Лазерная передача электрической энергии реферат

Обновлено: 30.06.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Реферат по физике на тему

Выполнила Налётова Е.А.
Проверил Лосев В.В.

1. Вступление. 3

2. Что такое лазер. 3

2.1 Первый лазер 3

2.2 Оптический квантовый генератор или лазер. 4

2.3 Лазер в работе. 5

3. Разновидности лазеров. 5

3.1 Газовые лазеры. 5

3.2 Газодинамический лазер. 6

3.3 Лазеры на красителях. 6

4. Функции лазерного луча. 7

5. Лазер в медицине. 8

5.1 Лазер в хирургии. 9

5.2 Лазер на охране зрения. 9

5.3 Лазер в гастроэнтерологии. 10

5.4 Лазер в стоматологии. 11

5.5 Меры безопасности. 11

6. Недавнее открытие. 11

7. Заключение. 12

Список литературы 13

Вступление.

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора -оптического квантового генератора, или лазера.

Что такое лазер.

Первый лазер

Работы по лазерам в лаборатории люминесценции ФИАН возникли по инициативе Н. Г. Басова, вызванной тем, что, начиная с 1958 года были опубликовали статьи о перспективности получения генерации в оптической области спектра с использованием индуцированного излучения. А затем американскими учеными (Мейманом и другими) в 1960 году были получены обнадеживающие результаты с рубином. А.М. Леонтович, М.Д. Галанин, З.А. Чижикова занялись этой проблемой.

Весной 1961 г. эта группа учёных создала лазерную установку, в которой образец рубина с концентрацией хрома 0,05% и длиной 4см накачивался 2 импульсными лампами в кожухе с напылением MgO. На этой установке они добились генерации 18 сентября 1961 года.

Тогда был какой-то предрассудок насчет формы образцов — все первые рубины были в форме параллелепипедов, и американские, и наши. Позже было понято, что это не играет роли, что важна только параллельность торцов кристаллов, на которые тогда и наносились зеркала. Потом появились образцы цилиндрической формы, и также, когда стали применять внешние зеркала — с брюстеровскими торцами.

Оптический квантовый генератор или лазер.

Лазер также называется оптический квантовый генератор или генератор когерентного излучения. Разберем его устройство на примере сбора одной модели лазера.

Рядом со стержнем поместим осветитель, его называют лампой накачки. Лампа будет импульсивной, вроде тех ламп–вспышек, которыми пользуются фотографы. Все процессы в атомах проходят за миллионные доли секунды, так что надолго включать её нет смысла. Осветитель вместе со стержнем окружим отражателем, чтобы ни один квант света накачки не пропал зря. Возле торцов рабочего стержня установим два зеркала: сзади – глухое, отражающее весь падающий на него свет, спереди – полупрозрачное. Зеркала необходимо установить строго параллельно друг другу и перпендикулярно оси стержня. Лазер готов. Осталось включить лампу.

К несчастью увидеть своими глазами процесс, происходящий в лазере после вспышки лампы, мы не сможем. Он проходит слишком быстро. Но представить его можно.

Лазер в работе.

После вспышки лампы поток световой энергии попадает на стержень. Его атомы быстро переходят в возбуждённое состояние. С каждым мгновением таких возбужденных атомов становиться всё больше и больше. Долго в возбуждённом состоянии они не живут, в среднем всего одну стомиллионную долю секунды, а потом переходят в нормальное состояние, излучив при этом свет. Лампа все ещё горит, и атомы вновь возбуждаются. Когда несколько атомов случайно излучают кванты вдоль оси стержня, начинается процесс накапливания энергии. После каждого столкновения с атомами число квантов удваивается, поток излучения движется вдоль стержня и растёт, как лавина. Отражаясь в зеркалах, излучение многократно пронизывает стержень, заставляя все атомы без исключения внести свою долю энергии в общий поток света. Сквозь полупрозрачное зеркало этот свет вырывается наружу. Происходит вспышка. Её длительность всего около одной миллионной секунды. А лампа всё ещё горит, и через три миллионных доли секунды всё повторяется снова. И опять, и опять, до тех пор, пока яркости света уже потухающей лампы не станет мало для поддержания генерации. Именно так был сделан и работал первый лазер, построенный на кристалле рубина.

Не вся энергия лампы накачки преобразуется в лазерную вспышку. Большая её часть, к несчастью, уходит на бесполезный и даже вредный нагрев стержня и зеркала. Мощные импульсные лазеры охлаждают потоком воздуха, воды, а иногда и жидким азотом. Частота повторения импульсов зависит то того, насколько хорошо стержень лазера выдерживает высокую температуру. Неодимовые и рубиновые лазеры дают одну – две вспышки в секунду, лазер на гранате – несколько сотен. Рекордная частота генерации для импульсного лазера двенадцать миллионов вспышек в секунду. Излучение таких лазеров воспринимается уже как непрерывное.

Разновидности лазеров.

Газовые лазеры.

Газовые лазеры представляют собой, пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры. Газовым лазерам также, по-видимому, посвящена большая часть выполненных исследований. Среди различных типов газовых лазеров всегда можно найти такой, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме.

Газовые лазеры были созданы почти одновременно с рубиновыми лазерами, в том же 1960 году. Их рабочее вещество различные газы, заключённые в стеклянные трубки. Давление газов в этих трубках очень низкое, в сотни раз меньше атмосферного. На концах трубки – окошки, через которые луч света выходит наружу. Трубка также помещается между зеркалами. Всё, как в импульсном лазере, только лампы накачки нет. Газы при низком давлении хорошо проводят электрический ток, поэтому их атомы можно возбуждать электрическим разрядом. Ток проводится через проволочки – электроды, впаянные в стеклянную трубку. Трубка с возбуждённым газом светится, а из её торцов выходят лучи. Цвет лучей зависит от газа заключённого в трубку. Смесь гелия с неоном даёт красный луч, аргон – синий, ксенон – зелёный, криптон – жёлтый, а углекислый газ – невидимый тепловой, инфракрасный луч. Есть даже лазер на водяных парах. Изобретен он был в конце 20 века. Такой лазер даёт мощное тепловое излучение. Длина его волны чуть больше одной десятой миллиметра. Это самое длинноволновое излучение, полученное при помощи лазера.

Разреженный газ в лазерной трубке очень мало рассеивает свет. Размеры трубок газовых лазеров можно делать очень большими: лазер длиной 5–10 метров – вещь довольно обычная. Мощность его излучения может достигать тысячи ватт, то есть одного киловатта.

Газодинамический лазер.

Газодинамический лазер похож на реактивный двигатель и работает также. В его камере сгорания сжигается угарный газ (окись углерода) с добавкой топлива (керосина, бензина, спирта). Получившаяся при этом смесь газов состоит из углекислого газа, азота и паров воды. Молекулы газов возбуждены, ведь температура в камере сгорания доходит до тысячи с лишним градусов, а давление – до 20 атмосфер. Эти раскалённые газы из камеры сгорания вытекают через расширяющееся реактивное сопло, его ещё иногда называют соплом Лаваля. В нём газ разгоняется до сверхзвуковой скорости, охлаждаясь почти до нуля! Проносясь между зеркалами, молекулы газа начинают отдавать энергию в виде световых квантов, рождая лазерный луч, мощность которого 150–200 киловатт. И это мощность не отдельной вспышки, а постоянного, устойчивого луча, сияющего, пока у лазера не кончиться горючие.

Лазеры на красителях.

Называются они так потому, что их рабочая жидкость – раствор анилиновых красок (вроде тех, которыми красят шерсть и хлопок) в воде, спирте, кислоте и других растворителях. Жидкость налита в плоскую ванночку – кювету. Кювета, разумеется, установлена между зеркалами. Вместо лампы–вспышки на первых порах использовались импульсные рубиновые лазеры, а позднее – газовые. Лазер–накачку помещают рядом, вводя его луч в кювету через окошко в корпусе. Сейчас, правда, удалось добиться генерации света и с импульсной лампой, но не на всех красителях.

Растворы могут излучать импульсы света различной длины волны – от ультрафиолета до инфракрасного света – и мощностью от сотен киловатт до нескольких мегаватт (миллионов ватт), в зависимости от того, какой краситель налит в кювету.

Также бывают жидкостные и полупроводниковые лазеры.

Функции лазерного луча.

Основная область применения маломощных импульсных лазеров связана с резкой и сваркой миниатюрных деталей в микроэлектронике и электровакуумной промышленности, с маркировкой миниатюрных деталей, автоматическим выжиганием цифр, букв, изображений для нужд полиграфической промышленности.

В последние годы в одной из важнейших областей микроэлектроники - фотолитографии, без применения которой практически невозможно изготовление сверхминиатюрных печатных плат, интегральных схем и других элементов микроэлектронной техники, обычные источники света заменяются на лазерные. С помощью лазера на ХеСL (1=308 нм) удается получить разрешение в фотолитографической технике до 0,15 - 0,2 мкм.

Дальнейший прогресс в субмикронной литографии связан с применением в качестве экспонирующего источника света мягкого рентгеновского излучения из плазмы, создаваемой лазерным лучом. В этом случае предел разрешения, определяемый длиной волны рентгеновского излучения (1=0,01-О,001 мкм), оказывается просто фантастическим.

Лазерный луч может передавать сигналы, как радиоволны или электрический ток. Первая в СССР линия оптической связи передавала телефонные разговоры между Москвой и Красногорском по открытому лучу. Один из лазеров был установлен на башне высотного здания МГУ. Лазерный луч может идти по стеклянным нитям, как ток по проводам. Благодаря этому получают фотографии изнутри внутренних органов (например, желудка) вводя волоконный световод через пищевод больного.

Лазерный луч сжигает любой, даже самый прочный и жаростойкий материал. Движением режущего луча управляет ЭВМ, так что можно мгновенно определять точность резания и вносить требуемые поправки. Тонкую, вольфрамовую проволоку для электрических лампочек протягивают через отверстия в алмазах, пробитые лазерным лучом. Рубиновые подшипники (камни для часов) обрабатывают на лазерных станках–автоматах. Точность лазерных измерений очень высока.

Сегодня лазерная установка отмечает малейшие движения грунта под знаменитой Пизанской башней.

Лазеры так же используются в сельском хозяйстве, агрономы облучают им посадочный материал и получают ошеломляющие результаты, урожайность облучённого продукта выше прежней на 40%.

Лазеры используются в военной промышленности, в данный момент существует достаточно большое количество лазерного оружия, но оно не совершенно, атмосферные явления снижают его эффективность, а вот в космосе он не заменим. Военное министерство США занялось оснащением лазерным оружием космических платформ.

В шоу бизнесе вы, наверное, не редко замечали иные световые эффекты применяемые для украшения сцен, это картины нарисованы лазерным лучом, а когда – ни будь, возможно, специалист по лазерной оптике станет в театре столь же привычной фигурой, как гримёр или декоратор.

Лазер в медицине.

Основными преимуществами, стимулирующими применение лазеров в медицине, являются радикальность лечения, снижение сроков вмешательства, уменьшение числа осложнений, кровопотери, улучшение условий стерильности и т. д. В медицинских целях используются, в основном, твердотельные и газовые лазеры. Перспективным направлением можно считать применение излучения низкоэнергетических лазеров в видимой части спектра для стимулирования репаративных процессов при хронических длительно не заживающих ранах, трофических язвах, замедленной консолидации переломов, заболеваний обменного характера и др.

Лазер в хирургии.

А что может быть нежнее прикосновения луча света? Современная техника предложила инструмент, сочетающий в себе оба эти требования, - световой луч!

Бывают случаи, когда необходимо разрушить повреждённую ткань, не затрагивая близлежащих и на пути стоящих сосудов. Тогда применяют гелий–неоновый или криптоновый лазер; луч красного цвета пройдёт сквозь кровеносные сосуды, не принеся вреда, прямо в нужную точку. Это применяют в урологии при каменной болезни почек, лазер раздрабливает почечные камни, превращая их в песок, тем самым не нанося не каких повреждений тканям, стоящим на пути.

Лазер на охране зрения.

Чрезвычайно полезным и удобным оказался лазер в офтальмологии – области медицины, ведающей зрением.

Лазерный луч можно ввести в глаз прямо через зрачок. С его помощью можно отрезать ненужные сосуды, заварить те, которые протекают, и ликвидировать следы кровоизлияний.

Так же с помощью лазера офтальмологи лечат глаукому. Это опасное глазное заболевание, которым страдает три процента населения планеты. Оно возникает, когда в глазу повышается давление жидкости. Нужна сложная и опасная операция. Гигантские импульсы лазера могут пробить в задней поверхности радужной оболочки глаза микроскопические отверстия, не успев нагреть живую ткань. Они послужат канальцами для оттока внутриглазной жидкости. В итоге давление нормализуется, угроза слепоты отступает.

Лазер в гастроэнтерологии.

При помощи лазера делают операции желудка и кишечника. Их стенки состоят из множества слоёв ткани, пронизанных кровеносными сосудами. При операции эти слои сшивают поочерёдно, сильно травмируя при этом ткань. К тому же всё время остаётся вероятным, что какой – то слой будет случайно проколот и это приведёт к перитониту – воспалению брюшной полости. Лазерный луч может один за другим аккуратно заварить эти слои тем самым, остановив кровотечение.

Любой хирургический инструмент перед операцией нуждается в стерилизации. Лазерному лучу не только это не надо, но и он сам способен обеззараживать раны, убивая микробов и испаряя отмирающие ткани.

Целительный луч можно ввести прямо в желудок больного при помощи гибкого световода и оперировать, не вскрывая брюшной полости. Но не только в желудок можно ввести световод, но и в сердце. Лазерный луч способен провести операцию на сердце изнутри, освободив больного от страданий.

Лазер в стоматологии.

В стоматологии лазер с успехом заменяет сверло. Прежде чем накладывать пломбу, необходимо удалить почерневшую, пораженную кариесом ткань зуба. Для многих людей сверление зубов - процесс болезненный и неприятный. Однако, похоже, в скором времени проблем с этим не будет. Световой импульс лазера хорошо отражается от белой блестящей поверхности здоровой зубной ткани и поглощается потемневшей, больной, которую он разогревает и испаряет вместе с микробами.

Меры безопасности.

Все возрастающий интерес к использованию лазеров в медицине привел к необходимости создания специальных лазерных отделений и операционных, достаточно приспособленных к безопасной эксплуатации. Главным вопросом становится защита медицинского и технического персонала от влияния вредных факторов лазерного излучения.

Операционное помещение должно удовлетворять следующим специальным требованиям: стены и потолок помещения должны быть окрашены темной матовой краской, а стекла окон — белой матовой краской, чтобы предохранить зрение врача и пациента от поражения лазерным излучением, случайно отраженным от стен и потолка помещения. В нем необходима хорошая приточно-вытяжная вентиляция, входные двери должны быть оборудованы светящимся табло лазерной опасности, загорающимся при включении установки.

Недавнее открытие.

Любопытное открытие сделали специалисты биофизической лаборатории The University of Texas at Austin (США). Используя лазерное излучение низкой интенсивности, ученые смогли не только значительно ускорить регенерацию поврежденных отростков нервных клеток, но и изменить направление их роста.

Впервые идея манипулирования нейронами с помощью лазерных лучей возникла в начале 2001 года. Было создано устройство, которое можно условно назвать оптическим манипулятором, позволяющее перемещать живые микроскопические объекты, обладающие способностью проводить электрические импульсы. Эффект такого перемещения основывается на способности белковых молекул, принимающих участие в регенерации, "притягиваться" к центру пучка лазерного света.

Пока подобные манипуляции возможны только с отдельными нервными клетками in vitro. Используя тончайший пучок лазерного света, исследователи изменяют общее направление роста нейронов более чем на 90 градусов и увеличивают скорость их регенерации примерно в шесть раз.

В настоящее время ученые разрабатывают технологию одновременного равномерного воздействия лазерного луча на множество нейронов. Если их работа окажется успешной, возможно, метод найдет применение в клинической практике.

Несколько совмещённых изображений Нерона, находящегося под воздействием лазерного луча. Наблюдается рост клетки под углом: от исходной (нижней) позиции до конечной (верхней). Время эксперимента 20 минут.

Заключение.

Всего 44 года прошло с момента изобретения лазера. За это время он успешно и глубоко укоренился в человеческой жизни. Многие функции лазера стали просто незаменимы. Да ещё вдобавок лазер режет, сваривает, куёт, закаливает, сверлит, кроит, проверяет качество обработки деталей и делает множество других, не менее важных дел, для которых, казалось бы, совершенно не годиться луч света. Но это не так.

Благодаря нему многие процессы в промышленности упростились, были найдены новые методы лечения, измерения, регулировки и др. А ведь раньше никто и предположить не мог, что из забавного математического курьеза, получится такое замечательное изобретение, как лазер.

Список литературы

Лазеры в клинической медицине. Под ред. Д. С. Плетнева. — М., Медицина.

Энциклопедический словарь юного физика (гл.редактор Мигдал А.Б.) Москва “Педагогика” 1991г.

Передача энергии лазером: как это работает


Инжененер РКК "Энергия" // Образование: МИФИ // Цели: провести эксперимент с передачей энергии на беспилотник, защитить диссертацию.

В отрыв

Вплоть до недавнего времени передача энергии с помощью лазеров не имела большого смысла: их КПД составлял всего 10−20%. С учетом потерь на передачу и преобразование световой энергии в электричество получателя достигало в лучшем случае нескольких процентов исходной мощности. Только в 2000-х годах ситуация начала меняться: появились инфракрасные лазеры с КПД до 40−50% и высокоэффективные фотоэлектрические модули на основе арсенида галлия, способные преобразовывать в электричество до 40%, а иногда — и до 70% энергии излучения.


"Всерьез мешал только кузнечный цех: когда он начинал работать, луч переставал проходить из-за сильного задымления".

Зарядная станция с системой наведения может непрерывно снабжать беспилотник энергией, если он не улетает за пределы видимости либо если аппарат летает по определенному маршруту и подзаряжается в какой-то определенной точке своей траектории. При необходимости таким образом можно держать БПЛА в воздухе сутками, во многих случаях получая дешевую альтернативу космическому аппарату.


С крыши на крышу


Монохроматическое излучение (809 нм), приемник с концентрирующей оптикой, параллельное соединение фотоэлементов.

До орбиты


Кроме того, на некоторые спутники солнечные батареи просто некуда ставить. Размеры современных микроспутников измеряются десятками сантиметров и позволяют разместить в лучшем случае несколько квадратных дециметров солнечных панелей. Конструкторам приходится биться за каждый потребляемый ватт, а уж о том, чтобы поставить на такие аппараты энергоемкую нагрузку (например, электрореактивный двигатель для поддержания орбиты), и речи не идет. Микроспутники обычно живут несколько месяцев, выполняют свою задачу и сгорают в атмосфере. Но лазером их можно было бы подзаряжать прямо с борта МКС, продлевая срок службы.


Электроэнергией является свойство магнитного поля преобразоваться в иные виды энергии. Такими видами энергии могут быть: механическая, химическая, паровая, лазерная. Число потребителей и источников потребления постоянно растет. Поэтому вопрос о способах передачи электроэнергии на большие расстояния, с сохранением мощности и ее распределением, остается открытым. Статья опишет основные и актуальные способы передачи, а также современные разработки в области беспроводных технологий.

ЛЭП

Способы передачи электроэнергии

Электроэнергия или переменный ток, передается от источника к потребителю, через провода или подземные кабельные линии. Эти способы актуальны на протяжении многих лет. Связано это с тем, что нет технологии, способной передать электричество на большое расстояние при минимальных потерях с сохранением полной мощности. Да и способ еще должен быть максимально надежным и дешевым.

Схема передачи переменного электрического напряжения или постоянного электрического напряжения выглядит следующим образом:

Схема передачи переменного электрического напряжения

Принцип работы и объяснение схемы:

  1. В начале схемы находится генератор, вырабатывающий электричество.
  2. От генератора напряжение подается на трехфазный трансформатор, для повышения мощности. От него электричество течет по ЛЭП (линия электропередачи).
  3. После ЛЭП напряжение попадает на трехфазный понижающий трансформатор.
  4. От трансформатора напряжение подается потребителю, с существенным занижением.

Для постоянного тока существует выпрямительное устройство, которое находится после повышающего трансформатора. Пройдя по ЛЭП, постоянный ток сначала должен попасть на устройство преобразования постоянного тока в переменный, а только потом на понижающий трансформатор.

Воздушные и кабельные линии

Потребление электроэнергии по воздушным ЛЭП и кабельным линиям, представляет собой определенную схему. В начале схемы находится источник энергии, а именно электростанция. Электростанция подает завышенное напряжение на распределительную линию, в конце которой находится занижающий трансформатор. Основным минусом подобной схемы является именно потребность в подаче слишком высокой мощности. Связано это с потерей доли напряжения на расстоянии. Способов подобной передачи 2.

Воздушные линии представляют собой сеть высоковольтных проводов, подвешенных на столбы или опоры. Этот метод очень распространен и является эффективным. Но и у него есть ряд минусов:

  • большие затраты в рабочей силе и материале на стадии поставки новым потребителям на большое расстояние;
  • потеря значительной доли мощности с каждым километром;
  • требование подачи большой мощности в начале (от электростанции);
  • вред магнитного поля для человека;
  • большая вероятность повреждения и разрушения от природных катаклизмов;
  • большие трудности для монтажа ЛЭП в трудных, непроходимых регионах.

Воздушные линии

Воздушные линии подают потребителю переменный ток. По дальности и мощности они делятся на следующие категории:

  1. Воздушные линии напряжением до 1 кВ считаются низковольтными. Они являются окончанием схемы передачи к потребителю.
  2. Линии с напряжением от 1 до 35 кВ считаются средними.
  3. Высоковольтными линиями считаются ВЭЛ с напряжением 110-220 кВ. Эти линии являются началом схемы передачи напряжения.
  4. К сверхвысоковольтным относятся ВЭЛ напряжением 330–750 кВ.
  5. К ультра высоковольтным относятся ВЭЛ напряжением, превышающим 750 кВ.

Чем выше подаваемое напряжение, тем большие расстояния оно должно покрыть от источника к потребителю.

Кабельные линии

Кабельные линии работают по схожему принципу. По ним также поступает переменный электрический ток. Но проводят такие линии под землей или под водой. Основными недостатками подобной передачи являются:

  1. Большие трудности и затраты при прокладке. Кабельные линии прокладываются в местах, где невозможно или опасно проводить воздушные линии.
  2. Также идет потеря доли напряжения с расстоянием.
  3. Существует опасность механического повреждения или растяжения кабеля.
  4. Есть опасность шагового напряжения при повреждении, особенно в воде.
  5. Очень тяжело найти и устранить повреждение.

На данный момент существует 2 схемы передачи электроэнергии от источника к потребителю по воздушным или кабельным линиям:

  1. Разомкнутая схема. Эта схема передачи представляет собой источник напряжения и потребителя как прямую линию. Минусом такой схемы является отсутствие резервной линии при повреждении какого-либо участка.
  2. Замкнутая схема (более надежна). В ней источник и все потребители заключены в кольцо или сложную схему. При повреждении участка линии, подача электричества не прекращается.

Подобные схемы также делятся на категории.

Схемы в визуальном отображении:

Схемы в визуальном отображении

Разомкнутая схема бывает 3 видов:

  1. Схема радиального подключения, в которой на одном конце находится подающее устройство, а на втором конце потребитель энергии.
  2. Магистральная схема похожа на радиальную, но в ней присутствуют дополнительные отводы для потребления.
  3. Схема магистральной подачи, при которой между двумя источниками находится один потребитель.

Замкнутая схема также бывает 3 видов:

  1. Кольцевая схема с одним источником и потребителем.
  2. Магистральная схема с наличием резервного источника.
  3. Сложная замкнутая схема, для подключения потребителей особого назначения.

Все эти схемы относятся к передаче постоянного тока потребителю. Передача и распределение электроэнергии подобным способом является одинаковым для российских и зарубежных сетей.

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Беспроводная передача

Передать и распределить ток по потребителям без использования проводов, это реалии наших дней. Об этом способе впервые задумался и воплотил его в жизнь Никола Тесла. На сегодняшний день ведутся разработки в этом направлении. Основных способов всего 3.

Катушки

Катушки

Катушками индуктивности является свернутый в спираль изолированный провод. Метод передачи тока состоит из 2 катушек, расположенных рядом друг с другом. Если подать электрический ток на одну из катушек, на второй появится магнитное возбуждение такого же напряжения. Любые изменения напряжения на катушке передатчике, изменятся на катушке приемнике. Подобный способ очень прост и имеет шансы на существование. Но есть и свои недостатки:

  • нет возможности подать высокое напряжение и принять его, тем самым невозможно обеспечить напряжением несколько потребителей одновременно;
  • невозможно передать электричество на большое расстояние;
  • коэффициент полезного действия (КПД) подобного способа — всего 40 %.

На данный момент актуальны способы простого использования катушек, как источника и получателя энергии. Этим способом заряжают электрические самокаты и велосипеды. Есть проекты электромобилей без аккумулятора, но на встроенной катушке. Предлагается использовать дорожное покрытие в качестве источника, а машину в качестве приемника. Но себестоимость прокладки подобных дорог очень высокая.

Лазер

Лазер

Передача электричества посредством лазера, представляет собой источник, преобразующий энергию электричества в лазерный луч. Луч фокусируется на приемник, который его преобразует обратно в электричество. Компания Laser Motive смогла передать при помощи лазера 0.5 Кв электрического тока, на расстояние в 1 км. При этом потеря напряжения и мощности составила 95 %. Причиной потери стала атмосфера Земли. Луч многократно сужается при взаимодействии с воздухом. Также проблемой может стать обычное преломление луча случайными предметами. Подобный способ, без потери мощности, может быть актуальным только в космическом пространстве.

Микроволновая передача

Основой для передачи электроэнергии путем микроволн, стала способность 12 см волн, частотой в 2.45 ГГц, быть незаметными для атмосферы Земли. Подобная особенность могла бы сократить до минимума потерю при передаче. Для подобного способа нужны передатчик и приемник. Люди давно создали передатчик и преобразователь электрической энергии в микроволновую. Это изобретение называется магнетрон. Он стоит в каждой микроволновой печи и является очень безопасным. Вот с изобретением приемника и преобразователя микроволн обратно в электричество возникли проблемы.

В 60-х годах прошлого века, американцы изобрели ректенну. Иными словами, приемник микроволн. С помощью изобретения удалось передать 30 кВт электрического тока на расстояние в 1.5 км. При этом коэффициент потерь составил всего 18 %. На большее установка была не способна по причине использования полупроводниковых деталей в устройстве приемника. Для приема и передачи большей мощности энергии, при использовании ректенны, пришлось бы создать огромную принимающую панель. Это бы увеличило затрачиваемую энергию, частоту и длину волн, а значит и процент сопутствующей потери. Высокое излучение могло бы убить все живое в радиусе нескольких десятков метров.

ректенна

В СССР был изобретен циклотронный преобразователь микроволн в электричество. Он представлял собой 40 см трубку и был полностью собран на лампах. КПД устройства равнялось 85 %. Но для этого способа основным минусом является способ сборки на лампах. Устройства на подобных деталях могут вернуть человечество в мир огромных телефонов, компьютеров величиной с комнату. О миниатюрных электрических приборах можно забыть.

циклотронный преобразователь микроволн

Передачу микроволн можно было организовать из космоса. Подобный проект предполагал собирать энергию солнца при помощи спутника и перенаправлять на приемник, расположенный на поверхности Земли. Но для этого придется построить спутник диаметром в километр и приемник диаметром в 5 километров. О полетах в зоне действия системы можно полностью забыть.

Главной проблемой при передаче электричества беспроводным способом, является расстояние и атмосферные преломления. Стоит также учитывать мощности. Общая потребляемая мощность всех электрических приборов в квартире, равняется 30–40 кВт. Для обеспечения электричеством одной квартиры, пришлось бы строить гигантские сооружения.

На сегодняшний день единственным способом передачи энергии большой мощности, является проводной. Он не требует прямого и обратного преобразования электрической энергии. Достаточно только подать высокое напряжение в начале и существенно занизить его в конце. Этот способ имеет ряд недостатков, но остается актуальным долгие годы.

Потребители электроэнергии есть повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Содержание работы

• Введение
• Передача электроэнергии
• Опыты передачи энергии
• Развитие техники передачи электроэнергии на большие расстояния
• Передача энергии постоянным током
• Передача энергии переменным током
• Развитие кабельных и воздушных линий
• Энергосберегающая и ресурсосберегающая технология передачи электрической энергии на большие расстояния
• Современные способы передачи электроэнергии на расстояние и проблемы этого способа
• Заключение
• Список литературы

Файлы: 1 файл

Реферат 6.doc

  • Введение
  • Передача электроэнергии
  • Опыты передачи энергии
  • Развитие техники передачи электроэнергии на большие расстояния
  • Передача энергии постоянным током
  • Передача энергии переменным током
  • Развитие кабельных и воздушных линий
  • Энергосберегающая и ресурсосберегающая технология передачи электрической энергии на большие расстояния
  • Современные способы передачи электроэнергии на расстояние и проблемы этого способа
  • Заключение
  • Список литературы

Потребители электроэнергии есть повсюду. Производится же она в сравнительно немногих местах, близких к источникам топливо и гидроресурсов. Электроэнергию не удается консервировать в больших масштабах. Она должна быть потреблена сразу же после получения. Поэтому возникает необходимость в передаче электроэнергии на большие расстояния. Передача энергии связана с заметными потерями. Дело в том, что при передаче электроэнергии по проводам часть электрической энергии теряется, расходуется на нагревание проводников. Потери можно несколько уменьшить, увеличивая сечения проводов, сокращая тем самым их сопротивление. Кроме тепловых потерь, в линии возможны потери вследствие излучения радиоволн проводами длинной линии. Эти потери проявляют тем сильней, чем больше отношение расстояния между проводами к длине волны. Для уменьшения потерь на излучение применяют металлические трубы, называемые волноводами.

Однако, идя таким путем, нельзя разрешить проблему экономичности передач большой мощности. Это сильно тормозило и продолжает тормозить развитие промышленности, транспорта, поскольку потребность в электроэнергии постоянно увеличивается. Удовлетворить эту потребность можно с помощью строительства новых мощных электростанций. Однако строительство новой электростанции требует несколько лет и больших затрат. При этом тепловые электростанции потребляют невозобновляемые природные ресурсы: уголь, нефть и газ. Одновременно они наносят ущерб экологическому равновесию на нашей планете.

Я хочу рассмотреть возникновение и развитие, а так же проблемы передачи энергии на большие расстояния.

Передача электроэнергии от электростанции к потребителям — одна из важнейших задач энергетики. Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более широкому применению кабельных линий и линий постоянного тока.

Необходимость передачи энергии на расстояние обусловлена тем, что электроэнергия вырабатывается крупными электростанциями с мощными агрегатами, а потребляется сравнительно маломощными электроприёмниками, распределёнными на значительной территории. Тенденция к концентрации мощностей объясняется тем, что с их ростом снижаются относительные затраты на сооружение электростанций и уменьшается стоимость вырабатываемой электроэнергии. Размещение мощных электростанций производится с учётом целого ряда факторов, таких, например, как наличие энергоресурсов, их вид, запасы и возможности транспортировки, природные условия, возможность работы в составе единой энергосистемы и т.п. Часто такие электростанции оказываются существенно удалёнными от основных центров потребления электроэнергии.

От эффективности передачи энергии на расстояние зависит работа единых электроэнергетических систем, охватывающих обширные территории.

Качество электроэнергии определяется надёжной и устойчивой работой электропередачи, что обеспечивается, в частности, применением компенсирующих устройств и систем автоматического регулирования и управления

В последней трети XIX века во многих крупных промышленных центрах Европы и Америки стала очень остро ощущаться энергетическая проблема. Жилые дома, транспорт, фабрики и мастерские требовали все больше топлива, подвозить которое приходилось издалека, вследствие чего цена на него постоянно росла. В этой связи то здесь, то там стали обращаться к гидроэнергии рек, гораздо более дешевой и доступной. Вместе с тем повсеместно возрастал интерес к электрической энергии. Уже давно было отмечено, что этот вид энергии чрезвычайно удобен: электричество легко генерируется и так же легко преобразуется в другие виды энергии, без труда передается на расстояние, подводится и дробится.

Первые электрические станции обычно представляли собой электрогенератор, присоединенный к паровой машине или турбине, и предназначались для снабжения электроэнергией отдельных объектов (например, цеха или дома, в крайнем случае. квартала). С середины 80-х годов стали строиться центральные городские электростанции, дававшие ток прежде всего для освещения. (Первая такая электростанция была построена в 1882 году в Нью-Йорке под руководством Эдисона.) Ток на них вырабатывался мощными паровыми машинами. Но уже к началу 90-х годов стало ясно, что таким образом энергетическую проблему не разрешить, поскольку мощность центральных станций, расположенных в центральной части города, не могла быть очень большой. Использовали они те же уголь и нефть, то есть не снимали проблемы доставки топлива.

Дешевле и практичнее было возводить электростанции в местах с дешевыми топливными и гидроресурсами. Но, как правило, местности, где можно было в большом количестве получать дешевую электроэнергию, были удалены от промышленных центров и больших городов на десятки и сотни километров. Таким образом, возникла другая проблема — передачи электроэнергии на большие расстояния.

Опыты передачи энергии

Первые опыты в этой области относятся к самому началу 70-х годов XIX века, когда пользовались в основном постоянным током. Они показали, что как только длина соединительного провода между генератором тока и потреблявшим этот ток двигателем превышала несколько сотен метров, ощущалось значительное снижение мощности в двигателе из-за больших потерь энергии в кабеле. Это явление легко объяснить, если вспомнить о тепловом действии тока. Проходя по кабелю, ток нагревает его. Эти потери тем больше, чем больше сопротивление провода и сила проходящего по нему тока. Имелось только два пути для снижения потерь в линии электропередачи: либо увеличить сечение передающего провода, либо повысить напряжение тока. Однако увеличение сечения провода сильно удорожало его, ведь в качестве проводника тогда использовалась достаточно дорогая медь. Гораздо более выигрыша сулил второй путь.

Создание экономичных машин постоянного тока и начальные шаги в развитии электрического освещения и электрического привода не могли бы внести кардинальных изменений в производственную практику, если бы не была решена другая краеугольная задача электроэнергетики — передача электрической энергии на расстояние.

В 70—80-х годах XIX в. эта проблема стала актуальной в связи с возникновением крупных промышленных предприятий. Сама по себе потребность в способах передачи энергии к потребителям, удаленным от источников механической энергии, существовала и так или иначе разрешалась задолго до появления первых электростанций. Так, посредством проволочных канатов удавалось достигнуть дальности передачи до 120 м, а при устройстве промежуточных, блоков — до 5 км. Неоднократно предпринимались попытки использовать для передачи энергии сжатый воздух и гидравлическое давление, но ни тот ни другой принцип не мог лечь в основу обеспечения механической: энергией фабрично-заводского производства в широком масштабе.

Надежды изобретателей обратились к новому виду энергии — к электричеству. Первые опыты передачи электрической энергии на расстояние относятся к началу 70-х годов. В 1873 г. французский физик И. Фонтен демонстрировал на Венской международной выставке свойство обратимости электрических машин: приводил в действие двигатель (машину Грамма) от генератора (такой же машины Грамма). Двигатель и генератор соединялись между собой кабелем длиной в 1 км. Таким образом была доказана принципиальная возможность передачи механической энергии на относительно большое расстояние путем двойного преобразования энергии: механической в электрическую на генераторном конце и электрической в механическую — у потребителя. Экономическая целесообразность такого принципа еще не была тогда доказана.

Прогрессивный путь решения проблемы передачи электрической энергии нашли в 1880 г. французский ученый М. Депре и русский физик Д. А. Лачинов. Математическим анализом существа физических процессов в системе генератор—линия—двигатель они показали, что эффективность электропередачи может быть достигнута при увеличении напряжения в линии.

Теоретический вывод, подытоживший эмпирические знания в области электрических машин и электрических цепей, послужил надежной платформой для последующих технических решений. В 1882 г. Депре построил первую опытную электропередачу Мисбах — Мюнхен протяженностью 57 км, напряжением постоянного тока 1,5—2 кВ; КПД не превышал 0,22 % .Первый практический шаг еще не дал благоприятных результатов, но он стал отправным пунктом для последующих работ. На новой опытной установке Вазиль — Гренобль 1883 г. энергия, переданная в Гренобль (примерно 7 л. с), использовалась для привода нескольких печатных и других машин. КПД передачи был равен 62%.

Опыты передачи энергии большого масштаба были осуществлены в 1885 г.; напряжение линии передачи длиной в 56 км (между Крейлем и Парижем) достигло 6 кВ. Тогда это было предельным напряжением для машин постоянного тока по условиям изоляции и коммутации.

Вскоре была осуществлена передача постоянного тока на более высокое напряжение — до 12 кВ. Однако электропередачи постоянного тока столь высокого напряжения были единичными. Трудности создания машин высокого напряжения и преобразования тока высокого напряжения в ток низкого напряжения у потребителей заставили обратиться к исследованию свойств переменных токов.

Вскоре была разрешена главная энергетическая проблема конца XIX века — проблема централизации производства электроэнергии и передачи ее на большие расстояния. Для всех стал ясен способ, каким многофазный ток мог быть подведен от далекой электростанции к каждому отдельному цеху, а потом и отдельному станку. Ближайшим следствием возникновения техники многофазного тока явилось то, что в последующие годы во всех развитых странах началось бурное строительство электростанций и широчайшая электрификация промышленности.

Правда, в первые годы она еще осложнялась ожесточенной борьбой между конкурирующими компаниями, стремившимися внедрить тот или иной тип тока. Так, в Америке сначала взяла вверх компания Вестингауза, которая, скупив патенты Теслы, старалась распространить двухфазный ток. Триумфом двухфазной системы стало строительство в 1896 году мощной ГЭС на Ниагарском водопаде. Но трехфазный ток вскоре повсеместно был признан наилучшим. Действительно, двухфазная система требовала проведения четырех проводов, а трехфазная только трех. Кроме большей простоты, она сулила значительную экономию средств. Позже Тесла, по примеру Доливо-Добровольского, предложил объединять два обратных провода вместе. При этом происходило сложение токов, и в третьем проводе тек ток примерно в 1, 4 раза больший, чем в двух других. Поэтому сечение этого провода было в 1, 4 раза больше (без этого увеличения сечения в цепи возникали перегрузки).

В результате затраты на двухфазную проводку все равно оказывались больше, чем на трехфазную, между тем как двухфазные двигатели по всем параметрам уступали трехфазным. В XX веке трехфазная система утвердилась повсеместно. Даже Ниагарская электростанция была со временем переоборудована на трехфазный ток.

Развитие техники передачи электроэнергии на большие расстояния

Характерным в развитии электропередачи всегда являлись: увеличение передаваемых мощностей, протяженности линий и как следствие - увеличение напряжения.
Повышение этих параметров на каждом новом этапе ставило новые и более сложные задачи перед учеными и инженерами, перед конструкторами электрических машин, линейных устройств и коммутационной аппаратуры.

Практически возможными являлись два метода электропередачи -постоянным или переменным токами. Оба эти метода с различными успехами разрабатывались на протяжении всей истории электроэнергетики.

Основными средствами передачи электрической энергии являлись воздушные и кабельные линии со всем необходимым оборудованием.


Передача энергии постоянным током

В развитии электропередачи постоянным током можно выделить два основных направления:


-получение высокого напряжения без преобразования рода тока;
-использование преобразовательной техники.

Наибольших достижений в развитии техники передачи электроэнергии постоянным током удалось добиться швейцарскому инженеру Рэне Тюри.

Первая электропередача по системе Тюри была осуществлена в Генуе в 1893 г. Она работала сначала на напряжении 5-6, затем 10 и даже 14 кВ при мощности 325 кВт. Общая длина линий достигала 60 км.

Опытами передачи по системе Тюри завершилось первое направление в развитии электропередачи постоянным током.

Второе направление возникло в 1918 г. К этому времени уже успешно действовала мощная 3-х фазная электропередача высокого напряжения (до 150 кВ).

Но уже к концу второго десятилетия текущего столетия наметились контуры новой и весьма неожиданной проблемы. Дело в том, что при значительных расстояниях передачи при высоком напряжении начинала существенно сказываться емкостная проводимость линий и значительно возрастал емкостной ток. При передачи энергии на расстояние более 300 - 500 км этот емкостной ток уже трудно было компенсировать.

Читайте также: