Математика древнего вавилона реферат

Обновлено: 02.07.2024

Это продолжение задуманной мной серии про историю вычислений и счета. Первая статья про Египет здесь.

Сейчас я попробую немного рассказать о другой великой цивилизации и культуре прошлого. Вавилонское царство возникло в начале 2-го тысячелетия до нашей эры, оно пришло на смену Шумеру и Аккаду и существовало до завоевания Персами в 539 г. до н.э. Писали в Вавилоне, как все помнят, на глиняных табличках с помощью клинописи, которые очень неплохо сохраняются в отличие от бумаги, папируса, и подобных вещей, поэтому мы знаем достаточно много и про Вавилон, и про его математику. Но, конечно, мы не знаем всего. В отличие от греков вавилоняне не оставили точных алгоритмов и ясных объяснений своих приемов. Теперь мы можем только догадываться как именно вавилоняне действовали в том или ином случае при решении задачи. В этой работе я сосредточусь в основном на вавилонской арифметике, оставив в стороне геометрию, алгебру и астрономию.

Вавилоняне в математике продвинулись намного дальше египтян, насколько нам известно, хотя и не сравнялись с греками, видимо. Они уже умели решать квадратные уравнения, кроме того имели некоторые зачатки числовой алгебры. Одно из их достижений было введение позиционной шестидесятеричной системы счисления без нуля. Это означает, что обращение с числами стало значительно более гибким и простым, чем в Египте. Точно не известно, откуда взялась такая система. Одна из версии говорит, что к ней привело смешение 6-ичной и 10-ичной систем народов Шумера и Аккада. Но существуют и другие мысли на этот счет.
Эта система, к сожалению (может и к счастью, не хотелось бы учить их таблицу умножения) не была освоена другими народами Древнего Мира, и пришлось ждать прихода индийской позиционной системы. Однако, кое-какое отражение вавилонской математики в нашей культуре осталось: деление минуты на шестьдесят секунд и часа на 60 минут — это отзвук древней вавилонской системы счисления.

Цифры и система счисления


На картинке показано, как вавилоняне обозначали 1 и 10. С их помощью изображались все числа от 1 до 59. На картинке ниже показано число 33. Это аналогично римской и другим непозиционным системам записи чисел.


Число 60 обозначалось точно так, как и единица. В начале оно рисовалось крупнее, но позже это различие стерлось. Числа больше 60, но меньше, чем 120 обозначались следующим образом: сначала писалось число 60, потом через пробел остальная часть числа, меньшая 60.
Ниже пример числа 63

Куликова Елена Георгиевна

Реферат о возникновении чисел и системы исчисления в Вавилоне.

ВложениеРазмер
referat_vozniknovenie_chisel_v_vavilone.docx 321.26 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

Нижневартовского района Ханты-Мансийского автономного округа

Учитель: Куликова Е.Г.

В древнем Вавилоне примерно за 40 веков до нашего времени создалась позиционная нумерация , то есть такой способ записи чисел, при котором одна и та же цифра может обозначать разные числа, смотря по месту, занимаемому этой цифрой.

Письменность шумеров является, по-видимому, столь же древней, как и письменность египтян. Развитие способов представления чисел в Месопотамской долине вначале шло так же, как и в долине Нила, но затем жители Междуречья ввели совершенно новый принцип. Вавилоняне делали записи острой палочкой на мягких глиняных табличках, которые затем обжигались на солнце или в печи. Эти записи оказались исключительно долговечными, а потому, в отличие от египетских папирусов, дошедших до нас в весьма малом числе экземпляров, в музеях мира хранятся десятки тысяч клинописных табличек. Однако жесткость материала, на котором жители Месопотамии делали записи, оказала глубокое влияние на развитие числовых обозначений.

Письменность шумеров является, по-видимому, столь же древней, как и письменность египтян. Развитие способов представления чисел в Месопотамской долине вначале шло так же, как и в долине Нила, но затем жители Междуречья ввели совершенно новый принцип. Вавилоняне делали записи острой палочкой на мягких глиняных табличках, которые затем обжигались на солнце или в печи. Эти записи оказались исключительно долговечными, а потому, в отличие от египетских папирусов, дошедших до нас в весьма малом числе экземпляров, в музеях мира хранятся десятки тысяч клинописных табличек. Однако жесткость материала, на котором жители Месопотамии делали записи, оказала глубокое влияние на развитие числовых обозначений.

Через некоторое время после того, как Аккад завоевал шумеров, система счисления в Месопотамии стала шестидесятиричной, хотя сохранилось также и основание 10 .

Казавшееся правдоподобным предположение относительно того, почему выбор пал на число 60 как на основу вавилонской системы счисления, и утверждавшее, будто это связано с тем, что продолжительность земного года считалась равной 360 дням, не получило подтверждения. Ныне принято считать, что шестидесятиричная система была выбрана из метрологических соображений: число 60 имеет много делителей.

Для малых чисел вавилонская система счисления в основных чертах напоминала епипетскую. Одна вертикальная клинообразная черта (в раннешумерских табличках – небольшой полукруг) означала единицу; повторенный нужное число раз, этот знак служил для записи чисел меньше десяти; для обозначения числа 10 вавилоняне, как и египтяне, ввели новый коллективный символ – более широкий клиновидный знак с острием, направленным влево, напоминающий по форме угловую скобку, (в раннешумерских текстах – небольшой кружок).

Повторенный соответствующее число раз, этот знак служил для обозначения чисел 20 , 30 , 40 и 50 . Принцип повторного использования знаков позволял, например, записать число 59 в виде

, т.е. 59 = 5 х 10 + 9 .

Но для записи чисел больше 59 древние вавилоняне впервые использовали новый принцип – одно из самых выдающихся достижений в развитии систем обозначений чисел – принцип позиционности, т.е. зависимости значения символа от его местоположения в записи числа.

Вавилоняне заметили, что в качестве коллективных символов более высокого порядка можно применять уже ранее использованные символы, если они будут занимать в записи числа новое положение левее предыдущих символов.

Так, например , число 302 будет иметь вид:

оло , то есть 302 = 5 х 60 + 2

ррр ррр , то есть 3725 = 1 х 60 х 60 + 2 х 60 + 5

В Древнем Вавилоне, ок. 1650 до н.э. , система счисления оставалась псевдопозиционной или лишь относительно позиционной, поскольку не существовало эквивалента современной десятичной запятой, равно как и символа для обозначения отсутствующей позиции.

Однако в период правления селевкидов, ок. 300 до н.э. , эта неоднозначность была устранена введением специального символа в виде двух небольших клиньев, помещаемого на пустующее место, т.е. обозначающего пустую позицию в записи числа. Таким образом, из системы счисления была устранена отмеченная выше неоднозначность.

При отсутствии разряда вставлялся значок , игравший роль нуля. Однако отсутствие низшего разряда не обозначалось, и поэтому число 180 = 3 х 60 записывалось так , а обозначать эта запись могла и 3 , и 180 , и 10800 ( 3 х 60 х 60 ), и т. д. Различать эти числа можно было только по смыслу текста.

Именно поэтому вавилонскую систему мы считаем лишь относительно позиционной, ибо самый правый знак мог означать либо единицы, либо кратные какой-нибудь степени числа 60 . Тем не менее изобретение вавилонянами позиционной системы счисления с нулем представляло собой огромное достижение, по своему революционному значению для математики сопоставимое разве лишь с более поздней гипотезой Коперника в астрономии.

В исключительных случаях вавилоняне применяли сокращенные формы записи, иногда – с новыми символами для обозначения чисел 100 и 1000 , или использовали принципы умножения или вычитания.

Шестидесятеричная запись целых чисел не получила широкого распространения за пределами Ассиро-вавилонского царства, но шестидесятеричные дроби проникли далеко за эти пределы: Ближний Восток, Средняя Азия, Северная Африка, Западная Европа пользовались ими. Они широко применялись, особенно в астрономии, вплоть до изобретения десятичных дробей, т. е. До начала XVII века.

1.Я познаю мир. Математика: энцикл./авт. сост. А.П. Савин, В.В. Савин, В.В. Станцо, А.Ю. Котова; худож. А.В. Кардашук, А. Е. Шабельник, А.О. Хоменко. – М.: АСТ: Астрель: Хранитель, 2007. – 382[ 2]c.

2. Занимательная математика. :.авт. сост. Арутюнян Е. Б. , Левитас Г. Г.- М. : АСТ-ПРЕСС, 1999, 386 с

3. Депман И. Я. Мир чисел: Рассказы о математике/ Рис. Ю. Киселёва. – Изд. 4-е, перераб. И доп. – Л.: Дет. Лит., 1982. – 71 с.

Предисловие редакции: Из более 500 тыс. глиняных табличек, найденных археологами при раскопках в Древней Месопотамии, около 400 содержат математические сведения. Большинство из них расшифрованы и позволяют составить довольно ясное представление о поразительных алгебраических и геометрических достижениях вавилонских учёных.

О времени и месте рождения математики мнения разнятся. Многочисленные исследователи этого вопроса приписывают создание её различным народам и приурочивают к разным эпохам. Единой точки зрения на этот счёт не было ещё у древних греков, среди которых особенно была распространена версия, что геометрию придумали египтяне, а арифметику – финикийские купцы, которые нуждались в подобных знаниях для торговых расчётов.

Евдем, ученик Аристотеля, как и большинство его предшественников, также считал родиной геометрии Египет, а причиной её появления – практические потребности землемерия. В своём совершенствовании геометрия проходит, по Евдему, три этапа: зарождение практических навыков землемерия, появление практически ориентированной прикладной дисциплины и превращение её в теоретическую науку. Судя по всему, два первых этапа Евдем относил к Египту, а третий – к греческой математике. Правда, он всё же признавал, что теория вычисления площадей возникла из решения квадратных уравнений, имевших вавилонское происхождение.

Математике учили в писцовых школах, и каждый выпускник обладал довольно серьёзным для того времени объёмом знаний. Видимо, именно об этом говорит Ашшурбанипал, царь Ассирии в 7 в. до н.э., в одной из своих надписей, сообщая, что научился находить

Математика в Древнем Вавилоне

Математика в Древнем Вавилоне

Интересно, что в Вавилоне пользовались более обширной таблицей умножения – от 1 до 180 000, чем та, которую пришлось учить в школе нам, т.е. рассчитанная на числа от 1 до 100.

Математика в Древнем Вавилоне

В Древней Месопотамии были созданы единообразные правила арифметических действий не только с целыми числами, но и с дробями, в искусстве оперирования которыми вавилоняне значительно превосходили египтян. В Египте, например, операции с дробями долгое время продолжали оставаться на примитивном уровне, так как они знали лишь аликвотные дроби (т.е. дроби с числителем, равным 1). Со времён шумеров в Месопотамии основной счётной единицей во всех хозяйственных делах было число 60, хотя была известна и десятеричная система счисления, которая была в ходу у аккадцев. Вавилонские математики широко пользовались шестидесятеричной позиционной(!) системой счёта. На её основе и были составлены различные вычислительные таблицы. Кроме таблиц умножения и таблиц обратных величин, с помощью которых производилось деление, существовали таблицы квадратных корней и кубических чисел.

Особое значение имело в древности точное измерение полей, садов, строений – ежегодные разливы рек приносили большое количество ила, который покрывал поля и уничтожал межи между ними, и после спада воды землемерам по заказу их владельцев частенько приходилось вновь перемеривать наделы. В клинописных архивах сохранилось немало таких землемерных карт, составленных свыше 4 тыс. лет тому назад.

Многие сохранившиеся клинописные материалы представляли собой учебные пособия для вавилонских школьников, в которых приводились решения различных несложных задач, часто встречавшихся в практической жизни. Неясно, правда, решал ли ученик их в уме или делал предварительные вычисления прутиком на земле – на табличках записаны только условия математических задач и их решение.

Математика в Древнем Вавилоне

Школьник также должен был уметь вычислять коэффициенты, подсчитывать итоги, решать задачи по измерению углов, вычислению площадей и объёмов прямолинейных фигур – это был обычный набор для элементарной геометрии.

Один из клинописных текстов содержит 16 задач с решениями, которые относятся к плотинам, валам, колодцам, водяным часам и земельным работам. Одна задача снабжена чертежом, относящимся к круговому валу, ещё одна рассматривает усечённый конус, определяя его объём умножением высоты на полусумму площадей верхнего и нижнего оснований. Вавилонские математики решали также планиметрические задачи, используя свойства прямоугольных треугольников, сформулированные Пифагором впоследствии в виде теоремы о равенстве в прямоугольном треугольнике квадрата гипотенузы сумме квадратов катетов. Другими словами, знаменитая теорема Пифагора была известна вавилонянам не менее чем за тысячу лет до Пифагора.

Математика в Древнем Вавилоне

Математика в Древнем Вавилоне

Помимо планиметрических задач, решали и стереометрические, связанные с определением объёма различного рода пространств, тел, широко практиковали черчение планов полей, местностей, отдельных зданий, но обычно не в масштабе.

Наиболее значительным достижением математики было открытие того факта, что отношение диагонали и стороны квадрата не может быть выражено целым числом или простой дробью. Тем самым в математику было введено понятие иррациональности.

Считается, что открытие одного из важнейших иррациональных чисел – числа π, выражающего отношение длины окружности к её диаметру и равняющееся бесконечной дроби = 3,14…, принадлежит Пифагору. По другой версии, для числа π значение 3,14 впервые предложил Архимед на 300 лет позже, в 3 в. до н.э. Ещё по одной, первым вычислившим его был Омар Хайям, это вообще 11-12 в. н.э.. Достоверно известно лишь, что греческой буквой π это отношение впервые обозначил в 1706 г. английский математик Уильям Джонс, и лишь после того как в 1737 г. это обозначение позаимствовал швейцарский математик Леонард Эйлер, оно стало общепринятым.

Математика в Древнем Вавилоне

Число π – древнейшая математическая загадка, это открытие следует искать также в Древней Месопотамии. Вавилонские математики прекрасно знали о важнейших иррациональных числах, и решение задачи по вычислению площади круга также можно найти в расшифровках клинописных глиняных табличек математического содержания. Согласно этим данным π принималось равным 3, что, впрочем, было вполне достаточно для практических землемерных целей. Исследователи считают, что шестидесятеричная система была выбрана в Древнем Вавилоне из метрологических соображений: число 60 имеет много делителей. Шестидесятеричная запись целых чисел распространения за пределами Месопотамии не получила, но в Европе вплоть до 17 в. широко применялись и шестидесятеричные дроби, и привычное нам деление окружности на 360 градусов. Час и минуты, делящиеся на 60 частей, также берут начало в Вавилоне. Замечательна остроумная придумка вавилонян использовать для записи чисел минимальное количество цифровых знаков. Римлянам, например, даже в голову не пришло, что одной и той же цифрой можно обозначить разные величины! Для этого они использовали буквы своего алфавита. В итоге четырёхзначное число, к примеру, 2737 содержало аж одиннадцать букв: MMDCCXXXVII. И хотя и в наше время найдутся экстремалы-математики, которые сумеют разделить в столбик LXXVIII на CLXVI или перемножить CLIX на LXXIV, остаётся только пожалеть тех жителей Вечного города, которым приходилось производить при помощи подобной математической эквилибристики сложные календарные и астрономические расчёты или рассчитывались масштабные архитектурные проекты и различные инженерные объекты.

На использовании букв алфавита была основана и греческая система счисления. Вначале в Греции была принята аттическая система, использовавшая для обозначения единицы вертикальную черту, а для чисел 5, 10, 100, 1000, 10000 (по существу это была десятичная система) – начальные буквы их греческих названий. Позже, примерно в 3 в. до н.э., получила широкое распространение ионическая система счисления, в которой для обозначения чисел использовались 24 буквы греческого алфавита и три архаические буквы. А чтобы отличить числа от слов, греки над соответствующей буквой ставили горизонтальную черту.

В этом смысле вавилонская математическая наука стояла выше позднейших греческой или римской, так как именно ей принадлежит одно из самых выдающихся достижений в развитии систем обозначений чисел – принцип позиционности, согласно которому один и тот же числовой знак (символ) имеет различные значения в зависимости от того места, где он расположен.

К слову, уступала вавилонской и современная ей египетская система счисления. Египтяне пользовались непозиционной десятичной системой, в которой числа от 1 до 9 обозначались соответствующим числом вертикальных чёрточек, а для последовательных степеней числа 10 вводились индивидуальные иероглифические символы. Для малых чисел вавилонская система счисления в основных чертах напоминала египетскую. Одна вертикальная клинообразная черта (в раннешумерских табличках – небольшой полукруг) означала единицу; повторенный нужное число раз этот знак служил для записи чисел меньше десяти; для обозначения числа 10 вавилоняне, как и египтяне, ввели новый символ – широкий клиновидный знак с остриём, направленным влево, напоминающий по форме угловую скобку, (в раннешумерских текстах – небольшой кружок). Повторенный соответствующее число раз, этот знак служил для обозначения чисел 20, 30, 40 и 50.

Большинство современных историков считает, что древние научные познания носили чисто эмпирический характер. В отношении физики, химии, натурфилософии, в основе которых лежали наблюдения, вроде и верно. Но представления о чувственном опыте, как источнике знаний, сталкиваются с неразрешимым вопросом, когда речь идёт о такой абстрактной науке, как оперирующая символами математика.

Особенно значительными были достижения вавилонской математической астрономии. Но внезапный ли скачок поднял месопотамских математиков от уровня утилитарной практики до обширных познаний, позволяющих применять математические методы для предвычисления положений Солнца, Луны и планет, затмений и других небесных явлений, или развитие шло постепенно, мы, к сожалению, не знаем.

История математических знаний вообще выглядит странновато. Нам известно, как наши предки учились считать на пальцах рук и ног, делали примитивные числовые записи в виде зарубок на палке, узелков на верёвке или выложенных в ряд камешков. А далее – без всякого переходного звена – вдруг сведения о математических достижениях вавилонян, египтян, китайцев, индусов и других древних учёных, настолько солидных, что их математические методы выдерживали испытание временем вплоть до середины недавно закончившегося II тысячелетия, т. е. на протяжении более чем трёх тысяч лет…

Что скрыто между этими звеньями? Почему древние мудрецы, помимо практического значения, почитали математику как священное знание, а числам и геометрическим фигурам давали имена богов? Только ли за этим стоит трепетное отношение к Знанию, как таковому?

Возможно, придёт время, когда археологи найдут ответы на эти вопросы. А пока ждём, не будем забывать, что ещё 700 лет назад сказал оксвордец Томас Брадвардин:

Drop Down Menus
CSS Drop Down Menu
Pure CSS Dropdown Menu

Из более 500 тыс. глиняных табличек, найденных археологами при раскопках в Древней Месопотамии, около 400 содержат математические сведения. Большинство из них расшифрованы и позволяют составить довольно ясное представление о поразительных алгебраических и геометрических достижениях вавилонских учёных.

Это замечание следует за пассажем о том, что в каждой цивилизации сначала рождаются практические ремёсла, затем искусства, служащие удовольствию, и лишь затем науки, направленные на познание. Евдем, ученик Аристотеля, как и большинство его предшественников, также считал родиной геометрии Египет, а причиной её появления — практические потребности землемерия. В своём совершенствовании геометрия проходит, по Евдему, три этапа: зарождение практических навыков землемерия, появление практически ориентированной прикладной дисциплины и превращение её в теоретическую науку. Судя по всему, два первых этапа Евдем относил к Египту, а третий — к греческой математике. Правда, он всё же признавал, что теория вычисления площадей возникла из решения квадратных уравнений, имевших вавилонское происхождение.


Небольшие глиняные бляшки, найденные в Иране, предположительно использовались для записи мер зерна 8 тыс. до н.э. Норвежский институт палеографии и истории,
Осло.


Самая знаменитая из математических табличек Старовавилонского периода, хранящаяся в библиотеке Колумбийского университета (США). Содержит перечень прямоугольных треугольников с рациональными сторонами, то есть троек пифагоровых чисел x2 + y2 = z2 и свидетельствует о том, что теорема Пифагора была известна вавилонянам не менее чем за тысячу лет до рождения её автора. 1900 — 1600 гг. до н.э.


Геометрические задачи с рисунками трапеций и треугольников и решением теоремы Пифагора. Размеры таблички: 21,0x8,2. 19 в. до н.э. Британский музей

Вавилонские математики решали также планиметрические задачи, используя свойства прямоугольных треугольников, сформулированные Пифагором впоследствии в виде теоремы о равенстве в прямоугольном треугольнике квадрата гипотенузы сумме квадратов катетов. Другими словами, знаменитая теорема Пифагора была известна вавилонянам не менее чем за тысячу лет до Пифагора. Помимо планиметрических задач, решали и стереометрические, связанные с определением объёма различного рода пространств, тел, широко практиковали черчение планов полей, местностей, отдельных зданий, но обычно не в масштабе. Наиболее значительным достижением математики было открытие того факта, что отношение диагонали и стороны квадрата не может быть выражено целым числом или простой дробью. Тем самым в математику было введено понятие иррациональности.

Считается, что открытие одного из важнейших иррациональных чисел — числа π, выражающего отношение длины окружности к её диаметру и равняющееся бесконечной дроби ≈ 3,14. принадлежит Пифагору. По другой версии, для числа π значение 3,14 впервые предложил Архимед на 300 лет позже, в 3 в. до н.э. Ещё по одной, первым вычислившим его был Омар Хайям, это вообще 11 — 12 в. н.э. Достоверно известно лишь, что греческой буквой π это отношение впервые обозначил в 1706 г. английский математик Уильям Джонс, и лишь после того как в 1737 г. это обозначение позаимствовал швейцарский математик Леонард Эйлер, оно стало общепринятым. Число π — древнейшая математическая загадка, это открытие следует искать также в Древней Месопотамии.

Вавилонские математики прекрасно знали о важнейших иррациональных числах, и решение задачи по вычислению площади круга также можно найти в расшифровках клинописных глиняных табличек математического содержания. Согласно этим данным π принималось равным 3, что, впрочем, было вполне достаточно для практических землемерных целей. Исследователи считают, что шестидесятеричная система была выбрана в Древнем Вавилоне из метрологических соображений: число 60 имеет много делителей. Шестидесятеричная запись целых чисел распространения за пределами Месопотамии не получила, но в Европе вплоть до 17 в. широко применялись и шестидесятеричные дроби, и привычное нам деление окружности на 360 градусов. Час и минуты, делящиеся на 60 частей, также берут начало в Вавилоне.


Замечательна остроумная придумка вавилонян использовать для записи чисел минимальное количество цифровых знаков. Римлянам, например, даже в голову не пришло, что одной и той же цифрой можно обозначить разные величины! Для этого они использовали буквы своего алфавита. В итоге четырёхзначное число, к примеру, 2737 содержало аж одиннадцать букв: MMDCCXXXVII. И хотя и в наше время найдутся экстремалы-математики, которые сумеют разделить в столбик LXXVIII на CLXVI или перемножить CLIX на LXXIV, остаётся только пожалеть тех жителей Вечного города, которым приходилось производить при помощи подобной математической эквилибристики сложные календарные и астрономические расчёты или рассчитывались масштабные архитектурные проекты и различные инженерные объекты.

На использовании букв алфавита была основана и греческая система счисления. Вначале в Греции была принята аттическая система, использовавшая для обозначения единицы вертикальную черту, а для чисел 5, 10, 100, 1000, 10 000 (по существу это была десятичная система) — начальные буквы их греческих названий. Позже, примерно в 3 в. до н.э., получила широкое распространение ионическая система счисления, в которой для обозначения чисел использовались 24 буквы греческого алфавита и три архаические буквы. А чтобы отличить числа от слов, греки над соответствующей буквой ставили горизонтальную черту. В этом смысле вавилонская математическая наука стояла выше позднейших греческой или римской, так как именно ей принадлежит одно из самых выдающихся достижений в развитии систем обозначений чисел — принцип позиционности, согласно которому один и тот же числовой знак (символ) имеет различные значения в зависимости от того места, где он расположен. К слову, уступала вавилонской и современная ей египетская система счисления.


Табличка с вычислениями диаметра окружности из царской библиотеки Ашшурбанипала свидетельствует о том, что вавилонские математики умели решать задачи по вычислению площади круга и им было знакомо иррациональное число π.

Египтяне пользовались непозиционной десятичной системой, в которой числа от 1 до 9 обозначались соответствующим числом вертикальных чёрточек, а для последовательных степеней числа 10 вводились индивидуальные иероглифические символы. Для малых чисел вавилонская система счисления в основных чертах напоминала египетскую. Одна вертикальная клинообразная черта (в раннешумерских табличках — небольшой полукруг) означала единицу; повторенный нужное число раз этот знак служил для записи чисел меньше десяти; для обозначения числа 10 вавилоняне, как и египтяне, ввели новый символ — широкий клиновидный знак с остриём, направленным влево, напоминающий по форме угловую скобку, (в раннешумерских текстах — небольшой кружок). Повторенный соответствующее число раз, этот знак служил для обозначения чисел 20, 30, 40 и 50. Большинство современных историков считает, что древние научные познания носили чисто эмпирический характер.

В отношении физики, химии, натурфилософии, в основе которых лежали наблюдения, вроде и верно. Но представления о чувственном опыте, как источнике знаний, сталкиваются с неразрешимым вопросом, когда речь идёт о такой абстрактной науке, как оперирующая символами математика. Особенно значительными были достижения вавилонской математической астрономии. Но внезапный ли скачок поднял месопотамских математиков от уровня утилитарной практики до обширных познаний, позволяющих применять математические методы для предвычисления положений Солнца, Луны и планет, затмений и других небесных явлений, или развитие шло постепенно, мы, к сожалению, не знаем. История математических знаний вообще выглядит странновато.

Нам известно, как наши предки учились считать на пальцах рук и ног, делали примитивные числовые записи в виде зарубок на палке, узелков на верёвке или выложенных в ряд камешков. А далее — без всякого переходного звена — вдруг сведения о математических достижениях вавилонян, египтян, китайцев, индусов и других древних учёных, настолько солидных, что их математические методы выдерживали испытание временем вплоть до середины недавно закончившегося II тысячелетия, т. е. на протяжении более чем трёх тысяч лет…

Читайте также: