Математика 19 века реферат

Обновлено: 26.06.2024

История развития математики – это не только история развития математических идей, понятий и направлений, но это и история взаимосвязи математики с человеческой деятельностью, социально-экономическими условиями различных эпох.

Содержимое работы - 1 файл

Реферат.doc

В первой половине XIX столетия не выработалась преемственная школа русских математиков, но молодая русская математика уже в первый период своего развития дала выдающихся представителей в различных отраслях этой трудной науки, один из которых уже в первой половине столетия вписал свое имя в историю человеческой мысли.

В конце XVII и в XVIII веке все возрастающие запросы практики и других наук побуждали ученых максимально расширять область и методы исследований математики. Понятия бесконечности, движения и функциональной зависимости выдвигаются на первое место, становятся основой новых методов математики.

В XIX веке начинается новый период в развитии математики – современный. Накопленный в XVII и XVIII вв. огромный материал привел к необходимости углубленного логического анализа и объединения его с новых точек зрения. Связь математики с естествознанием приобретает теперь более сложные формы. Новые теории возникают не только в результате запросов естествознания или техники, а также из внутренних потребностей самой математики.

Усиленно разрабатывается теория дифференциальных уравнений с частными производными и теория потенциала. В этом направлении работают большинство крупных аналитиков начала и середины XIX века: К.Гаусс, Ж.Фурье, С.Пуассон, О.Коши, П.Дирихле, М.В.Остроградский.

Дифференциальная геометрия поверхностей создается Гауссом и Петерсоном. Для выработки новых взглядов на предмет геометрии основное значение имело создание Лобачевским неэвклидовой геометрии. Построив неэвклидову тригонометрию и аналитическую геометрию, он дал все необходимое для установления совместности и полноты системы аксиом этой новой геометрии. Развивалось долгое время и проективная геометрия, связанная с существенным изменением старых взглядов на пространство. Плюккер строит геометрию, рассматривая в качестве основных элементов прямые, Грассман создает аффинную метрическую геометрию n-мерного пространства.

Уже в гауссовой внутренней геометрии поверхностей дифференциальная геометрия освобождается от неразрывной связи с геометрией Евклида.

Во второй половине XIX в. начинается интенсивная разработка вопросов истории математики. Чрезвычайное развитие получают в конце XIX в. и в XX в. все разделы математики, начиная с самого старого из них – теории чисел. Немецкие и русский математик Е.И.Золотарев закладывают основы современной алгебраической теории чисел. В 1873 г. Ш.Эрмит доказывает трансцендентность числа ℮, а в 1882 г. Ф. Линдеман – числа π. В России по теории чисел блестяще развивают А.Н. Коркин, Г.Ф. Вороной, И.М. Виноградов и А.А. Марков. Продолжают развиваться классические отделы алгебры. Подробно исследуются возможности сведения решений уравнений высших степеней к решению уравнений возможно более простого вида. Основными отделами, привлекающими значительные научные силы, становятся дифференциальная и алгебраическая геометрия. Дифференциальная геометрия евклидова трехмерного пространства получает полное систематическое развитие в работах итальянского математика Е.Бельтрами, французского математика Г.Дарбу. Позднее бурно развивается дифференциальная геометрия многомерных пространств. Это направление геометрических исследований создано работами математиков Т.Леви-Чевита, Э.Картана, Г.Вейля. Французкие математики глубоко разрабатывают теорию целых функций. Геометрическую теорию функций и теорию римановых поверхностей развивают А.Пуанкаре, Д.Гильберт, Г.Вейль, теорию конформных отображений – русские математики И.И.Привалов, М.А.Лаврентьев, Г.М.Голузин. В результате систематического построения математического анализа на основе строгой арифметической теории иррациональных чисел и теории множеств возникла новая отрасль математики – теория функций действительного переменного.

Наибольшее внимание в области теории обыкновенных дифференциальных уравнений привлекают теперь вопросы качественного исследования их решений. Все эти исследования получили широкое развитие в России. Качественная теория дифференциальных уравнений послужила для Пуанкаре отправным пунктом для продолжения лишь едва намеченных Риманом исследований по топологии многообразий.

Теория дифференциальных уравнений с частными производными еще в конце XIX в. получает существенно новый вид.

Значительным дополнением к методам теории дифференциальных уравнений при изучении природы и решении технических задач являются методы теории вероятностей.

В конце XIX в. и в XX в. большое внимание уделяется методам численного интегрирования дифференциальных уравнений.

Таким образом, разработанные в первой половине XIX века способы обоснования и методы математики позволили математикам перестроить математический анализ, алгебру, учение о числе и отчасти геометрию в соответствии с требованиями новой методологии. Новая методология математики способствовала преодолению кризиса её основ и создала для неё широкие перспективы дальнейшего развития.

К числу основных достижений 20-го века в области оснований математики следует отнести:

. Выработку понятия формального языка и формальной системы (исчисления) и порождаемой ею теории.

. Создание математической логики в виде непротиворечивой семантически полной формальной системы.

. Создание аксиоматизированных формальных теорий арифметики, теории множеств, алгебраических систем и других важных разделов математики.

. Формальное уточнение понятий алгоритма и вычислимой функции.

. Арифметизация и погружение в формальную теорию таких важных понятий метаматематики, как доказуемость, непротиворечивость и др., что позволило решать многие метаматематические проблемы математическими средствами.

Перечисленные достижения потребовали осознания и уточнения многих важных математических и метаматематических понятий таких, как язык, синтаксис и семантика математических теорий и др. Всё это позволило взглянуть на проблему оснований математики с новых позиций по сравнению с предшествующими временами.

На основе задач теории управляющих систем, комбинаторного анализа , графов теории , теории кодирования возникла дискретная, или конечная математика .

Вопросы о наилучшем (в том или ином смысле) управлении физическими или механическими системами, описываемыми дифференциальными уравнениями, привели к созданию математической теории оптимального управления , близкие вопросы об управлении объектами в конфликтных ситуациях — к возникновению и развитию теории дифференциальных игр .

Исследования в области общих проблем управления и связанных с ними областях математики в соединении с прогрессом вычислительной техники дают основу для автоматизации новых сфер человеческой деятельности.

Математическое моделирование, универсальность математических методов обуславливают огромную роль математики в самых различных областях человеческой деятельности.

Основой любой профессиональной деятельности являются умения:

- строить и использовать математические модели для описания, прогнозирования и исследования различных явлений;

- осуществить системный, качественный и количественный анализ;

- владеть компьютерными методами сбора, хранения и обработки информации;

- владеть методами решения оптимизационных задач.

Широкое применение находят математические методы в естествознании и сугубо гуманитарных науках: психологии, педагогике.

Можно сказать, что в недалеком будущем любая часть человеческой деятельности будет еще более широко использовать в своих исследованиях математические методы.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Древнейшей математической деятельностью был подсчет. Счет был необходим для учета крупного рогатого скота и торговли. Некоторые первобытные племена подсчитывали количество предметов и сравнивали различные части тела, в основном пальцы ног и ног. На рисунке, сохранившемся с каменного века, изображена цифра 35 в ряду 35 стержней, нанизанных друг на друга. Первыми значительными достижениями в арифметике стали концептуализация числа и изобретение четырех основных действий: сложение, вычитание, умножение и деление. Первые достижения в геометрии были связаны с такими простыми понятиями, как прямая линия и окружность. Дальнейшее развитие математики началось около 3000 г. до н.э. благодаря вавилонянам и египтянам. И постепенно математика стала незаменимой наукой для человечества.

Математика как наука

Вот некоторые определения математики от разных авторов.

Математика — это цикл наук, посвященный ценностям и пространственным формам (арифметике, алгебре, геометрии, тригонометрии и т.д.). Чистая математика. Прикладная математика. Высшая математика. (Пояснительный словарь русского языка Д.Н.Ушакова).

Математика — академический предмет, содержащий теоретические основы соответствующей научной дисциплины (толковый русский словарь Т.Ф. Ефремовой).

Период элементарной математики

Были решены задачи, сведенные к решению уравнений третьей степени и особых типов уравнений четвертой, пятой и шестой степени. Использовались только два разных символа: один обозначал единицу, а другой — число 10; все номера записывались этими двумя символами с учетом позиционного принципа. В старых текстах (около 1700 г. до н.э.) нет символа нуля, поэтому числовое значение, присваиваемое символу, зависело от условий задачи, и этот же символ мог обозначать 1, 60, 3600 или даже 1/60, 1/3600. Греция также была сильна в математике. Математическое элементарное геометрическое исчисление

Восточная математика зародилась как прикладная наука с целью облегчения календарных расчетов распределения доходов и сбора налогов. Вначале на переднем плане были арифметические расчеты и измерения. Однако с течением времени алгебра развивалась из арифметики и зачатков теоретической геометрии из измерений. На Востоке была разработана система, основанная на десятичной системе со специальными символами для каждого высшего десятичного знака, система, которую мы знаем благодаря римской математике, которая основана на том же принципе. На Востоке было определено значение π.

Период создания математических переменных. Создание аналитической геометрии, дифференциальных и интегральных вычислений

В XVII веке начинается новый период в истории математики — период математики переменных. Его появление связано, прежде всего, с успехами астрономии и механики.

В 1609-1619 гг. Кеплер открыл законы движения планет и сформулировал их математически. Около 1638 года Галилео создал механику свободного движения тел, установил теорию упругости, применил математические методы для изучения движения с целью нахождения закономерностей между природой движения, его скоростью и ускорением. К 1686 году Ньютон сформулировал закон гравитации.

Развитие математики в России в XVIII-XIX вв.

На Древней Руси получило такое же распространение, как и в греко-византийской системе числовых знаков, основанной на Славянском алфавите. Славянская нумерация в русской математической литературе встречалась до начала 18 века, но уже с конца 16 века эта нумерация все больше заменяется принятой сегодня десятичной системой. Старейший известный нам математический труд относится к 1136 году и принадлежит новгородскому монаху Кирику. Она посвящена арифметическим и хронологическим вычислениям, которые показывают, что в то время на Руси можно было решить сложную задачу пасхального вычисления, которая в математической части сводилась к решению целых чисел неопределенных уравнений первой степени. Трудно сказать, кого следует считать первыми русскими математиками, но если люди свободно владеют современным математическим анализом и пишут работы на эту тему, то эти первенцы русских математиков, очевидно, были С. К. Котельников и С. Я. Румовский.

С. К. Котельников не занимался самостоятельным творчеством, хотя и написал что-то вроде базового курса по математике, но ограничился изданием первого тома. Котельников также написал еще один подробный учебник по геодезии.

В первой половине XIX века не было разработано преемника русской математики, но молодой русский математик уже в первый период своего развития дал выдающиеся представители в различных отраслях этой сложной науки, одна из которых уже в первой половине века вписала его имя в историю человеческой мысли.

Основные этапы образования современной математики

В XIX веке начинается новый период в развитии математики — современный. Огромный объем материала, накопленного в 17-18 веках, обусловил необходимость проведения глубокого логического анализа и объединения его с новыми аспектами. В настоящее время связь между математикой и естественными науками принимает более сложные формы. Новые теории возникают не только из потребностей науки или техники, но и из внутренних потребностей самой математики.

Усилена теория дифференциальных уравнений с частными производными и теория потенциала. Большинство великих аналитиков начала и середины XIX века работают в этом направлении: К. Гаусс, Ж. Фурье, С. Пуассон, О. Коши, П. Дирихле, М. Остроградский. Во второй половине XIX века начинается интенсивное изучение истории математики. В конце XIX и в XX веке во всех областях математики, начиная с древнейшей из них — теории чисел, произошло необычайное развитие. Теория дифференциальных уравнений с частными производными в конце XIX в. приобретает принципиально новую форму.

Важным дополнением к методам теории дифференциальных уравнений в изучении природы и решении технических задач являются методы теории вероятностей. В конце XIX и в XX веке большое внимание уделяется методам численного интегрирования дифференциальных уравнений. Таким образом, методы обоснования и методики математики, разработанные в первой половине XIX века, позволили математикам реконструировать математический анализ, алгебру, исследование числа и частично геометрии в соответствии с требованиями новой методологии. Новая методология математики способствовала преодолению кризиса ее основ и создала для них широкие перспективы дальнейшего развития математики, до конца 19 — начала 20 века носила в основном прагматический характер, если математика использовалась как эффективное средство для решения физических, астрономических и других прикладных задач.

Среди важнейших достижений 20-го века в области математики — основы:

  1. разработка концепции формального языка и формальной системы (вычисления) и генерируемой из нее теории
  2. создание математической логики как последовательной семантически завершенной формальной системы.
  3. создание аксиоматизированных формальных теорий арифметики, теории множеств, алгебраических систем и других важных областей математики
  4. формальная спецификация условий алгоритма и вычисляемой функции.

Заключение

Математическое моделирование, универсальность математических методов приписывает математике большую роль в различных областях человеческой деятельности.

Основой любой профессиональной деятельности являются навыки:

  • создавать и использовать математические модели для описания, прогнозирования и изучения различных явлений
  • проводить систематический, качественный и количественный анализ;
  • Они располагают компьютеризированными методами сбора, хранения и обработки информации;
  • имеют методы решения задач оптимизации.

Математические методы широко используются в естественных и чистых гуманитарных науках: психология, образование.

Можно сказать, что в ближайшем будущем каждая часть человеческой деятельности будет в еще большей степени использовать математические методы в исследованиях.

Список литературы

  1. Лаптев Б.Л. Н.И. Лобачевский и его геометрия. М.: Разведка, 1974 .
  2. К.А. Рыбников. История математики. М.: Наука, 1995.
  3. Самарский А.А. Математическое моделирование. М.: Наука, 1983.
  4. Остановить Р.Р. Множественность, логика, аксиоматическая теория. М.: Просвещение, 1964.
  5. Строй Ди. Я… Краткое эссе по истории математики. М.: Наука, Физматлит, 1994.
  6. А.Н. Тихонов, Д.П. Костомаров. Истории о прикладной математике. М.: Вита-Пресс, 1995.
  7. А.П. Юшкевич. Математика в своей истории. М.: Наука, 1994.

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

История развития математики в 19 веке

Описание презентации по отдельным слайдам:

История развития математики в 19 веке

История развития математики в 19 веке

Начало и середина 19 века. В начале 19 века происходит новое значительное рас.

Начало и середина 19 века. В начале 19 века происходит новое значительное расширение области приложений математического анализа. Усиленно разрабатывается теория дифференциальных уравнений с частными производными и особенно теория потенциала. В этом направлении работает большинство крупных аналитиков начало и середины 19 века – К.Гаусс, Ж.Фурье, С.Пуассон, О.Коши, П.Дирихле, Дж.Грин, М.В. Остроградский. К. Гаусс Ж. Фурье С. Пуассон О. Коши П. Дирихле Дж. Грин М.В. Остоградский

Начало и середина 19 века. Остроградский М.В. заложил основы вариационного ис.

Начало и середина 19 века. Остроградский М.В. заложил основы вариационного исчисления для функций нескольких переменных, нашел (1826, опубликовано в 1831) знаменитую формулу преобразования тройных интегралов в двойные и ее н-мерное обобщения (1834, опубликовано в 1838). В результате исследований по уравнениям математической физики в работах Дж. Стокса и других возникает векторный анализ (одной из основных формул которого, впрочем, являлась, по существу, и упомянутая формул Остроградского) Дж. Стокс

Начало и середина 19 века. П.Лаплас и С.Пуассон создают с этой целью новый мо.

Начало и середина 19 века. П.Лаплас и С.Пуассон создают с этой целью новый мощный аналитический аппарат. Чебышев П.Л. дает строгое обоснование элементов теории вероятностей и доказывает свою знаменитую теорию (1867), объединившую в одной общей формулировке известные ранее формы закона больших чисел. П. Лаплас П.Л. Чебышев

Начало и середина 19 века. Б.Больцано, аналитически доказавший (1817) теорему.

Начало и середина 19 века. Б.Больцано, аналитически доказавший (1817) теорему о промежуточных значениях непрерывной функции; при этом он впервые дал современное определение непрерывную функции и доказал теорему Больцано-Вейерштрасса о существовании хотя бы одной предельной точки у всякого бесконечного ограниченного точечного множества. Б. Больцано

Начало и середина 19 века. Н.И. Лобачевский (1834) и независимо П.Дирихле (18.

Начало и середина 19 века. Н.И. Лобачевский (1834) и независимо П.Дирихле (1837) отчетливо сформулировали определение функции как совершенно производного соответствия (восходящее, впрочем, к Л.Эйлеру, 175). П.Дирихле доказал (1829, 1837) изобразимость любой функции с конечным числом максимумов и минимумов рядов Фурье; условия сходимости рядов Фурье дал Н.И. Лобачевский (1834-35). Н.И. Лобачевский

Начало и середина 19 века. В 1799 К.Гаусс опубликовал первое доказательство о.

Начало и середина 19 века. В 1799 К.Гаусс опубликовал первое доказательство основной теоремы алгебры, осторожно формулируя, однако, эту теорему в чисто действительных терминах (разложимость действительного многочлена на действительные множители первой и второй степени). Лишь значительно позже (1831) К.Гаусс явно изложил теории комплексных чисел. Тем временем Ж.Арган опубликовал в 1806 теорию комплексных чисел с их геометрической интерпретацией и доказательством леммы Даламбера, а в 1815 доказательство основной теоремы алгебры, близкое по идее к доказательству О.Коши (1821). Ж. Арган Жан Леро́н Д’Аламбе́р

Начало и середина 19 века. Теория эллиптической функций была развита Н.Абелем.

Начало и середина 19 века. К.Вейерштрасс достигает той же общности, что и Б.Р.

Начало и середина 19 века. К.Вейерштрасс достигает той же общности, что и Б.Риман, оставаясь на почве чистого анализа. Однако геометрическая идея Б.Римана оказываются в дальнейшем все более определяющими весь мышления в области теории функций комплексного переменного. Б.Риман создает (1854, опубликовано в 1866) концепцию n-мерного многообразия с метрической геометрией, определяемой дифференциальной квадратичной формой. Этим было положено начало общей дифференциальной геометрии n-мерных многообразий. Б.Риману же принадлежат и первые идеи в области топологии многомерных многообразий. К. Вейерштрасс

Конец 19 века Лишь в начале 70-х годов 19 века Ф.Клейн находит модель неевкли.

Конец 19 века В 1879-1884 публикуются основные работы Г.Кантора по общей теор.

Конец 19 века В 1879-1884 публикуются основные работы Г.Кантора по общей теории бесконечных множеств, в разработке которой видную роль сыграл вначале также Р.Дедекинд. Г. Кантор Р. Дедекинд

Конец 19 века Основы математической логики создаются в 19 в. Дж.Булем, П.С.По.

Конец 19 века Основы математической логики создаются в 19 в. Дж.Булем, П.С.Порецким, Э.Шредером, Г.Фреге, Дж.Пеано и др. В начале 20в. в этой области получены большие достижения (теория доказательств Д.Гильберта; интуиционистская логика, созданная Л.Брауэром и его последователями) Дж. Буль П.С. Порецкий Э. Шредер Г. Фреге Д. Гильберт Л. Брауэр

Конец 19 века Эрмит в 1873 доказывает трансцендентность числа . Адамар Ж. (18.

Конец 19 века Эрмит в 1873 доказывает трансцендентность числа . Адамар Ж. (1896) и III. Ла Балле Пуссен (1896) завершают исследования Чебышева П.Л. о законе убывания плотности расположения простых чисел в натуральном ряду. Минковский Г. вводит в теоретико-числовые исследования геометрические методы. Эрмит Адамар Ж. Г. Минковский Пуссен

Конец 19 века Ф.Клейн и А.Пуанкаре создают теорию автономных функций, в котор.

Конец 19 века Ф.Клейн и А.Пуанкаре создают теорию автономных функций, в которой находят замечательное применение в геометрии Лобачевского. Дифференциальная геометрия евклидова трехмерного пространства получает пе систематическое развитие в работах З.Бельтрами, Г.Дарбу и др. А. Пуанкаре Э. Бельрами Г. Дарбу

Литература Хрестоматия по истории математики. Под.ред. А.П.Юшкевича. – М.: Пр.

Краткое описание документа:

•В начале 19 века происходит новое значительное расширение области приложений математического анализа. •Усиленно разрабатывается теория дифференциальных уравнений с частными производными и особенно теория потенциала. В этом направлении работает большинство крупных аналитиков начало и середины 19 века – К.Гаусс, Ж.Фурье, С.Пуассон, О.Коши, П.Дирихле, Дж.Грин, М.В. Остроградский•Остроградский М.В. заложил основы вариационного исчисления для функций нескольких переменных, нашел (1826, опубликовано в 1831) знаменитую формулу преобразования тройных интегралов в двойные и ее н-мерное обобщения (1834, опубликовано в 1838). В результате исследований по уравнениям математической физики в работах Дж. Стокса и других возникает векторный анализ (одной из основных формул которого, впрочем, являлась, по существу, и упомянутая формул Остроградского)

В 19 веке российская наука получила мощный толчок. Математика включала в себя несколько дисциплин: алгебра, геометрия, тригонометрия, математическая физика и другие. Появляются университеты, которые должны были иметь факультеты физики и математики. В России появляются ученые с мировым именем:

Лобачевский Николай Иванович-российский математик, создатель неевклидовой геометрии. Он построил геометрию Лобачевского и глубоко исследовал её необычные свойства. Лобачевский настолько опередил своё время, что был оценён по заслугам только спустя много лет после смерти.

Буняковский Виктор Яковлевич-научное наследство Буняковского весьма значительно. Им написано около 130 работ, большая часть которых посвящена математическим проблемам. Около двух десятков работ Виктора Яковлевича затрагивают вопросы статистики и демографии. Самый капитальный труд "Основания математической теории вероятностей".

Чебышев Пафнутий Львович - работал в области математического анализа: Чебышевым была получена известная теорема об условиях интегрируемости в элементарных функциях дифференциального бинома. Важное направление исследований по математическому анализу составляют его работы по построению общей теории ортогональных многочленов. Поводом к её созданию явилось параболическое интерполирование способом наименьших квадратов.

Во второй половине 19 века российская математика, при общем прикладном уклоне, публикует и немало фундаментальных результатов. Несколько важных открытий общего характера сделала Софья Ковалевская:

Наиболее важные исследования относятся к теории вращения твёрдого тела. Ковалевская открыла третий классический случай разрешимости задачи о вращении твёрдого тела вокруг неподвижной точки. Этим продвинула вперёд решение задачи, начатое Леонардом Эйлером и Ж. Л. Лагранжем.

Доказала существование аналитического (голоморфного) решения задачи Коши для систем дифференциальных уравнений с частными производными, исследовала задачу Лапласа о равновесии кольца Сатурна, получила второе приближение.

Решила задачу о приведении некоторого класса абелевых интегралов третьего ранга к эллиптическим интегралам. Работала также в области теории потенциала, математической физики, небесной механики.

В 1889 получила большую премию Парижской академии за исследование о вращении тяжёлого несимметричного волчка.

Марков Андрей Андреевич - выдающийся русский математик, внёс большой вклад в теорию вероятностей, математический анализ и теорию чисел.

А. А. Марков является первооткрывателем обширного класса стохастических процессов с дискретной и непрерывной временной компонентой, названных его именем. Марковские процессы обладают следующим (Марковским) свойством: следующее состояние процесса зависит, вероятностно, только от текущего состояния. В то время, когда эта теория была построена, она считалась весьма абстрактной, однако в настоящее время практические применения данной теории чрезвычайно многочисленны. Теория цепей Маркова выросла в огромную и весьма важную область научных исследований - теорию Марковских случайных процессов, которая в свою очередь представляет основу общей теории стохастических процессов. См. также цепи Маркова и неравенство Маркова. А. А. Марков существенно продвинул классические исследования предшественников, касающиеся закона больших чисел и центральной предельной теоремы теории вероятностей, а также распространил их и на цепи Маркова.

К концу 19 века, стараниями Н. Д. Брашмана и Н. В. Бугаева, формируется активная московская математическая школа. 15 сентября 1864 года начало свою работу Московское математическое общество, в следующем году вышел первый выпуск его печатного органа Математический сборник - первый математический журнал в России

Вопрос о целесообразности введения в школьный курс основ статистики и теории вероятностей рассматривался в России уже в первой половине XIX века. Во многом такая прогрессивная позиция российской школы обуславливалась серьезными научными разработками в этой области отечественных ученых. Отдавая должное роли России в становлении и развитии этой новой области математических знаний, зарубежные ученые называли теорию вероятностей русской наукой.

Попытки включения элементов теории вероятностей и статистики в программы различных учебных заведений предпринимались в России неоднократно, начиная с первой половины XIX века. В частности, известно, что они некоторое время преподавались в Царскосельском лицее. Периодически появляясь, а затем вновь исчезая, они во второй половине XIX века утвердились в реальных и кадетских училищах России. Хотя в Советском Союзе в те годы работало много крупнейших специалистов с мировым именем в области теории вероятностей и математической статистики, в практику школьного преподавания элементы теории вероятностей так и не были включены. Даже когда в конце шестидесятых годов в нашей стране под руководством А.Н. Колмогорова была осуществлена радикальная реформа школьного математического образования, в новых программах элементам теории вероятностей и статистики так и не нашлось места. Сказывалось отсутствие экспериментально проверенных методик, учебно-методической литературы. Пугало и смутное предчувствие трудностей, с которыми из-за необычности материала неизбежно столкнулись бы учителя и школьники. И все же некоторые подвижки произошли. Было принято решение о включении элементов теории вероятностей и статистики в перечень рекомендуемых факультативных занятий, а также о возможности (по усмотрению учителя) включения этих вопросов в программу школ с углубленным изучением математики.

Введение элементов статистики и теории вероятностей в содержание математического образования является одним из важнейших аспектов модернизации содержания образования, так как роль этих знаний в современном мире повышается.

Третий период истории теории вероятностей, (вторая половина XIX в.) связан в основном с именами русских математиков П. Л. Чебышева, А. М. Ляпунова и А. А. Маркова (старшего). Теория вероятностей развивалась в России и раньше (в XVIII в. ряд трудов по теории вероятности был написан работавшими в России Л. Эйлером, Н. Бернулли и Д. Бернулли; во второй период развития теории вероятностей следует отметить работы М. В. Остроградского по вопросам теории вероятностей, связанным с математической статистикой, и В. Я. Буняковского по применениям теории вероятностей к страховому делу, статистике и демографии).

Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми. Утверждение о том, что какое-либо событие наступает с вероятностью, равной, например, ½, ещё не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо события А весьма близка к единице или (что то же самое) вероятность не наступления события А весьма мала. В соответствии с принципом "пренебрежения достаточно малыми вероятностями" такое событие справедливо считают практически достоверным. Поэтому можно также сказать, что теория вероятностей есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов.

Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям, о которых будет сказано ниже. Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет теории вероятностей. Наиболее просто определяются основные понятия теории вероятностей как математической дисциплины в рамках так называемой элементарной теории вероятностей.

Первые начала математической статистики можно найти уже в сочинениях создателей теории вероятностей — Я. Бернулли (конец 17 — начало 18 веков), П. Лапласа (2-я половина 18 — начало 19 веков) и С. Пуассона (1-я половина 19 века). В России методы математической статистики в применении к демографии и страховому делу развивал на основе теории вероятностей В. Я. Буняковский (1846). Решающее значение для всего дальнейшего развития математическая статистика имели работы русской классической школы теории вероятностей 2-й половины 19 — начала 20 веков (П. Л. Чебышев, А. А. Марков, А. М. Ляпунов, С. Н. Бернштейн). Многие вопросы теории статистических оценок были по существу разработаны на основе теории ошибок и метода наименьших квадратов [К. Гаусс (1-я половина 19 века) и А. А. Марков (конец 19 — начало 20 веков)]. Работы А. Кетле (19 век, Бельгия), Ф. Гальтона (19 век, Великобритания) и К. Пирсона (конец 19 — начало 20 веков, Великобритания) имели большое значение, но по уровню использования достижений теории вероятностей отставали от работ русской школы. К. Пирсоном была широко развёрнута работа по составлению таблиц функций, необходимых для применения методов математической статистики В создании теории малых выборок, общей теории статистических оценок и проверки гипотез (освобожденной от предположений о наличии априорных распределений), последовательного анализа весьма значительна роль представителей англо-американской школы [Стьюдент (псевдоним У. Госсета), Р. Фишер, Э. Пирсон — Великобритания, Ю. Нейман, А. Вальд — США], деятельность которых началась в 20-х годах 20 века. В СССР значительные результаты в области математической статистики получены В. И. Романовским, Е. Е. Слуцким, которому принадлежат важные работы по статистике связанных стационарных рядов, Н. В. Смирновым, заложившим основы теории непараметрических методов математической статистики, Ю. В. Линником, обогатившим аналитический аппарат математической статистики новыми методами. На основе математической статистики особенно интенсивно разрабатываются статистические методы исследования и контроля массового производства, статистические методы в области физики, гидрологии, климатологии, звёздной астрономии, биологии, медицины и другие.

Итак, математическая статистика возникла (XVII в.) и развивалась параллельно с теорией вероятностей. Дальнейшее развитие математической статистики (вторая половина XIX - начало XX в.) обязано в первую очередь, П.Л. Чебышеву, А.А.Маркову ,Гауссу, Кетле и др.

Работы, в которых зарождались основные понятия теории вероятностей, представляли собой попытки создания теории азартных игр (Кардано, Гюйгенс, Паскаль, Ферма и другие в XVI-XVII вв.).

Следующий этап развития теории вероятностей связан с именем Якоба Бернулли (1654 - 1705). Доказанная им теорема, получившая в последствии название Закона больших чисел, была первым теоретическим обоснованием накопленных ранее фактов.

Дальнейшими успехами теория вероятностей обязана Муавру, Лапласу, Гауссу, Пуассону и др.

Новые наиболее плодотворные периоды связаны с именем П. Л. Чебышева (1821 - 1894) и его учеников.

Однако попытки такой организации образования принимались в России и раньше – по крайней мере, с середины XIX века.

Функционально наиболее удачным оказался самый простой и самый первый проект, в ходе которого в 1864 году произошло дифференцирование среднего образования. Именно тогда появляется классическая гимназия и реальная школа. Первая целенаправленно готовила к поступлению в университет, вторая – ориентировала на практическую деятельность и поступление в специализированные учебные заведения.

Вероятностно-статистический материал обладает огромным воспитывающим потенциалом, его изучение влияет на развитие интеллектуальных способностей, усиливает прикладной аспект курса математики, способствует развитию интереса к предмету.

1. РыбниковК.А. История математики.-М.:МГУ,1994.-496с.

Клейн Ф. Лекции о развитии математики в 19 столетии. -М.: Наука, 1989.

История математики с древнейших времен до начала 19 столетия. -М.: Наука, 1970-72.-Т. 1-3

Читайте также: