Лекарственные растения обладающие кровоостанавливающим действием реферат

Обновлено: 07.07.2024

В фармации наибольший интерес вызывают алкалоидосодержащие лекарственные растения, сырье которых используют для производства и/или изготовления многочисленных лекарственных препаратов. С этой целью применяют закрепленные соответствующими нормативными документами общие принципы извлечения данных биологически активных веществ из лекарственного растительного сырья, методы разделения суммы алкалоидов и выделения индивидуальных соединений. Как биологически активные вещества алкалоиды обладают широким спектром фармакологического действия, доказательством чего служит множество проведенных испытаний и исследований за последние десятилетия. Алкалоид может обладать не только одним, но и целым набором различных фармакологических свойств. Препараты алкалоидов применяют в качестве седативных, стимулирующих, отхаркивающих, антиаритмических, спазмолитических, желчегонных и гипотензивных средств. Помимо этого некоторые алкалоиды могут негативно воздействовать на различные формы жизни. На основе данных биологически активных веществ производят и изготавливают противомикробные, противовирусные и противопаразитарные препараты. На сегодняшний день существует ряд терапий, используемых специалистами для лечения онкологических заболеваний, одной из которых является терапия растительными алкалоидами. Рассматриваемыми лекарственными представителями флоры, источниками алкалоидов, в настоящем исследовании являются Aconitum monticola Steinb., Stephania glabra (Roxb.) Miers, Thermopsis lanceolata R.Br., Cytisus ruthenicus Fisch. ex Wol., Lobelia inflata L., Strychnos nux-vomica L., Glaucium flavum Crantz., Vinca rosea L., Taxus brevifolia Nutt.


3. Рабжаева А.Н. Особенности накопления биологически активных веществ Thymus baicalensis в зависимости от экологических факторов: автореф. дис. … канд. биол. наук. Улан-Удэ, 2011. 24 с.

4. Лугманова М.Р. Алкалоидоносные виды флоры Предуралья: выявление, эколого-ценотические закономерности распространения, перспективы ресурсного использования: автореф. дис. … канд. биол. наук. Уфа, 2007. 22 с.

5. Кедик С.А., Марахова А.И. Алкалоиды: синтез, методы выделения и анализа. М.: Институт фармацевтических технологий, 2010. 246 с.

6. Чуешов В.И., Гладух Е.В., Сайко И.В. и др. Технология лекарств промышленного производства. Ч. 1. Винница: Нова Книга, 2014. 696 с.

7. Медведева Ю.Д., Медведев В.О. Современные биотехнологические методы выделения алкалоидов // Современные научные исследования и разработки. 2018. № 6. С. 470–474.

8. Нестерова Ю.В., Поветьева Т.Н., Суслов Н.И., Шульц Э.Э., Зюзьков Г.Н., Аксиненко С.Г., Афанасьева О.Г., Крапивин А.В., Харина Т.Г. Анксиолитическая активность дитерпенового алкалоида зонгорина // Бюллетень экспериментальной биологии и медицины. 2015. № 5. С. 577–579.

10. Кулаков И.В., Нуркенов О.А. Синтез и биологическая активность производных алкалоида цитизина // Химия в интересах устойчивого развития. 2012. № 3. С. 275–289.

11. Ветрова Е.В., Борисенко Н.И., Хизриева С.С., Бугаева А.Ф. Изучение антиоксидантной активности апорфинового алкалоида глауцина и полученного в субкритической воде фенантренового алкалоида дес-глауцина // Химия растительного сырья. 2017. № 1. С. 85–91.

13. Поветьева Т.Н., Пашинский В.Г., Семенов А.А., Жапова Ц., Погодаева Н.Н., Хоружая Т.Г. Исследование противоопухолевых и антиметастатических свойств растительных средств из аконита байкальского // Сибирский онкологический журнал. 2002. № 3–4. С. 138–141.

В настоящее время на отечественном фармацевтическом рынке существует большое количество лекарственных препаратов, имеющих различное происхождение – синтетическое, полусинтетическое, природное. Наиболее востребованными из них являются препараты, произведенные и/или изготовленные из лекарственного растительного сырья. В современной научной медицине используются свыше 250 видов лекарственных растений, важнейшие из которых внесены в Государственную фармакопею РФ [1]. Они обладают различным терапевтическим действием, которое определяется содержащимися в лекарственном растительном сырье биологически активными веществами. Наиболее значимой группой таких веществ являются алкалоиды.

Алкалоиды – это группа азотсодержащих органических веществ природного происхождения, обладающих выраженной физиологической активностью. В растительном мире они наиболее распространены среди отдела Angiospermae (Magnoliophyta), реже – среди отдела Gymnospermae. Ими богаты семейства Papaveraceae, Solanaceae, Fabaceae, Campanulaceae, Ranunculaceae, Apocynaceae, Rutaceae, Loganiaceae, Ephedraceae, Malvaceae, Taxaceae и другие. Алкалоиды способны накапливаться в различных органах растения, локализуясь в клетках в виде солей органических и неорганических кислот. Содержание их как биологически активных веществ мало – оно составляет сотые и десятые доли процента [2]. Обычно растение имеет в своем химическом составе не один, а несколько видов алкалоидов, расположенных в разных его частях. Например, клубни Stephania glabra (Roxb.) Miers содержат сумму алкалоидов, в состав которых входят гиндарин, ротундин, стефарин и многие другие. Несмотря на это, в листьях и стебле обнаружен лишь один представитель – циклеанин. В траве Thermopsis lanceolata R.Br. имеется большое содержание алкалоидов термопсина, гомотермопсина, пахикарпина, анагирина, но как лекарственное растительное сырье его используют в качестве источника цитизина, накапливаемого в семенах. Помимо локализации алкалоиды отличаются и концентрацией, влияние на которую оказывают многочисленные факторы: климатические условия (температура, влажность), минеральный состав почвы, время суток и стадии вегетации. Известно, что в условиях повышенной влажности, количество алкалоидов постепенно снижается. На синтезирование и накопление данных биологически активных веществ благоприятно влияют богатые азотом почвы, высокая температура и продолжительность светового дня [3].

Несмотря на то, что алкалоиды активно используются для изготовления/производства лекарственных препаратов, обладающих различными фармакологическими эффектами, их биологическая роль в растении окончательно не выяснена. Существует множество теорий, но все они несостоятельны, так как не отражают полноту осуществляемых ими функций. Предполагается, что в процессе дыхания растения алкалоиды окисляются в пероксид, который затем переходит в оксид и высвобождаемый при этом процессе активированный кислород используется для дальнейшего фотосинтеза. Данные биологически активные вещества выступают в роли стимуляторов и регуляторов роста растений, т.е. фитогормонов. Также известно, что алкалоиды способны осуществлять защитную функцию, выражающуюся в предохранении растения от поедания представителями животного мира. Проведенная в Предуралье работа доказывает, что содержание алкалоидов в растении позволяет им сосуществовать с более конкурентоспособными видами за счет изменения ритма сезонного развития [4].

Многочисленные исследования алкалоидосодержащих растений и их свойств дали возможность производить и / или изготавливать лекарственные растительные препараты таким образом, чтобы сохранялось необходимое для терапевтического эффекта содержание биологически активного вещества. Существуют определенные особенности заготовки растительного сырья, методы выделения алкалоидов из растительного сырья, методы качественного и количественного анализа, методы и особенности производства лекарственных препаратов на основе данного действующего вещества.

Цель исследования: изучение фармакологических свойств препаратов алкалоидов. Задачи исследования представлены изучением видов лекарственных растений, содержащих данную группу действующих веществ, методов качественного и количественного анализа и особенностей производства и/или изготовления лекарственных растительных препаратов.

Материалы и методы исследования

Исследуемыми объектами настоящего исследования являются следующие лекарственные алкалоидосодержащие растения: Aconitum monticola Steinb., Stephania glabra (Roxb.) Miers, Thermopsis lanceolata R.Br., Cytisus ruthenicus Fisch. ex Wol., Lobelia inflata L., Strychnos nux-vomica L., Glaucium flavum Crantz., Vinca rosea L., Taxus brevifolia Nutt. Исследование проводилось с использованием информационно-поисковых (Scholar Google) и библиотечных баз данных (eLibrary, CyberLeninka).

Результаты исследования и их обсуждение

Доказательством того, что в растениях есть алкалоиды, служат положительные качественные реакции на исследуемое биологически активное вещество. Для качественного анализа используют общие и частные качественные реакции на алкалоиды [5]. Общие качественные реакции представлены реакциями осаждения с использованием различных химических веществ – йода и его растворов, реактива Драгендорфа, реактива Майера, реактива Бертрана, реактива Шейблера, реактива Зонненштейна, раствора кислоты пикриновой и раствора таннина. Реакции окрашивания (частные качественные реакции) многочисленны. В качестве реагентов используют концентрированную кислоту серную или азотную (оранжево-красное или красно-бурое окрашивание берберина соответственно), раствор пероксида водорода (фиолетовое окрашивание берберина), раствор калия бихромата и концентрированную кислоту серную (красно-фиолетовое окрашивание стрихнина), раствор калия бихромата и концентрированную кислоту азотную (оранжево-красное окрашивание бруцина), реактивы Эрдмана, Марки, Фреде, которые имеют различную окраску в зависимости от строения алкалоида. Кроме того, существуют групповые качественные реакции: мурексидная проба на пуриновые алкалоиды, реакция Витали – Морена на тропановые алкалоиды и другие. Эти реакции позволяют выявить у лекарственных растений целую группу алкалоидов или какой-либо определенный представитель, который в дальнейшем может послужить активным компонентом будущего лекарственного средства. В этом заключается первый этап создания лекарственного растительного препарата на основе алкалоида.

Второй этап подразумевает собой количественное определение данного биологически активного вещества. Сначала необходимо извлечь сумму алкалоидов из лекарственного растительного сырья. Для этого применяют такой метод, как экстракцию водой или спиртом, подкисленными винной, уксусной или хлороводородной кислотой. Перейдя в форму оснований, алкалоиды могут экстрагироваться органическими растворителями. При этом остальные ненужные сопутствующие вещества не связываются с ними, а остаются в исходном водном или спиртовом растворе. Затем органическую смесь алкалоидов подкисляют раствором соответствующей кислоты, вновь переводя алкалоид в солевую форму. Таким образом, выполняя данную операцию некоторое количество раз, можно добиться высокой степени очистки препарата.

В настоящее время на фармацевтических предприятиях все чаще отдают предпочтение иному методу выделения и очистки алкалоидов – ионному обмену. Этот метод представляет собой вполне простую технологическую схему, включающую в себя 5 основных процессов [6]. Как правило, индивидуальные алкалоиды извлекают с помощью нескольких видов катионитов (например, КУ-1, КУ-2, СБС-3). Данный метод применяют для производства цитизина из травы Thermopsis lanceolata R.Br. и многих других алкалоидов. Достоинствами ионного обмена являются относительная дешевизна материалов, простота оборудования и малая трудоемкость процесса. В других случаях используют метод электродиализа, совмещающего несколько этапов производства препаратов на основе алкалоидов – экстракцию, выделение и очистку. Но в связи с низкой эффективностью и сложностью эксплуатации оборудования на фармацевтическом производстве данный метод применяется крайне редко.

За извлечением и очисткой следует разделение суммы алкалоидов на индивидуальные компоненты, с которыми в дальнейшем будут иметь дело. Этот этап является крайне важным и достаточно сложным, так как в зависимости от того, насколько успешно пройдет разделение на конкретные алкалоиды, будет зависеть качество будущего лекарственного средства. Для выделения индивидуальных веществ на фармацевтическом производстве используют следующие основанные на физико-химических свойствах алкалоидов методы: вакуум-разгонку, дробную кристаллизацию, жидкостную экстракцию, сорбцию и избирательное элюирование (десорбцию) [7].

Последнее, что необходимо сделать, это провести собственно количественное определение алкалоида. Его проводят различными способами: гравиметрическим, титриметрическим и физико-химическим методами, включающими в себя фотоэлектроколориметрический метод (клубни с корнями Stephania glabra (Roxb.) Miers, трава Glaucium flavum Crantz.), спектрофотометрический метод (трава Thermopsis lanceolata R.Br.) и полярографический метод (семена Thermopsis lanceolata R.Br.).

Прежде чем выпустить новый лекарственный растительный препарат, необходимо провести тщательное изучение его производящих компонентов – лекарственного растительного сырья и содержащихся в нем биологически активных веществ – с целью определения фармакологической группы будущего лекарственного средства.

Алкалоид зонгорин, выделенный из различных видов Aconitum (A. Barbatum Pers., A. soongaricum Stapf., A. monticola Steinb., A. karakolicum Rapaics.), относящихся к семейству Ranunculaceae, обладает анксиолитической активностью [8]. По сравнению с другими лекарственными препаратами этой группы (ксанакс, феназепам), имеющими побочные эффекты, зонгорин не вызывает серьезных последствий и может применяться при лечении тревожных состояний. В этом заключаются перспективы использования данного алкалоида в качестве основного действующего компонента для лекарственного препарата. Результаты его разработок пока неизвестны.

Седативное действие проявляет алкалоид гиндарин, содержащийся в корнях Stephania glabra (Roxb.) Miers, принадлежащей семейству Menispermaceae. В качестве лекарственного препарата используют его производное – гиндарина гидрохлорид. Помимо оказания седативного действия он снижает артериальное давление, вызывает миорелаксацию и в больших дозах способен выступать в роли транквилизатора. Для производства пероральных препаратов гиндарина используют различные вспомогательные вещества [9]. Это необходимо для того, чтобы препарат более длительное время сохранял свою фармакологическую активность и не подвергался каким-либо химическим изменениям.

Растения семейства Fabaceae – Thermopsis lanceolata R.Br. и Cytisus ruthenicus Fisch. ex Wol. – применяются в качестве лекарственного растительного сырья для получения таких препаратов, как цититон и табекс. Их активным компонентом является алкалоид цитизин, который обладает стимулирующей и антитабачной активностью. Показаниями к применению цититона выступают асфиксия, шоковые, коллаптоидные состояния и ослабление дыхательной и сердечно-сосудистой деятельности при различных интоксикациях химическими веществами. Табекс назначают как средство для лечения никотиновой зависимости. Помимо цитизина схожей активностью обладает алкалоид лобелин, извлекаемый из Lobelia inflata L. (семейство Campanulaceae), который входит в состав препаратов лобелина гидрохлорид и лобесил. Кроме того, производные цитизина способны оказывать другие фармакологические свойства, не характерные для самого алкалоида – гиполипидемические, противовоспалительные, холинотропные, гемостатические, антиаритмические [10].

В медицинской практике используют такое химическое соединение, как стрихнина нитрат. Это производное алкалоида растения семейства Loganiaceae – Strychnos nux-vomica L. Он оказывает стимулирующее влияние на спинной мозг, возбуждает дыхательные и сосудодвигательные центры, усиливает функцию анализаторов, т.е. обладает адаптогенной, общетонизирующей активностью. Данный препарат назначают внутрь или внутривенно (инъекции). Также существуют другие лекарственные формы – настойка и экстракт чилибухи сухой, применяемые внутрь. Но оказывать свое терапевтическое действие алкалоид стрихнин может только в небольших концентрациях. Превышение допустимых концентраций приводит к серьезному отравлению, способному вызвать гибель организма.

Алкалоид глауцин, содержащийся в Glaucium flavum Crantz. семейства Papaveraceae, обладает противокашлевым, бронхолитическим и антиоксидантным действием. Проведенные исследования доказывают, что производное этого алкалоида (изомер дес-глауцин) имеет более выраженное антиоксидантное действие, чем исходный природный компонент [11]. Данных о его препаратах нет. Но препараты самого алкалоида глауцина существуют – это глаувент и глауцина гидрохлорид. В комбинации с другими алкалоидами (эфедрин, который содержится в различных видах рода Ephedra семейства Ephedraceae) и прочими соединениями глауцин входит в состав бронхотона, бронхолитина и бронхоцина.

Заключение

Результаты, полученные в ходе исследования информационно-поисковых и библиотечных баз данных исследовательской литературы, показали, что алкалоиды способны оказывать множество различных фармакотерапевтических эффектов. Они могут влиять на различные системы органов и протекающие в человеческом организме процессы. Препараты алкалоидов оказывают действие на сердечно-сосудистую и центральную нервную системы, периферические нейромедиаторные процессы и афферентные нервные окончания. Вероятно, такое богатство терапевтических действий обусловлено сложным и разнообразным химическим строением данных биологически активных веществ. Кроме того, были рассмотрены основы производства лекарственных препаратов алкалоидов. Они имеют свои особенности в зависимости от того, на основе какого представителя хотят произвести/изготовить лекарственное средство. Проанализированные исследования и клинические испытания позволяют прийти к выводу, что ученым известно еще не так много об этой группе веществ. Обладая столь широким спектром терапевтического действия, алкалоиды способны стать действующими веществами лекарственных препаратов многих фармакологических групп. Таким образом, использование данных биологически активных веществ является перспективным в современной медицине.

Лекарственные растения – источники кровоостанавливающих препаратов

Наталия Сапронова, к.ф.н., доцент, специалист в области фармакогнозии

Лекарственные растения традиционно использовались как средство первой помощи при различных кровотечениях. Сегодня в ассортименте лекарственных растительных препаратов для остановки кровотечений имеются как растительное сырье для приготовления в домашних условиях настоев и отваров, так и настойки, экстракты, моно- и комбинированные препараты. Кровоостанавливающее действие растительных препаратов обусловлено образованием в растениях и наличием в сырье таких
фармакологически активных веществ, как витамин К1, аскорбиновая кислота (вит. С), флавоноиды, дубильные вещества, некоторые алкалоиды и др., способствующих свертыванию крови, снижающих артериальное давление и проницаемость стенок капилляров, вызывающих сокращение мускулатуры матки, то есть влияющих на гемостаз.
Гемостаз – это комплекс реакций организма, направленных на предупреждение и остановку кровотечений. Полноценность системы гемостаза зависит от состояния и реактивности кровеносных сосудов, особенно тонкостенных (капилляров, венул), достаточного содержания тромбоцитов в крови и их функциональной полноценности, баланса свертывающей и фибринолитической систем крови.
Крапива двудомная (Urtica dioica L.) – многолетнее травянистое растение семейства крапивных Urticaceae). Распространена повсюду в умеренной зоне обоих полушарий. В России произрастает повсеместно как сорно-рудеральное растение. Собирают листья крапивы двудомной во время бутонизации и цветения и высушивают. Крапивы двудомной листья (Urticae dioicaе folia) содержат богатый комплекс органических и минеральных веществ, оказывающих влияние на гемостаз. Это витамины группы В, К1, аскорбиновая кислота, каротин, хлорофилл, ситостерин, фенольные и органические кислоты, фитонциды, дубильные вещества, микро- и макроэлементы (железо, медь,
марганец, бор, титан, никель и др.). Настой листьев крапивы применяют в комплексной терапии при обильных менструальных кровотечениях и необильных в посткоагуляционный период лечения эрозии шейки матки. Имеет противопоказания: повышенная чувствительность к препарату, гиперкоагуляция, кровотечения (при заболеваниях, требующих оперативного вмешательства, опухолях); беременность и возраст до 12 лет.
Пастушья сумка обыкновенная (Capsella bursapastoris L.) – дикорастущее однолетнее травянистое растение семейства капустных – Brassicaceae. В России встречается повсеместно как сорно-рудеральное растение у жилья, на огородах, вдоль дорог и канав.
Пастушьей сумки траву (Herba Bursae pastoris) cобирают в фазы цветения и начала плодоношения (до побурения плодов) и высушивают. В химическом составе сырья, так же как и в листьях крапивы, имеется витамин К1, отвечающий за свертываемость крови, стимулирующий образование протромбина в печени, и другие биологически активные вещества. Настой травы пастушьей сумки, помимо кровоостанавливающего действия, усиливает сократительную способность гладкой мускулатуры матки.
Применяют также при обильных и незначительных маточных кровотечениях.
Тысячелистник обыкновенный (Achillea millefolum L.) – многолетнее травянистое растение семейства астровых – Asteraceae. Широко распространенный в мире вид. В России встречается практически во всех регионах. Растет в лесной, лесостепной и степной зонах, на суходольных и лесных лугах, в степях, среди кустарников, в разреженных лесах, на опушках, межах, вдоль дорог, по оврагам, на залежах, пустырях, возле жилья, по берегам водоемов, по окраинам полей и как сорняк на огородах. Цветки тысячелистника и траву (Herba, flores Millefolii) собирают в фазу цветения и высушивают. Сырье содержит: эфирное масло, витамины (K1, аскорбиновую кислоту, каротиноиды), флавоноиды, алкалоид ахиллеин, кумарины, аконитовую кислоту, горькие гликозиды, смолистые и дубильные вещества, органические кислоты, полисахарид инулин, аспарагин, микро- и макроэлементы и пр. Настой травы тысячелистника обладает гемостатическим, противовоспалительным и спазмолитическим
действием. Применяется при обильных и незначительных маточных кровотечениях. Также вызывает спазм гладкой мускулатуры желудочно-кишечного тракта.
Горец перечный (водяной перец) (Polygonum hydropiper L.) – дикорастущее однолетнее травянистое растение семейства гречишных – Polygonaceae. Встречается в умеренном и тропическом климате Северного полушария. Широко распространен почти по всей России (европейская часть, Сибирь, Кавказ). Растет в сырых местах, на болотистых лугах, по берегам рек, прудов, болот, озер, а также вдоль дорог и на огородах. Предпочитает влажные и богатые почвы. Горца водяного траву (Herba Polygoni
Hylropiperis) собирают в фазу цветения и высушивают. Сырье содержит: витамины (рутин, каротин, аскорбиновую кислоту), дубильные вещества, органические кислоты (муравьиную, уксусную, валериановую, яблочную), флавоноиды (рутин, изорамнетин, кверцетин, гиперозид) и пр. Настой травы горца водяного применяют при физиоло-
гически обильных и незначительных маточных кровотечениях, а также для лечения геморроя.
Горец почечуйный (Polygonum persicaria L.) – дикорастущее однолетнее травянистое растение семейства гречишных – Polygonaceae. Произрастает в Европе, Азии в Северной Америке. В России растет почти на всей территории по берегам рек, озер, мелиоративных каналов, на сырых лугах, как сорняк на полях, в садах и огородах. Часто образует заросли с горцом перечным и другими влаголюбивыми растениями. Собирают траву горца почечуйного (Herba Polygoni Persicariae) в фазу цветения и высушивают.
Сырье содержит: витамины (К1, аскорбиновую кислоту, каротиноиды), флавоноиды (авикулярин, рутин, кверцетин и др.), органические кислоты, дубильные вещества, углеводы и др. Применяют настой как слабительное и кровоостанавливающее средство при запорах, геморрое (почечуе), маточных кровотечениях.
Стальник полевой (пашенный) (Ononis arvensis L.) – многолетнее травянистое растение семейства бобовых – Fabaceae. Стальника корни (Radices Ononidis) собирают осенью от дикорастущих и культивируемых растений и высушивают.
Сырье содержит: изофлавоноиды (ононин), смолистые и дубильные вещества, жирное масло, полисахариды (крахмал), органические кислоты, микро- и макроэлементы. Отвар корней как кровоостанавливающее и противовоспалительное средство применяют при геморрое, трещинах прямой кишки, запорах, а также используют как мочегонное средство при воспалительных заболеваниях почек и мочевого пузыря, при мочекаменной болезни. Настойка применяется наружно при воспалении геморроидальных узлов и при трофических язвах голени.


В двух томах в алфавитном порядке в виде автономных модулей представлены сведения о 1145 видах лекарственных растений и грибов.

В первой строке каждого модуля прописным шрифтом указано название объекта описания на русском языке. Если существуют его равноупотребляемые названия, они приведены в скобках в этой же строке.

Вслед за названием в квадратных скобках указан порядковый номер объекта. Если квадратные скобки с указанием номера отмечены звездочкой, это означает, что сходным химическим составом и биологическими свойствами обладают другие растения или грибы этого же семейства. В этом случае их названия на русском и латинском языках приведены в завершении модуля, под чертой после табличных данных по указанному объекту, с указанием сквозного порядкового номера.

Во второй строке модуля в круглых скобках указано название объекта описания на латинском языке в его современной классификационной форме. Наиболее употребимые альтернативные классификационные формы указываются в этой же строке дополнительно, после основной.

Непосредственно за наименованиями в модуле приведены сведения о химическом составе и действующих веществах объекта описания.

Сведения об используемых частях растений и грибов, их основных эффектах, применении и дополнительная информация представлены в модуле в табличной форме.

Завершает таблицу информационная строка о наличии объекта описания в наиболее значимых перечнях, регулирующих их оборот: Государственых фармакопеях РФ; Перечне растений, разрешенных для использования у детей до 14 лет; Перечне растений, не подлежащих включению в состав однокомпонентных БАД к пище; Перечне растений, запрещённых для использования в составе БАД к пище: Перечне растений, запрещённых к свободному обороту по статье 231 УК РФ.

Каждый модуль проиллюстрирован фотографиями, в наибольшей степени дающими представление об описываемых растениях и грибах.

АБРИКОС СИБИРСКИЙ [1][1]

Armeniaca sibirica (L.) Lam..

Химический состав: в листьях – фенилкарбоновая кислота, витамин С; в плодах сахара (сахароза и пр.) – до 27 %, углеводы (крахмал, инулин и пр.), органические кислоты (лимонная, винная, яблочная), флавоноиды (кверцетин, изокверцитрин и пр.), ликопин, дубильные вещества, витамины С, В, Р, каротин, минеральные соли (калий, железо, серебро и пр.). В семенах жирное масло (до 76 %), гликозид амигдалин, ферменты (эмульсин, лактаза), пигменнты, слизи, неорганические кислоты (синильная и др.), витамин В15.

Статья посвящена вопросам изучения антимикробных свойств природных биологически активных соединений – флавоноидов и фенолкарбоновых кислот, извлекаемых методом вихревой турбоэкстракции из сырья растений рода Veronica L. (сем. Scrophulariaceae Juss.) Предуралья. На основании проведенного исследования авторы делают вывод о возможности применения растительного сырья Veronica L. в медицинской практике.


Лекарственные препараты, получаемые из растений, занимают достойное место среди средств профилактики и лечения многих заболеваний. На сегодняшний день в Государственном реестре лекарственных средств МЗ РФ приведено около 300 видов растений, применяемых в научной медицине и используемых для приготовления лекарственных средств [5]. В целом же в фитотерапии - научной и народной медицине, гомеопатии и ветеринарии используется около двух тысяч видов растений [12]. При этом биоразнообразие лекарственных растений используется далеко не полностью, что связано с отсутствием данных о ресурсах, недостатком сведений о химическом составе растительного сырья и малой изученностью фармакологических свойств фитопрепаратов [7].

Повсеместное распространение многих лекарственных растений, дешевизна получаемых из них препаратов и высокая физиологическая активность комплекса биологически активных (действующих) веществ - все это не может не привлекать внимание исследователей. Поэтому, одной из актуальных проблем медицинской и биологической науки является поиск новых источников лекарственного растительного сырья, способных расширить сырьевую базу и обновить ассортимент лекарственных средств растительного происхождения.

Растения в процессе роста и развития вырабатывают и накапливают вещества первичного и вторичного синтеза. Вещества первичного синтеза - белки, углеводы и липиды, выполняют в клетках энергетическую, пластическую и ряд других функций, обеспечивая процессы жизнедеятельности. Вещества вторичного синтеза представляют собой химические соединения, обладающие фармакологической активностью и способные оказывать регулирующее влияние на процессы обмена в растительных и животных организмах [13, 16]. Компоненты вторичного синтеза - флавоноиды, иридоиды, азотсодержащие вещества, фитонциды, эфирные масла, таниды, гликозиды, сапонины, ферменты, кумарины, органические кислоты, горечи и многие другие соединения, накапливаемые растениями и обладающие фармакологической активностью и терапевтическим действием, принято называть биологически активными веществами (БАВ).

Исследуя флору Предуралья в период экспедиций (1970-1988 и 1999-2010 гг.), мы обратили внимание на растения рода вероника - Veronica L., семейства Норичниковых - Scrophulariaceae Juss., которые имеют обширный ареал в Евразии и часто входят в состав субдоминантов растительных сообществ [8, 9]. Значительное число видов указанного рода широко применяются в фитотерапии нашей страны и ряда стран Западной Европы и Центральной Азии [1, 3, 11, 12, 14, 15].

В народной медицине препараты из растений рода Veronica применяются в качестве противовоспалительных, отхаркивающих, седативных, кровоостанавливающих, антитоксических и ранозаживляющих средств [1, 6, 8, 11, 12, 14, 19]. Некоторые виды рода Veronica обладают противораковым действием [3]. Вероника лекарственная - V. officinalis включена в состав многих сборов, лечебных чаев и биологически активных пищевых добавок [6]. Виды Veronica L. широко используются для лечения кожных болезней в ветеринарной практике, а их препараты, при исследовании на животных, показали эффективность при заболеваниях сердечно-сосудистой системы [6].

Целью нашего исследования являлось установление антибактериальных свойств препаратов, полученных из сырья растений рода Veronica, произрастающих в лесостепной и степной зонах Предуралья.

Из многообразия видов Veronica нами были выбраны наиболее распространенные в регионе представители: V.officinalis L. - в. лекарственная, V. spicata L. - в. колосистая, V. incana L. - в. седая и V. spuria L. - в. ненастоящая.

Материалы и методы исследования

Растительное сырье для исследования (надземная часть - трава) было заготовлено в период цветения растений в различных биомах Предуралья (2007-2010 гг.) и высушивалось воздушно-теневым способом.

В. лекарственная, относящаяся к растениям-мезофитам и встречающаяся в хвойных лесах была собрана в сосновом бору группы ассоциаций Pineta herbosa Кунгурско-Красноуфимской лесостепи Среднего Предуралья (окр. д. Крылово, Красноуфимского района Свердловской области).

В. ненастоящая, являющаяся ксеромезофитом была собрана на остепненных лугах (Александровские сопки, Красноуфимского района Свердловской области).

Два оставшихся вида: в. колосистая и в. седая относятся к группе ксерофитов и ареал их произрастания охватывает степную зону Южного Предуралья. В. колосистая собрана на остепненных лугах в злаково-разнотравных ассоциациях (окрестности с. Каменноозерное Оренбургского р-на, Оренбургской области)., а в. седая - на степных участках (каменистая степь) в типчаково-разнотравной ассоциации (окресности с. Саракташ, Оренбургской области).

На первом этапе нами проводилось фитохимическое исследование растений на содержание основных групп действующих веществ, оказывающих влияние на биологические процессы в растительных и животных организмах. Исследованию подвергались надземные органы растений (трава), собранные в период цветения растений в 2007-2010 гг. Обнаружение, идентификация и количественное определение алкалоидов, флавоноидов, дубильных веществ, сапонинов, кумаринов и иридоидов проводили методами принятыми Всероссийским Институтом Лекарственных Растений (ВИЛР) и Институтом биохимии растений РАН [4, 13, 16].

Для выявления антимикробной активности комплекса биологически активных веществ в видах рода Veronica из сырья растений нами были изготовлены сухие экстракты полифенольных соединений. Сухие экстракты готовили с использованием метода турбоэкстракции [2], основанном на вихревом перемешивании (с количеством оборотов до четырех тысяч в минуту) сырья и экстрагента при одновременном измельчении сырья. В качестве экстрагента использовали воду, нагретую до температуры 40-42 °С и этанол различной концентрации (табл. 1). Вытяжку отстаивали при температуре +5 °С в течение трёх суток, затем фильтровали, сгущали и высушивали в сушильном шкафу при температуре 70 °С. Полученный экстракт - порошок бурого цвета, исследовали на наличие флавоноидов методом двумерной хроматографии на бумаге.

Испытание антибактериальной активности полученных препаратов проводили в отношении грамположительных и грамотрицательных бактерий. В качестве тест-микроорганизмов были использованы штаммы, рекомендуемые для исследования препаратов [4, 10, 17]: культура золотистого стафилококка - Staphyloccus aureus, штам-209 и культура кишечной палочки - Escherichia coli, штамм М-17, полученные из Государственного НИИ стандартизации и контроля медицинских биологических препаратов (г. Москва).

Исследования проводилось нами на жидких питательных средах методом двукратных серийных разведений [10]. Для этого готовили двукратное разведение извлечений в мясопептонном бульоне. Разведение готовили непосредственно в пробирках, подлежащих засеву. В каждом ряду разведений для контроля имели равное количество пробирок с соответствующими разведениями этилового спирта и две пробирки со средой без извлечения, а при исследовании водных извлечений в качестве контроля брали две пробирки со средой без извлечения.

Культуры для экспериментов готовились следующим образом: суточные агаровые культуры переносили петлёй в пробирку с физиологическим раствором, где находилось исходное разведение в 500 млн микробных тел в 1 мл по оптимальному стандарту. Полученную взвесь разводили бульоном, вначале в 100, а затем еще в 10 раз, для того, чтобы получить взвесь микробов содержащую 500 000 микробных тел в 1 мл, которая являлась рабочим разведением культуры. Изготовленную культуру вносили по 1 мл как в пробирки с извлечением, так и в контрольные, не содержащие извлечений.

Бактериальная нагрузка составляла, таким образом, 250 000 микробных тел в 1 мл. Вслед за этим штативы с пробирками помещались в термостат при температуре +37 °С. Результаты опыта учитывались через 20-24 часа. Регистрировали наличие роста (помутнение) или задержку роста в среде за счет бактериостатического действия извлечений. За действующую дозу принимали ту наименьшую концентрацию извлечения, при которой наблюдается задержка роста бактериальных культур [10].

Результаты исследования и их обсуждение

Фитохимическое исследование видов Veronica показало, что в исследуемых растениях наиболее характерными соединениями являются флавоноиды, таниды, азотистые вещества основного характера и иридоиды.

Основными действующими веществами в сырье растений являются флавоноиды группы флавона [6, 8, 13], составляющие комплекс полифенольных соединений. Химическая структура производных флавона - флавоноидов включает два ароматических кольца, соединенных друг с другом трехуглеродным фрагментом (С636):



Структура флавоноидов варьирует за счет изменения числа и положения гидроксильных групп, наличия или отсутствия С = O - группы в кольце С, положением кольца В. Флавоноиды способны образовывать гликозиды, эфиры и другие производные, отличающиеся по своим химическим и фармакологическим свойствам.

При исследовании сырья указанных видов Veronica методом двумерной хроматографии на бумаге в растениях обнаружены флавоноиды (до 16 соединений) и фенолкарбоновые кислоты (до 9 веществ). При этом нами [6, 8, 15] выделены и идентифицированы основные флавоноиды вероник: лютеолин (5,7,3´,4´-тетраоксифлавон), апигенин (5,7,4´-триоксифлавон), апигенин-7-β-D-глюкуронид; цинарозид или лютеолин-7-0-β-D-глюкопиранозид (5, 3´, 4´-триоксифлавон-7-0- β-D-глюкопиранозид).



Лютеолин-7-глюкозид (5, 7, 3´, 4´-тетраоксифлавон) Апигенин (5, 7, 4´-триоксифлавон)



Цинарозид (лютеолин7-0-β-D-глюкопиранозид или 5, 3´,4´-триоксифлавон-7-0-β-D-глюкопиранозид) Гликозид апигенина (апигенин-7-β-D-глюкуронид)

Определение суммы флавоноидов в сырье показало незначительное повышение их содержания в растениях, собранных в степной зоне Южного Предуралья. Наибольшее количество флавоноидов извлекается при использовании в качестве экстрагента 40 и 70%-го этанола. В экстрактах из травы V. officinalis обнаружено шесть основных веществ флавоновой природы, в V. incana - пять, а в V. spicata - семь соединений. Установлено, что основными соединениями в сухих экстрактах являются: лютеолин, апигенин и их гликозиды. Таким образом, исследование содержания суммы флавоноидов и фенолкарбоновых кислот в препаратах из травы видов Veronica позволяет утверждать, что оптимальным экстрагентом является 40% этанол (таблица).

Для многих флавоноидов установлено антиоксидантное, противомикробное, противовоспалительное, противораковое действие [1, 3, 12, 13, 14, 18, 19], что обусловило широкое применение флавоноидсодержащего растительного сырья для производства лечебных и профилактических средств. Идентифицированные нами в растениях рода Veronica флавоноиды обладают выраженным противовоспалительным и противовирусным действием [1, 15], антиоксидантной активностью и способствуют восстановлению функциональной активности иммунной сис- темы [18, 19].

Кроме флавоноидов в исследуемых растениях нами выявлены фенолкарбоновые кислоты, четыре из которых идентифицированы как кофейная, хлорогеновая, неохлорогеновая и феруловая кислоты [8, 18]. Но в сухих препаратах рода Veronica L. выявлены только три фенолкарбоновые кислоты, две из которых идентифицируются как хлорогеновая и кофейная:



Оценка антимикробного действия препаратов - сухих экстрактов из видов рода Veronica L. и содержание в них флавоноидов

Читайте также: