль для обозначения отсутствия единиц данного разряда, зарождается алгебра. В арабской культуре сохранялись математические знания древнего мира и Индии. Конец Средневековья (XV в.) в арабских странах отмечен деятельностью Улугбека, который при своем дворе в Самарканде создал обсерваторию, собрал более 100 ученых и организовал долго остававшиеся непревзойденными астрономические наблюдения, вычисление математических таблиц и т.п.

В XVII в. начинается новый период во взаимоотношениях математики и естествознания. Многие отрасли естествознания начинают базироваться на применении экспериментально- математических методов. В результате появляется уверенность в том, что научность (истинность, достоверность) знания определяется степенью его математизации. Так, Г. Галилей утверждал, что книга природы написана на языке математики, а согласно И. Канту, в каждом знании столько истины, сколько есть математики. Логическая стройность, строго дедуктивный характер построений, общеобязательность выводов создали математике славу образца научного знания.

Противоположного мнения о роли математики для раскрытия качественных особенностей придерживался великий писатель, мыслитель и естествоиспытатель И.В. Гёте, который воспринимал неживую природу и все живое (включая человека) как единое целое и придавал большое значение интуиции и опыту. Гёте считал, что световые и другие природные явления должны наблюдаться в их естественном виде, так как эксперимент и количественный анализ мало помогают в понимании подлинной их сущности: он полагал, что эта сущность познается только непосредственным опытом и интуицией.

Многие выдающиеся ученые XX в., в особенности физики, говорили о значении математики как важнейшего средства для точного выражения научной мысли. Н. Бор указывал на огромную роль математики в развитии теоретического естествознания и говорил, что математика - это не только наука, но и язык науки. Р. Фейнман отмечал, что математика - это язык плюс мышление, как бы язык и логика вместе. Однако в то же время он считал, что такой науки, как математика, не существует.

Различные варианты тезиса Шопенгауэра о том, что математика не способствует, а затемняет понимание реальных явлений, характерны и для наших дней. Так, иногда противопоставляют объяснение явлений их пониманию, полагая, что количественный язык и методы математики в лучшем случае содействуют объяснению явлений неорганической природы, но не могут дать ничего ценного в понимании процессов культурно-исторической и духовной жизни. При этом понимание рассматривается как чисто интуитивная деятельность мышления, вследствие чего отрицается возможность использовать для его анализа логико-рациональные, в том числе математические, средства исследования. В настоящее время к применению количественного языка математики особенно критически настроены ученые, занимающиеся исследованием сложных биологических, психических и социальных процессов и привыкшие больше доверять опыту и интуиции, чем их математическому анализу.

2. Математика как специфический язык естествознания.

Как бы то ни было, естествознание все шире использует математический аппарат для объяснения природных явлений. Можно выделить несколько направлений математизации естествознания:

О количественный анализ и количественная формулировка качественно установленных фактов, обобщений и законов конкретных наук;

О построение математических моделей (об этом несколько позже) и даже создание таких направлений, как математическая физика, математическая биология и т.д.;

О построение и анализ конкретных научных теорий, в частности их языка.

Рассмотрим математику как специфический язык науки, отличающийся от естественного языка, где, как правило, используют понятия, которые характеризуют определенные качества вещей и явлений (поэтому их часто называют качественными). Именно с этого начинается познание новых предметов и явлений. Следующий шаг в исследовании свойств предметов и явлений - образование сравнительных понятий, когда интенсивность какого-либо свойства отображается с помощью чисел. Наконец, когда интенсивность свойства или величины может быть измерена, т.е. представлена в виде отношения данной величины к однородной величине, взятой в качестве единицы измерения, тогда возникают количественные, или метрические, понятия.

Прогресс в научном познании часто связан с введением именно количественных понятий и созданием количественного языка, которые и исторически, и логически возникают на основе языка качественных описаний. Количественный язык выступает как дальнейшее развитие, уточнение и дополнение обычного, естественного языка, опирающегося на качественные понятия. Таким образом, количественные и качественные методы исследования не исключают, а скорее дополняют друг друга. Известно, что количественные понятия и язык использовались задолго до того, как возникло экспериментальное естествознание. Однако только после появления последнего они начинают применяться вполне сознательно и систематически. Язык количественных понятий наряду с экспериментальным методом исследования впервые успешно использовал Г. Галилей.

Преимущества количественного языка математики в сравнении с естественным языком состоят в следующем:

О такой язык весьма краток и точен. Например, чтобы выразить интенсивность какого-либо свойства с помощью обычного языка, нужно несколько десятков прилагательных. Когда же для сравнения или измерения используются числа, процедура упрощается. Построив шкалу для сравнения или выбрав единицу измерения, можно все отношения между величинами перевести на точный язык чисел. С помощью математического языка (формул, уравнений, функций и других понятий) можно гораздо точнее и короче выразить количественные зависимости между самыми разнообразными свойствами и отношениями, характеризующими процессы, которые исследуются в естествознании. С этой целью используются методы математики, начиная от дифференциального и интегрального исчисления и кончая современным функциональным анализом;

О опираясь на крайне важные для познания законы науки, которые отображают существенные, повторяющиеся связи предметов и явлений, естествознание объясняет известные факты и предсказывает неизвестные. Здесь математический язык выполняет две функции: с помощью математического языка точно формулируются количественные закономерности, характеризующие исследуемые явления; точная формулировка законов и научных теорий на языке математики дает возможность при получении из них следствий применить богатый математический и логический аппарат.

Все это показывает, что в любом процессе научного познания существует тесная взаимосвязь между языком качественных описаний и количественным математическим языком. Эта взаимосвязь конкретно проявляется в сочетании и взаимодействии естественно-научных и математических методов исследования. Чем лучше мы знаем качественные особенности явлений, тем успешнее можем использовать для их анализа количественные математические методы исследования, а чем более совершенные количественные методы применяются для изучения явлений, тем полнее познаются их качественные особенности.

3. Математика в естествознании.

Во-первых, играет роль универсального языка, специально предназначенного для лаконичной точной записи различных утверждений. Конечно, все, что можно описать языком математики, поддается выражению на обычном языке, но тогда изъяснение может оказаться чересчур длинным и запутанным;

Во-вторых, служит источником моделей, алгоритмических схем для отображения связей, отношений и процессов, составляющих предмет естествознания. С одной стороны, любая математическая схема или модель - это упрощающая идеализация исследуемого объекта или явления, а с другой - упрощение позволяет ясно и однозначно выявить суть объекта или явления.

Поскольку в математических формулах и уравнениях отражены некие общие свойства реального мира, они повторяются в разных его областях. На этом свойстве построен такой своеобразный метод естественно-научного познания, как математическая гипотеза, когда к готовым математическим формам пытаются подобрать конкретное содержание. Для этого в подходящее уравнение из смежных областей науки подставляют величины другой природы, а затем производят проверку на совпадение с характеристиками исследуемого объекта. Эвристические возможности этого метода достаточно велики. Так, с его помощью были описаны основные законы квантовой механики: Э. Шрёдингер, приняв волновую гипотезу движения элементарных частиц, нашел уравнение, которое формально не отличается от уравнения классической физики колебаний нагруженной струны, дал его членам совершенно иную интерпретацию (квантово-механическую). Это позволило Шрёдингеру получить волновой вариант квантовой механики.

4. Приложение математики к разным отраслям естествознания

Приложения математики весьма разнообразны. По мнению акад. А.Н. Колмогорова, область применения математического метода принципиально не ограничена. В то же время роль и значение математического метода в различных отраслях естествознания неодинаковы. Дело в том, что математические методы применимы для объектов и явлений, обладающих качественной однородностью и вследствие этого количественно и структурно сравнимых. Именно со сложностью выявления качественной однородности групп объектов и явлений связана трудность получения математических формул и уравнений для объектов естествознания. Чем более сложными и качественно различными являются природные объекты и явления, тем труднее их сравнивать количественно, т.е. тем труднее они поддаются математизации.

Математический метод полностью господствует в небесной механике, в частности в учении о движении планет. Имеющий очень простое математическое выражение закон всемирного тяготения почти полностью определяет изучаемый здесь круг явлений. Каждый результат, полученный на основе математического метода, с высокой точностью подтверждается в действительности.

Автор: Гусенкова Елена Станиславовна Должность: преподаватель Город/Населенный пункт: Самарская область, г. Жигулевск Дата публикации: 12.03.2020

Математика - язык познания мира

Математика из покрытой ореолом таинственности науки превращается в обычный инструмент исследования, потребность в использовании которого ощущает все большее число специалистов в разных областях знания.

Математика была, есть и будет элементом общей культуры. Но если в этом качестве раньше она была уделом небольшого числа посвященных людей, то теперь, объективные тенденции научно-технического прогресса делают математические методы достоянием широкого круга людей, занятых в самых различных сферах науки и техники.

С чем связана наблюдаемая в последнее время интенсивная математизация человеческого знания?

Вся история развития цивилизации на Земле проникнута идеями числа и измерения. За несколько тысячелетий существования и совершенствования математикой выработан особый язык абстракций, который позволяет привести к единому виду описание самых разнообразных по своей природе объектов и процессов. Любая наука получает ранг точной только тогда, когда она в достаточной мере использует эту систему универсальных методов анализа, вырабатывая хорошо развитую систему строгих понятий, позволяющих делать широкие теоретические обобщения и предсказания. Математическое моделирование является одним из важнейших этапов венчающим переход науки в разряд точных.

Возникает вопрос, зачем нужны модели? Сформировать интуитивное представление о понятии модель помогут простые примеры: прежде, чем воздвигнуть зданиеневиданного типа, архитектор сооружает это здание из кубиков на столе, чтобы увидеть, как оно будет выглядеть.Перед тем как запустить в производство новый самолет, его помещают в аэродинамическую трубу и с помощью соответствующих датчиков определяют величины напряжений, возникающих в различных местах конструкций и т.д.

После всего сказанного становится понятным такое определение.

Модель - это такой материальный или мысленно представляемый объект, который в процессе изучения замещает объект - оригинал, сохраняя некоторые важные для данного исследования типичные его черты.

Человек применяет модели,при изучении сложных процессов, явлений, конструировании новых сооружений и т.п.,с незапамятных времен. Хорошо построенная модель, как правило, доступнее для исследования, нежели реальный объект. Более того, некоторые объекты вообще не могут быть изучены непосредственным образом: недопустимы, например, эксперименты с экономикой страны в познавательных целях; принципиально неосуществимы эксперименты с прошлым или, скажем, с планетами Солнечной системы и т.д.

Хорошая модель, как правило, обладает удивительным свойством: ее изучение дает некоторые новые знания об объекте - оригинале. Это, безусловно, очень важное свойство, играющее притягательную роль для лиц, занимающихся построением и изучением моделей

Моделирование - процесс построения модели. Существует несколько приемов моделирования, которые можно условно объединить в две большие группы: материальное (предметное) и идеальное моделирование.

К материальным относятся такие способы моделирования, при которых исследование ведется на основе модели, воспроизводящей основные геометрические, физические, динамические и функциональные характеристики изучаемого объекта. Основными разновидностями материального моделирования являются физические и аналоговое моделирование.

Физическим называют моделирование, при котором реальному объекту сопоставляется его увеличенная или уменьшенная копия, допускающая исследование в лабораторных условиях с помощью последующего перенесения свойств изучаемых процессов и явления с модели на объект на основе теории подобия. Аналоговое моделирование основано на аналогии процессов и явлений, имеющих различную физическую природу, но одинаково описываемых одними и теми же математическими уравнениями, логическими схемами, т.п.. Наиболее простой пример - изучение механических колебаний с помощью электрической схемы, описываемой теми же дифференциальными уравнениями.

Идеальное моделирование носит теоретический характер. Различают два типа идеального моделирования: интуитивное и знаковое. Под интуитивным понимаем моделирование, основанное на интуитивном представлении об объекте исследования, не поддающемся формализации либо не нуждающемся в ней. В этом смысле, например, жизненный опыт каждого человека может считаться его интуитивной моделью окружающего мира.

Знаковым называется моделирование, использующее в качестве моделей знаковые преобразования какого-либо вида: схемы, графики, чертежи, формулы, наборы символов и т.д., а также включающее совокупность законов по которым можно оперировать с выбранными знаковыми образованиями и их элементами.

Важнейшим видом знакового моделирования является математическое моделирование, при котором исследование объекта осуществляется посредством модели, сформулированной на языке математики, с использованием тех или иных математических методов.

Классическим примером математического моделирования является описание и исследование И. Ньютоном основных законов механики средствами математики.

Библиографический список:

1.Амосов А.А., Дубинский Ю.А., Копченова Н.П. Вычислительные методы для инженеров. - М.: Мир,2008. - 575 с.

3.Косарев В.И. 12 лекций по вычислительной математике. 2-е изд. - М.: Изд-во МФТИ, 2000. - 224 с.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Древнейшей математической деятельностью был подсчет. Счет был необходим для учета крупного рогатого скота и торговли. Некоторые первобытные племена подсчитывали количество предметов и сравнивали различные части тела, в основном пальцы ног и ног. На рисунке, сохранившемся с каменного века, изображена цифра 35 в ряду 35 стержней, нанизанных друг на друга. Первыми значительными достижениями в арифметике стали концептуализация числа и изобретение четырех основных действий: сложение, вычитание, умножение и деление. Первые достижения в геометрии были связаны с такими простыми понятиями, как прямая линия и окружность. Дальнейшее развитие математики началось около 3000 г. до н.э. благодаря вавилонянам и египтянам. И постепенно математика стала незаменимой наукой для человечества.

Математика как наука

Вот некоторые определения математики от разных авторов.

Математика — это цикл наук, посвященный ценностям и пространственным формам (арифметике, алгебре, геометрии, тригонометрии и т.д.). Чистая математика. Прикладная математика. Высшая математика. (Пояснительный словарь русского языка Д.Н.Ушакова).

Математика — академический предмет, содержащий теоретические основы соответствующей научной дисциплины (толковый русский словарь Т.Ф. Ефремовой).

Период элементарной математики

Были решены задачи, сведенные к решению уравнений третьей степени и особых типов уравнений четвертой, пятой и шестой степени. Использовались только два разных символа: один обозначал единицу, а другой — число 10; все номера записывались этими двумя символами с учетом позиционного принципа. В старых текстах (около 1700 г. до н.э.) нет символа нуля, поэтому числовое значение, присваиваемое символу, зависело от условий задачи, и этот же символ мог обозначать 1, 60, 3600 или даже 1/60, 1/3600. Греция также была сильна в математике. Математическое элементарное геометрическое исчисление

Восточная математика зародилась как прикладная наука с целью облегчения календарных расчетов распределения доходов и сбора налогов. Вначале на переднем плане были арифметические расчеты и измерения. Однако с течением времени алгебра развивалась из арифметики и зачатков теоретической геометрии из измерений. На Востоке была разработана система, основанная на десятичной системе со специальными символами для каждого высшего десятичного знака, система, которую мы знаем благодаря римской математике, которая основана на том же принципе. На Востоке было определено значение π.

Период создания математических переменных. Создание аналитической геометрии, дифференциальных и интегральных вычислений

В XVII веке начинается новый период в истории математики — период математики переменных. Его появление связано, прежде всего, с успехами астрономии и механики.

В 1609-1619 гг. Кеплер открыл законы движения планет и сформулировал их математически. Около 1638 года Галилео создал механику свободного движения тел, установил теорию упругости, применил математические методы для изучения движения с целью нахождения закономерностей между природой движения, его скоростью и ускорением. К 1686 году Ньютон сформулировал закон гравитации.

Развитие математики в России в XVIII-XIX вв.

На Древней Руси получило такое же распространение, как и в греко-византийской системе числовых знаков, основанной на Славянском алфавите. Славянская нумерация в русской математической литературе встречалась до начала 18 века, но уже с конца 16 века эта нумерация все больше заменяется принятой сегодня десятичной системой. Старейший известный нам математический труд относится к 1136 году и принадлежит новгородскому монаху Кирику. Она посвящена арифметическим и хронологическим вычислениям, которые показывают, что в то время на Руси можно было решить сложную задачу пасхального вычисления, которая в математической части сводилась к решению целых чисел неопределенных уравнений первой степени. Трудно сказать, кого следует считать первыми русскими математиками, но если люди свободно владеют современным математическим анализом и пишут работы на эту тему, то эти первенцы русских математиков, очевидно, были С. К. Котельников и С. Я. Румовский.

С. К. Котельников не занимался самостоятельным творчеством, хотя и написал что-то вроде базового курса по математике, но ограничился изданием первого тома. Котельников также написал еще один подробный учебник по геодезии.

В первой половине XIX века не было разработано преемника русской математики, но молодой русский математик уже в первый период своего развития дал выдающиеся представители в различных отраслях этой сложной науки, одна из которых уже в первой половине века вписала его имя в историю человеческой мысли.

Основные этапы образования современной математики

В XIX веке начинается новый период в развитии математики — современный. Огромный объем материала, накопленного в 17-18 веках, обусловил необходимость проведения глубокого логического анализа и объединения его с новыми аспектами. В настоящее время связь между математикой и естественными науками принимает более сложные формы. Новые теории возникают не только из потребностей науки или техники, но и из внутренних потребностей самой математики.

Усилена теория дифференциальных уравнений с частными производными и теория потенциала. Большинство великих аналитиков начала и середины XIX века работают в этом направлении: К. Гаусс, Ж. Фурье, С. Пуассон, О. Коши, П. Дирихле, М. Остроградский. Во второй половине XIX века начинается интенсивное изучение истории математики. В конце XIX и в XX веке во всех областях математики, начиная с древнейшей из них — теории чисел, произошло необычайное развитие. Теория дифференциальных уравнений с частными производными в конце XIX в. приобретает принципиально новую форму.

Важным дополнением к методам теории дифференциальных уравнений в изучении природы и решении технических задач являются методы теории вероятностей. В конце XIX и в XX веке большое внимание уделяется методам численного интегрирования дифференциальных уравнений. Таким образом, методы обоснования и методики математики, разработанные в первой половине XIX века, позволили математикам реконструировать математический анализ, алгебру, исследование числа и частично геометрии в соответствии с требованиями новой методологии. Новая методология математики способствовала преодолению кризиса ее основ и создала для них широкие перспективы дальнейшего развития математики, до конца 19 — начала 20 века носила в основном прагматический характер, если математика использовалась как эффективное средство для решения физических, астрономических и других прикладных задач.

Среди важнейших достижений 20-го века в области математики — основы:

  1. разработка концепции формального языка и формальной системы (вычисления) и генерируемой из нее теории
  2. создание математической логики как последовательной семантически завершенной формальной системы.
  3. создание аксиоматизированных формальных теорий арифметики, теории множеств, алгебраических систем и других важных областей математики
  4. формальная спецификация условий алгоритма и вычисляемой функции.

Заключение

Математическое моделирование, универсальность математических методов приписывает математике большую роль в различных областях человеческой деятельности.

Основой любой профессиональной деятельности являются навыки:

  • создавать и использовать математические модели для описания, прогнозирования и изучения различных явлений
  • проводить систематический, качественный и количественный анализ;
  • Они располагают компьютеризированными методами сбора, хранения и обработки информации;
  • имеют методы решения задач оптимизации.

Математические методы широко используются в естественных и чистых гуманитарных науках: психология, образование.

Можно сказать, что в ближайшем будущем каждая часть человеческой деятельности будет в еще большей степени использовать математические методы в исследованиях.

Список литературы

  1. Лаптев Б.Л. Н.И. Лобачевский и его геометрия. М.: Разведка, 1974 .
  2. К.А. Рыбников. История математики. М.: Наука, 1995.
  3. Самарский А.А. Математическое моделирование. М.: Наука, 1983.
  4. Остановить Р.Р. Множественность, логика, аксиоматическая теория. М.: Просвещение, 1964.
  5. Строй Ди. Я… Краткое эссе по истории математики. М.: Наука, Физматлит, 1994.
  6. А.Н. Тихонов, Д.П. Костомаров. Истории о прикладной математике. М.: Вита-Пресс, 1995.
  7. А.П. Юшкевич. Математика в своей истории. М.: Наука, 1994.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Нажмите, чтобы узнать подробности

Математика всегда сопровождала человека в жизни. Она помогает развитию других наук, она развивает у человека такие важные качества личности, как логическое мышление, целеустремлённость, сильную волю, устойчивое внимание, сосредоточенность, хорошую память, умение логически мыслить: сравнивать, сопоставлять, классифицировать, способность к творчеству и научной фантазии, чувство предвидения, умение прикидывать и оценивать результаты, работоспособность, чёткость и реализм в своих суждениях и выводах, находчивость и смекалку, чувство юмора.

Математика – инструмент познания мира

Математика всегда сопровождала человека в жизни. Она помогает развитию других наук, она развивает у человека такие важные качества личности, как логическое мышление, целеустремлённость, сильную волю, устойчивое внимание, сосредоточенность, хорошую память, умение логически мыслить: сравнивать, сопоставлять, классифицировать, способность к творчеству и научной фантазии, чувство предвидения, умение прикидывать и оценивать результаты, работоспособность, чёткость и реализм в своих суждениях и выводах, находчивость и смекалку, чувство юмора.

Она представляет из себя науку точную, не терпящую произвола в толковании и различных спекуляций. Это воплощение порядка и жесткой логики. Она помогает понять мир вокруг нас, узнать больше о его законах, так как эти законы подчинены тому же самому порядку, что царит в математике!

Язык, на котором говорит природа, мы успешно можем перевести на язык математики и осознать структуру взаимосвязей какого-либо явления. И, после того, как мы эти связи формализуем, мы можем строить модели, предсказывать будущие состояния явлений, которые этими моделями описываются, только лишь на бумаге или внутри памяти вычислительных машин!

Эйнштейн, в ответ на вопрос, где находится его лаборатория, улыбнулся и указал на карандаш и бумажный лист.

Его формулы теории относительности стали важным этапом на пути познания вселенной в которой мы живем. И это произошло до того, как человек начал осваивать космос и только тогда экспериментально подтвердил правильность уравнений великого ученого!

Благодаря применению математики нам не нужно проводить дорогостоящие и опасные для жизни эксперименты, прежде чем реализовать какой-нибудь сложный проект, например, в освоении космоса. Мы можем заранее рассчитать параметры орбиты космического аппарата, запускаемого с земли для доставки космонавтов на орбитальную станцию. Математические расчеты позволят не рисковать жизнью людей, а прикинуть заранее все необходимые для запуска ракеты параметры, обеспечив безопасный полет.

Конечно модель она на то и модель, что не может учесть все возможные переменные, поэтому и случаются катастрофы, но все равно она обеспечивает довольно надежные прогнозы.

Медицина и здравоохранение — тоже существует благодаря математике, которая используется, во-первых при проектировании медицинских приборов, а во-вторых, при анализе данных об эффективности того или иного лечения.

Зачем нужна математика человеку? Какие способности она развивает?

Итак, мы выяснили, что математика является одним из самых важных достижений культуры и цивилизации. Без нее развитие технологий и познание природы были бы немыслимыми вещами!

Математика развивает умственные способности

Математика позволяет развить некоторые важные умственные качества. Это аналитические, дедуктивные (способность к обобщению), критические, прогностические (умение прогнозировать, мыслить на несколько шагов вперед) способности.

Также эта дисциплина улучшает возможности абстрактного мышления (ведь это абстрактная наука), способность концентрироваться, тренирует память и усиливает быстроту мышления. Если говорить более подробно и оперировать конкретными навыками, то математика поможет человеку развить следующие интеллектуальные способности

Умение обобщать. Рассматривать частное событие в качестве проявления общего порядка. Умение находить роль частного в общем.

Способность к анализу сложных жизненных ситуаций, возможность принимать правильное решение проблем и определяться в условиях трудного выбора.

Умение находить закономерности.

Умение логически мыслить и рассуждать, грамотно и четко формулировать мысли, делать верные логические выводы.

Способность быстро соображать и принимать решения.

Навык планирования наперед, способность удерживать в голове несколько последовательных шагов.

Навыки концептуального и абстрактного мышления: умение последовательно и логично выстраивать сложные концепции или операции и удерживать их в уме.

Математика необходима для развития ребенка!

Особенно математика важна для развития ребенка! Она задает стандарты правильного, рационального мышления на всю жизнь вперед! Дает огромный толчок для умственного развития.

Я даже не знаю, какой другой школьный предмет способен настолько поднять умственный уровень подрастающего индивида и послужить таким хороши подспорьем для интеллектуального развития в последствии, уже в зрелом возрасте. Я не имею ввиду математику только как предмет, алгебру или арифметику, я говорю о применении математических методов вообще, в том числе в физике, в геометрии, в информатике и т. д.

Математика организует, упорядочивает и оптимизирует ваше мышление -

Математика тренирует, такие умственные качества, которые формируют каркас и скелет всего вашего мышления! Это, в первую очередь, логические способности. Это все то, что организует все ваши мысли в связанную систему понятий и представлений и связей между ними.

Такого человека легко вводить в заблуждение, что собственно обычно и происходит, так как он не способен выявить явное нарушение логики в утверждениях всяких махинаторов и шарлатанов (Уже второй плаченый опыт с финансовыми пирамидами в нашей стране говорит о том, что огромная часть людей считает, что математика им не нужна). Знание математики не позволяет вас обмануть!

Систематические занятия математикой обогащают человека, облагораживают его. Тот, кто хоть раз испытал радостное чувство от решения трудной задачи, познал радость пусть маленького, но всё же открытия, так как каждая задача в математике – это проблема, к решению которой человечество порою шло долгие сто и тысячелетия, - тот будет стремиться познать ещё и использовать полученные знания в жизни.

Во многих современных профессиях нужны математические знания: агроному и инженеру, рабочему и доярке, космонавту и дипломату, продавцу и кассиру. Даже домохозяйке – для ведения домашнего хозяйства, для ремонта квартиры, для посещения магазина, почты, телеграфа и т. д.

Математика – это орудие, с помощью которого человек познаёт и покоряет себе окружающий мир. Чтобы сделать в математике открытие, надо любить её так, как любил её каждый из великих математиков, как любили и любят её десятки и сотни других людей. Сделайте хотя бы малую часть того, что сделал каждый из них, и мир навсегда останется благодарным вам. Полюбите математику!

Читайте также: