Магнитные явления в физике реферат

Обновлено: 07.07.2024

10.1. Прохождение тока по твёрдому, жидкому или газообразному проводнику всегда сопровождается появлением магнитного поля. Его силовые линии – замкнутые кривые, охватывающие проводник.

10.2. Направление силовой линии магнитного поля – в сторону, куда указывает северный конец маленькой магнитной стрелки, помещённой в изучаемую точку поля. При изменении направления тока в проводнике направление силовых линий меняется на противоположное.

10.3. Электромагниты – проводники, скрученные в виде спиралей или катушек, внутри которых имеется сердечник из железа или стали. Электромагниты (их также называют катушками индуктивности) способны запасать и возвращать в цепь электрическую энергию путём её преобразования в энергию магнитного поля и наоборот.

10.4. Постоянные магниты – ненаэлектризованные тела, способные притягивать предметы из железа, стали и некоторых других материалов и длительное время сохраняющие это свойство.

10.5. Полюс магнита – место на поверхности магнита, где магнитное поле является наиболее сильным. Силовые линии поля постоянного магнита являются замкнутыми. Они выходят из его северного полюса и входят в южный, замыкаясь внутри магнита.

10.6. Земля, а также некоторые другие небесные тела являются постоянными магнитами, то есть имеют магнитное поле.

10.7. Магнитное поле действует на движущиеся заряженные частицыи, как следствие, на проводники с током. На этом явлении основано действие электроизмерительных приборов и электродвигателей.

10.8. Электрические двигатели вне зависимости от их конструкции имеют вращающуюся часть (ротор) и неподвижную часть (статор). В зависимости от назначения в них размещают электромагниты или постоянные магниты, а также коллектор – устройство для регулирования поступления тока в нужные моменты во время каждого оборота ротора.

10.9. Электромагнитная индукция – явление возникновения тока в проводнике, движущемся в магнитном поле или в неподвижном проводнике, находящемся в движущемся (изменяющемся) магнитном поле.

10.10. Наибольшее применение в быту и промышленности государств Европы получил переменный индукционный ток, изменяющий свое направление 100 раз в секунду, то есть с частотой 50 Гц.

10.11. Электрический трансформатор – прибор, служащий для преобразования переменного тока одного напряжения в ток другого напряжения. Принцип действия трансформатора основан на явлении электромагнитной индукции.

10.12. Для передачи электроэнергии на расстояние используют повышающие трансформаторы, высоковольтные линии электропередачи и понижающие трансформаторы.

10.13. Для приведения в движение мощных станков и установок используют двигатели, работающие на трёхфазном переменном токе.Их преимущества: простота конструкции, высокая надёжность и мощность.

Электромагнитные явления. Таблицы и схемы.

электромагнитизм

yelektromagnetizm

История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Именно на территории Малой Азии, в Магнезии, находили горную породу, образцы которой притягивались друг к другу. По названию местности такие образцы и стали называть "магнетиками". Любой магнит в форме стержня или подковы имеет два торца, которые называются полюсами; именно в этом месте сильнее всего и проявляются его магнитные свойства. Если подвесить магнит на нитке, один полюс всегда будет указывать на север. На этом принципе основан компас. Обращенный на север полюс свободно висящего магнита называется северным полюсом магнита (N). Противоположный полюс называется южным полюсом (S).

Магнитные полюсы взаимодействуют друг с другом: одноименные полюсы отталкиваются, а разноименные - притягиваются. Аналогично концепции электрического поля, окружающего электрический заряд, вводят представление о магнитном поле вокруг магнита.

В 1820 г. Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле. Если взять рамку с током, то внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее ориентирующее действие, т. е. существует такое положение рамки, при котором внешнее магнитное поле оказывает на нее максимальное вращающее действие, и существует положение, когда вращающий момент сил равен нулю.

Основные понятия теории магнитного поля

Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты). С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозон-фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля). В СИ магнитная индукция измеряется в теслах (Тл), в системе СГС в гауссах.

Магнитное поле — это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Магнитное поле и его параметры

Направление магнитных линий и направление создающего их тока связаны между собой известным правилом правоходового винта (буравчика), а так же правилом левой руки. (рис. 1).


Рис. 1. Магнитное поле. Правило Буравчика и правило левой руки.


Основной величиной, характеризующей интенсивность и направление магнитного поля является – вектор магнитной индукции, которая измеряется в Теслах [Тл].


Вектор направлен по касательной к магнитной линии, направление вектора совпадает с осью магнитной стрелки, помещенной в рассматриваемую точку магнитного поля.


Величина определяется по механической силе, действующей на элемент проводника с током, помещенный в магнитное поле.


Если во всех точках поля имеет одинаковую величину и направление, то такое поле называется равномерным.


зависит не только от величины I, но и от магнитных свойств окружающей среды.


Второй важной величиной, характеризующей магнитное поле является – магнитный поток , который измеряется в Веберах [Вб].

Элементарным магнитным потоком Ф сквозь бесконечно малую площадку называется величина (рис. 2)


Рис. 2. Определение магнитного потока, пронизывающего: а) произвольную поверхность; б) плоскую поверхность в равномерном магнитном поле

где a – угол между направлением и нормалью к площадке dS.

Сквозь поверхность S [м2]

Ф = s∫ dФ = s∫ B cos α dS,

Если магнитное поле равномерное, а поверхность S представляет собой плоскость


При исследовании магнитных полей и расчете магнитных устройств пользуются расчетной величиной – напряженность магнитного поля [А/м]

где mа – абсолютная магнитная проницаемость среды.

Для неферромагнитных материалов и сред (дерево, бумага, медь, алюминий, воздух) mа не отличается от магнитной проницаемости вакуума и равна


mo = 4p · , Гн/м (Генри/метр).

У ферромагнетиков mа переменная и зависит от В.

Магнитные цепи

Всякий электромагнит состоит из стального сердечника – магнитопровода и намотанной на него катушки с витками изолированной проволоки, по которой проходит электрический ток.

Совокупность нескольких участков: ферромагнитных (сталь) и неферромагнитных (воздух), по которым замыкаются линии магнитного потока, составляют магнитную цепь.

Закон полного тока

В основе расчета магнитных цепей лежит закон полного тока (рис. 3.)


где: Н – напряженность магнитного поля в данной точке пространства;

dL – элемент длины замкнутого контура L;

a – угол между направлениями векторов и ;

S I – алгебраическая сумма токов, пронизывающих контур L.


Рис. 3. Закон полного тока.

Ток Iк, пронизывающий контур L считается положительным, если принятое направление обхода контура и направление этого тока связаны правилом правоходового винта (буравчика).

Применение закона полного тока для расчета магнитных цепей

Рассмотрим простейшую магнитную цепь, выполненную в виде кольца тороида из однородного материала (рис. 4).


Рис. 4. Кольцевая магнитная цепь

Обмотка имеет W витков и обтекается током I. Магнитные линии внутри кольца представляют собой концентрические окружности с центров точке О. Применим к контуру Cх, совпадающему с одной из магнитных линий, проходящих в магнитопроводе, закон полного тока. При этом будем считать:

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Министерство образования и науки Республики Бурятия

Государственное бюджетное профессиональное

Выполнил: Туртуев Ринчин,

Проверил: Ламажапова А.Ш..

1. Магнитное поле

Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов – всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

Вещества, притягивающие железо, были известны человечеству более 2000лет назад. Они получили название магнитов. Постоянный магнит в форме тонкой полоски, расположенный на плавающей в воде деревянной дощечке, поворачивается одним

После изобретения в 1800 г. источника постоянного тока возможности экспериментаторов значительно расширились. Первое фундаментальное открытие было сделано в 1820г. датским физиком Г.Х. Эрстедом (1777-1851).Убежденный в том, что электрические и магнитные явления взаимосвязаны, он хотел выяснить, не производит ли электричество каких-либо действий на магнит. В феврале 1820г. Эрстед показывал студентам тепловое действие тока. Рядом с проводником случайно оказался компас. При включении тока стрелка отклонилась от первоначального положения. В этом эффекте Эрстед увидел подтверждение своих идей. Описание опыта вышло в свет 21 июля 1820г. Этот простой опыт произвел сильное впечатление на современников и положил начало новой области физики – электродинамике.

Дальнейшие исследования развивались стремительно. 11 сентября 1820г. опыт был показан на заседании Французской академии наук. Академики спокойно разошлись, и только один из них – А.М. Ампер – поспешил заказывать приборы для проведения новых опытов. Он был уверен, что они должны были подтвердить его догадки, сводящие магнетизм к чисто электрическим явлениям. Все считали, что ток, проходя по проводник, превращает его в магнит, который и заставляет отклоняться стрелку компаса. Ампер высказал гениальную мысль: магнит представляет совокупность токов, движущихся по замкнутым контурам; отклонение стрелки вызвано взаимодействием токов. 25 сентября он демонстрирует новый эффект: два незаряженных параллельных провода, по которым текут одинаково направленные токи, притягиваются друг к другу. На каждый из проводников действует сила, зависящая от величины силы тока и расстояния между проводами. При перемене направления одного из токов силы притяжения сменяются силами отталкивания. В новой серии опытов спирали, по которым пропускали ток, вели себя подобно магнитам.

Новую область знаний о явлениях, обусловленных протеканием токов, Ампер назвал электродинамикой. Открытие явлений электромагнетизма оказало влияние не только на развитие науки, но и техники. В том же году Д. Арго изобрел электромагнит. В 1821г. Фарадею удалось осуществить вращение проводника с током в магнитном поле. Это был первый электродвигатель. Ампер предложил использовать отклонение электромагнитной стрелки для передачи сигналов в электромагнитном телеграфе.

Исследования природы подобных явлений проводились и в нашей стране. Так, например, исследования, проведенные русским физиком А.А. Эйхенвальдом в 1901г., показали, что если заряженное тело покоится относительно наблюдателя, то вокруг этого тела существует электрическое поле. Если же оно движется относительно наблюдателя, то возникает магнитное поле, которое вызывает отклонение легкоподвижной магнитной стрелки. Аналогичное действие на магнитную стрелку оказывает и проводник с током. Если по прямому проводнику, расположенному по магнитному меридиану а направлении к север-юг, пропустить ток, то расположенная под ним магнитная стрелка отклонится. Если поместить стрелку над проводником, то стрелка отклонится в другую сторону.

Согласно теории близкодействия , взаимодействие неподвижных электрических зарядов осуществляется посредством электрического поля. Проводники с током электрически нейтральны. Но, пропустив по двум параллельным проводникам ток, мы увидим, что проводники по которым токи текут в одном направлении, притягиваются, а проводники, по которым токи текут в противоположных направлениях, отталкиваются.

Взаимодействие между проводниками с током, т.е. взаимодействие между движущимися электрическими зарядами, называют магнитным. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами. Причиной возникновения сил магнитного взаимодействия является магнитное поле, которое появляется вокруг проводника с током.

Экспериментальным доказательством реальности магнитного и электрического полей является факт существования электромагнитных волн. Магнитное поле, как и электрическое, является частным проявлением единого электромагнитного поля.

Характерной отличительной особенностью электрического поля является способность действовать на неподвижные заряды.

Главное свойство магнитного поля заключается в том, что оно действует на движущиеся заряды (электрический ток).

Неподвижные заряды не создают магнитного поля. Только движущиеся заряды (электрический ток) и постоянные магниты создают магнитное поле.

При изучении взаимодействия постоянных магнитов было установлено:

постоянные магниты имеют два полюса: северный и южный; одноименные полюсы отталкиваются друг от друга, а разноименные притягиваются.

Если отдельные тела можно зарядить положительно или отрицательно, так как существует элементарный электрический заряд, то никогда нельзя отделить северный полюс магнита от южного. Таким образом, нет оснований считать, что в природе существуют отдельные магнитные заряды.

Эта мысль была высказана Ампером в гипотезе об элементарных электрических токах. Согласно гипотезе Ампера, внутри атомов и молекул вещества циркулируют элементарные электрические токи. Если эти токи расположены хаотически по отношению друг к другу, то их действие взаимно компенсируется и никакими магнитными свойствами тело не обладает. В намагниченном состоянии (например, в постоянных магнитах) элементарные токи ориентированы определенным образом. Следовательно, магнитные свойства любого тела объясняются замкнутыми электрическими токами внутри него, т.е. магнитное взаимодействие – это взаимодействие токов.

Результаты опытов Ампера и последующих многочисленных исследований можно сформулировать следующим образом. Способность магнитного поля вызывать появление механической силы, действующей на какой-либо элемент тока, можно количественно описать, задавая в каждой точке поля некоторый вектор В. Вектор В называется магнитной индукцией и является основной характеристикой магнитного поля.

2.Сила Ампера . На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sin(a) , (1)

где I - сила тока в проводнике;
B - модуль вектора индукции магнитного поля;
L - длина проводника, находящегося в магнитном поле;
a - угол между вектором магнитного поля и проводником.

Сила, действующая на проводник с током в магнитном поле, называют силой Ампера.

hello_html_15fd2d3f.jpg

Направление силы Ампера определяется по правилу левой руки (см. рис.1):

четыре пальца по току;

перпендикулярная проводнику составляющая вектора индукции В входит в ладонь;

отогнутый большой палец дает направление F .

Подобно тому, как электрические поля графически изображаются с помощью электрических силовых линий, магнитные поля изображаются с помощью линий магнитной индукции (или магнитных силовых линий).

Из опытов следует, что линии магнитной индукции прямого проводника с током представляют концентрические окружности, лежащие в плоскости, перпендикулярной току. Центр этих окружностей находится на оси проводника. С помощью железных опилок можно получить изображение линий магнитной индукции проводников с током любой формы. Линии магнитной индукции всегда замкнуты и охватывают проводники с токами. Это отличает их от линий напряженности электростатического поля. Такие поля называют вихревыми в отличие от потенциальных, примером которых является электростатическое поле.

Направление линий магнитной индукции связано с направлением тока в проводнике. Направление силовых линий магнитного поля, создаваемого проводником с током, определяется по правилу буравчика (если правовинтовой буравчик ввинчивать по направлению тока, то направление вращения рукоятки буравчика совпадет м направлением линий магнитной индукции).

Одним из проявлений магнитного поля является его силовое воздействие на движущиеся электрические заряды и проводники с током. В 1820г. А. Ампером был установлен закон, определяющий силу, действующую на элемент тока в магнитном поле. Так как создать обособленный элемент нельзя, то Ампер изучал поведение подвижных проволочных замкнутых контуров различной формы. Им было установлено, что на проводник с током помещенный в однородное магнитное поле индукции В, действует сила, пропорциональная длине отрезка проводника L ,силе тока I , протекающего по проводнику, и индукции магнитного поля В. Впоследствии этот вывод получил название закона Ампера. Используя закон Ампера, можно вычислить силу, действующую на проводник с током в магнитном поле.

Движущиеся электрические заряды создают вокруг себя магнитные поля, которые распространяются в вакууме со скоростью света с. Если же заряд движется во внешнем магнитном поле, то происходит силовое взаимодействие магнитных полей, определяемое по закону Ампера. Процесс взаимодействия магнитных полей исследовался Лоренцем, который вывел формулу для расчета силы действующей со стороны магнитного поля на движущуюся заряженную частицу. Данная сила получила название силы Лоренца.

3. Сила Лоренца. Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Из закона Ампера (1) следует, что сила Лоренца определяется соотношением:

F л = q · V · B · sin(  

где q - величина движущегося заряда;
V - модуль его скорости;
B - модуль вектора индукции магнитного поля;
 - угол между вектором скорости заряда и вектором магнитной индукции.

hello_html_d8051fa.jpg

Направление вектора F л определяется по правилу левой руки:

четыре пальца по направлению скорости движения положительного заряда V ;

перпендикулярная скорости составляющая вектора индукции входит в ладонь;

отогнутый большой палец дает направление силы Лоренца F л (см. рис. 2).

Гост

ГОСТ

Еще со времен Фарадея изучаются электромагнитные явления. Однако взаимодействие электропроводных жидкостей и электромагнитного поля внимание к себе привлекло лишь в последние годы. Основным толчком к изучению данных явлений стала астрофизика. Уже долгие годы предполагается, что основная часть материи во Вселенной находится в состоянии высокоионизированного газа или плазмы. Главные сведенья в области электромагнитной динамики были получены в результате астрофизических исследований.

Роль электромагнитных явлений в физике

В космической физике главная роль принадлежит электромагнитным явлениям, поскольку в космосе существуют магнитные поля, которые прямым образом воздействуют на движение заряженных частиц. Электромагнитные силы при определенных условиях в разы превосходят гравитационные.

Все электромагнитные явления подчинены определенным закономерностям, которые характеризуют электромагнитную форму движения материи, что кардинально отличается от механической. В электронных устройствах электромагнитные явления описаны сложными взаимоотношениями и характеризуются величинами, что зависят от пространственных координат и времени. Но такое описание является слишком обширным при исследовании сложных электронных устройств.

Электромагнитные явления не считались автономными. Благодаря усилию многих ученых данные явления были сведены к механическим. Изучение механики и электромагнитных явлений привело к формированию теории относительности: тут четырехмерное пространство и время были представлены единым многообразием, а его разделение на пространство и время – условным.

Главная особенность электромагнитных явлений в системе определена изменением свойств заготовок, при переходе от одной заготовки к другой. Первичные заготовки были полностью ферримагнитными, а остальные либо частично ферримагнитными, либо вовсе немагнитными.

Готовые работы на аналогичную тему

Изучение электромагнитных явлений требовало длительного непрерывного труда и напряжения воображения. Для того чтобы выработать правильное материалистичное понимание процессов, необходимо постоянно руководствоваться советской литературой по физике. В процессе изучения электромагнитных явлений было определено, что вокруг электрического тока всегда существовало магнитное поле. Поле и электрический ток неотделимы друг от друга.

В развитие теории электромагнитных явлений наибольший вклад внесли Максвелл и Фарадей. Только после того как Максвелл создал теорию электромагнитного поля говорилось о создании электромагнитной мировой картины. Ученый разработал теорию электромагнитного поля на основе электромагнитной индукции, что была открыта Фарадеем. Он, в свою очередь, проводил эксперименты с магнитной стрелкой и пришел к выводу, что вращение стрелки обусловлено особым состоянием окружающей среды, а не электрическими зарядами в проводнике. После этого ученый вводит понятие поля, как множества магнитных линий, что пронизывают пространство и способны выявлять и направлять электрический ток.

Теория электромагнитного поля, что была создана Максвеллом, сводилась к тому, что трансформирующееся магнитное поле вызывает появление вихревого электрического поля не только в окружающих телах, но и вакууме. Эта теория стала новым этапом в развитии физической науки. В соответствии с ней, весь мир – это электродинамическая система, которая состоит из заряженных частиц, что взаимодействуют друг с другом при помощи электромагнитного поля.

Электрические заряды движутся относительно друг друга, вследствие чего возникает дополнительная магнитная сила. Электромагнитная сила – это объединение магнитной и электрической силы. Электрические силы соотносятся с движущимися и покоящимися зарядами, а магнитные – только с движущими. Многообразие зарядов и сил описаны в уравнениях Максвелла, что стали в будущем уравнениями классической электродинамики.

Эти уравнения положили начало закону Кулона, который идентичен закону всемирного тяготения Ньютона. Закон Кулона выглядит следующим образом:

Закон всемирного тяготения Ньютона выглядит следующим образом:

Также закон Ньютона имеет следующие утверждения:

  • магнитные силовые линии не имеют начала и конца, а также они абсолютно непрерывны;
  • магнитных зарядов в природе не существует;
  • электрическое поле формируется при помощи электрических зарядов и переменного магнитного поля;
  • магнитное поле может формироваться как при помощи переменного электрического поля, так и с помощью электрического тока.

Электромагнитные явления кардинальным образом изменили представление о материи.

Электромагнитные явления. Основные термины и формулы

Электрический заряд – это величина, которая характеризует свойство тел и частиц вступать в электромагнитное взаимодействие.

Существует два вида электрических зарядов:

  • положительные заряды, носителями которых являются протоны;
  • отрицательные заряды, носителями которых являются электроны.

Атом состоит из ядра, который, в свою очередь, состоит из нейтронов, электронов и протонов. Атом превращается в ион, если он получает или отдает несколько электронов.

Электризация – это процесс приобретения заряда при помощи макроскопического тела.

На данный момент существует несколько способов электризации:

  • при помощи трения;
  • при помощи влияния.

Электрическое поле – это форма материи, что существует вокруг заряженных частиц и тел, и действует на другие частицы, что имеют заряд.

Основными законами электростатики являются:

  1. Закон Кулона для неподвижных зарядов: $F_k = k\frac>$
  2. Закон сохранения заряда (для замкнутой системы): $ q_1 + q_2… + q_n = const $

Электрический ток – это направленное движение частиц, которые имеют электрический заряд.

Есть несколько условий, которые обеспечивают существование электрического тока:

  • наличие свободных частиц, которые имеют заряд;
  • наличие электрического поля.

Действие электрического поля может быть:

  • тепловым;
  • магнитным;
  • химическим;
  • световым.

Электрическое поле формируется при помощи источников тока, в которых осуществляется работа по разделению зарядов. Это происходит за счет преобразования нескольких видов энергии в энергию электрического поля.

К характеристикам участка цепи можно отнести:

  1. Силу тока: $I = \frac =A (ампер)$ - измерение осуществляется при помощи амперметра.
  2. Напряжение: $U = \frac= В (вольт)$ - измеряется при помощи вольтметра.
  3. Сопротивление: $R = p\frac= Ом$ - измеряется при помощи омметра.

Закон Ома для участка цепи выглядит следующим образом:

Существует два вида соединения проводников: последовательное и параллельное. Последовательное соединение проводников выглядит следующим образом:

  1. $I = I_1 = I_2 =…= I_n$
  2. $U = U_1 + U_2+…+U_n$
  3. $R = R_1 + R_2 +…+ R_n$

Параллельное соединение проводников выглядит следующим образом:

  1. $ I = I_1+I_2+…+I_n$
  2. $U = U_1 = U_2 =…= U_n$
  3. $ \frac= \frac+ \frac+…+ \frac$

Работа тока: $A = Ult$

Мощность тока выглядит так: $P = IU$

Количество теплоты, что выделяется при прохождении сквозь проводник тока можно выразить следующим образом: $Q = I^2 Rt$

Электрический ток может существовать в различных средах:

  1. В металлах осуществляется направленное движение свободных электронов.
  2. В жидкостях происходит направленное движение свободных ионов, которые образуются в результате электролитической диссоциации. Закон электролиза выглядит следующим образом: $m = qk = klt$
  3. В газах происходит направленное движение электронов и ионов, что образуется в результате ионизации.
  4. В полупроводниках – направленное движение свободных дырок и электронов.

Магнитное поле – это особая форма материи, существующая вокруг заряженных движущихся частиц и тел, и действует на другие заряженные частицы и тела, что движутся в этом же поле.

Линии магнитного поля – это условные линии, вдоль которых устанавливаются оси магнитных стрелок в магнитном поле.

Интересные факты применения электромагнитных явлений

Сохранились записи, которые подтверждают, что в древние времена императора Нерона, что страдал ревматизмом, лечили электрованнами. Суть такого лечения заключалась в следующем: в деревянную кадку с водой были помещены электрически скаты. Находясь в такой ванной, человек подвергался действию электрических полей и зарядов.

В Швейцарии в прошлом столетии была изобретена электрическая няня. Под детские пеленки подкладывались изолированные металлические сети, что разделялись сухой подкладкой. Эти сети соединялись с низковольтным источником тока и с электрическим звонком. Когда подкладка становилась мокрой, цепь замыкалась, и срабатывал звонок. Это позволяло матерям сразу знать, когда нужно заменить пеленку.

В тех регионах, где встречаются сильные морозы, существовала проблема слива нефтепродуктов, поскольку их вязкость при низких температурах была слишком высокая. Тогда ученые разработали технологию электроиндукционного нагрева цистерн, которая позволяла сократить энергозатраты.

При помощи электромагнитных явлений можно было определить отпечатки пальцев человека, что держал в руках гильзы и патроны. Поместив гильзу в электрическое поле в виде электрода, на него в вакууме напылялась металлическая пленка, на которой проявлялись отпечатки пальцев, что легко поддавались идентификации.

Читайте также: