Круговорот углерода в природе реферат

Обновлено: 02.07.2024

Это повторяющийся циклический процесс превращения и перемещения отдельных химических элементов и их соединений. Происходил в течение всей истории развития Земли и продолжается в настоящее время. Всегда имеет место определённое отклонение в составе и количестве циркулирующего вещества, поэтому в природе нет полного повторения цикла

Содержимое работы - 1 файл

химия.docx

Вятский государственный гуманитарный университет

Реферат по дисциплине:

Выполнила студентка 1 курса

специальности «Экология и

К.п.н. Даровских Л.В.

По толковому словарю Д.Н. Ушакова УГЛЕРОД - это химический элемент, являющийся важнейшей составной частью всех органических веществ в природе.

Химические свойства:

При обычных температурах углерод химически инертен, при достаточно высоких соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300—500 °C, 600—700 °C и 850—1000 °C.

Круговоро́т веще́ств в природе

Это повторяющийся циклический процесс превращения и перемещения отдельных химических элементов и их соединений. Происходил в течение всей истории развития Земли и продолжается в настоящее время. Всегда имеет место определённое отклонение в составе и количестве циркулирующего вещества, поэтому в природе нет полного повторения цикла. Это определяет поступательное развитие Земли как планеты.

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы (узкой оболочки Земли, где существует жизнь) в другую. На примере круговорота углерода в природе можно проследить в динамике картину жизни на нашей планете.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода, то есть углекислого газа (CO2). Рассмотрим сначала молекулы углекислого газа, находящиеся в атмосфере. Растения поглощают эти молекулы, затем в процессе фотосинтеза атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:

  • углерод может оставаться в растениях, пока растения не погибнут. Тогда их молекулы пойдут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений), таким как грибы и термиты. В конце концов углерод вернется в атмосферу в качестве CO2;
  • растения могут быть съедены травоядными животными. В этом случае углерод либо вернется в атмосферу (в процессе дыхания животных и при их разложении после смерти), либо травоядные животные будут съедены плотоядными (и тогда углерод опять же вернется в атмосферу теми же путями);
  • растения могут погибнуть и оказаться под землей. Тогда в конечном итоге они превратятся в ископаемое топливо — например, в уголь.

В случае же растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов:

  • углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно);
  • углерод может войти в ткани морских растений или животных. Тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк или из отложений вновь перейдет в морскую воду.

Если углерод вошел в состав осадочных отложений или ископаемого топлива, он изымается из атмосферы. На протяжении существования Земли изъятый таким образом углерод замещался углекислым газом, попадавшим в атмосферу при вулканических извержениях и других геотермальных процессах. В современных условиях к этим природным факторам добавляются также выбросы при сжигании человеком ископаемого топлива.

Всего за 7-8 лет живые организмы пропускают через свои тела весь углерод, содержащийся в атмосфере.

За счет различных биологических и химических процессов между океанами и атмосферой происходит интенсивный обмен углеродом, причем заметное количество углерода (3 млрд. т) ежегодно удаляется из круговорота, осаждаясь в виде малорастворимых карбонатов (солей угольной кислоты) в океанах.

За счет отложений фтора и карбоната кальция из атмосферы ежегодно удаляется на 3-4 млрд. т больше углерода, чем поступает в нее.

В последнее время возросло поступление в атмосферу углерода вследствие деятельности человека. Ежегодно в атмосферу поступает 5 млрд. т углерода при сжигании ископаемого топлива и 1-2 млрд. т – за счет сведения лесов. В результате ежегодно содержание углерода в атмосфере увеличивается на 3 млрд. т. Это может привести к серьезным последствиям для биосферы.

Краткосрочные изменения содержания СО2 в атмосфере практически полностью определяются деятельностью живых организмов и зависят от потоков углерода между такими его фондами, как атмосфера, растворенный углерод океанов, живое и мертвое органические вещество, ископаемое топливо. В связи с влиянием CO2 на парниковый эффект исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.

Особенности геохимического цикла углерода:

  • Разные процессы контролировали углеродный цикл на разных промежутках времени
  • Резкие, катастрофические изменения цикла углерода играли ключевую роль в эволюции углеродного цикла в истории Земли.
  • Геохимический цикл углерода всегда происходит через атмосферу и гидросферу. Тем самым, даже самые глубинные процессы могут влиять на окружающую среду и биосферу.

Итак, в основном от деятельности живых организмов и от хозяйственной деятельности человека зависят колебания уровня СО2 в атмосфере, имеющие период от сотен до десятков тысяч лет. Более медленные, но не менее важные изменения, длящиеся миллионы лет, зависят от скорости выветривания горных пород и от тектонических процессов.

Представительные оценки количества углерода в различных геологических резервуарах для доиндустриальной эпохи (до 1750 года).

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Доклад на тему:

Имя первооткрывателя углерода мы не знаем. Неизвестно и то, какая из аллотропных форм углерода – алмаз или графит – была открыта раньше. Можно предположить, что в глубокой древности люди познакомились с углем, т. е. с аморфной разновидностью простого вещества, образованного атомами углерода. Аморфный углерод – это тот же графит из мелких кристаллов и их обломков.

Д.И. Менделеев объяснял резкое отличие свойств простых веществ, образованных углеродом, от его соседа азота тем, что углерод образует молекулы из огромного числа атомов. “ Ни в одном из элементов такая способность к усложнению не развита в такой мере, как в углероде. Поныне нет основания для определения меры полимеризации угольной, графитной, алмазной молекулы.” ( Д. И. Менделеев)

Углерод – основной элемент органических веществ. Все растения, животные, микроорганизмы, вообще все живое образовано органическими веществами, а следовательно, углеродом, соединенным с другими элементами.

Однако наибольшая часть углерода на Земле содержится не в телах растений и животных, а в двух неорганических соединениях – известняке и доломите. Углерод входит в состав и других минералов: мрамора, который по составу сходен с известняком (кальцитом), но с добавками малахита. Редко встречаются карбиды металлов, т. е. соединения металлов с углеродом. Карбиды – минералы глубинного происхождения. Предполагают, что углерод есть и в ядре земного шара.

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы (узкой оболочки Земли, где существует жизнь) в другую. На примере круговорота углерода в природе можно проследить в динамике картину жизни на нашей планете.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода, то есть углекислого газа (CO 2 ). Рассмотрим сначала молекулы углекислого газа, находящиеся в атмосфере. Растения поглощают эти молекулы, затем в процессе фотосинтеза атом углерода связывается в молекулы органических веществ – глюкозы, крахмала и таким образом включается в структуру растений. Далее возможно несколько вариантов:

углерод может оставаться в растениях, пока растения не погибнут. Тогда их молекулы пойдут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений), таким как грибы и термиты. В конце концов, углерод вернется в атмосферу в качестве CO 2 ;

растения могут быть съедены травоядными животными. В этом случае углерод либо вернется в атмосферу (в процессе дыхания животных и при их разложении после смерти), либо травоядные животные будут съедены плотоядными (и тогда углерод опять же вернется в атмосферу теми же путями);

растения могут погибнуть и оказаться под землей. Тогда в конечном итоге они превратятся в ископаемое топливо — например, в уголь.

Подсчитано, что за год растениями и планктоном океана связывается 24 млрд т углерода из углекислого газа атмосферы , а на сушу из атмосферы возвращается 69 млрд т углерода. Но атмосфера одновременно с этим и пополняется углеродом за счет того, что при гниении растительных остатков образуется углекислый газ.

Однако движение углерода: атмосфера ≥ живое вещество- не сбалансировано. При разложении живого вещества выделяется меньше углекислого газа, чем его поглощается в масштабах Земли, но все же его содержание в атмосфере сохраняется примерно на одинаковом уровне. Это происходит потому, что цикл, который мы, рассмотрели, связан с другим циклом: атмосфера гидросфера. Оказывается, большая часть углекислого газа находится не в газообразном состоянии, а в растворенном в воде Мирового океана. В этом случае возможно несколько вариантов:

углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно);

углерод может войти в ткани морских растений или животных. Тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк или из отложений вновь перейдет в морскую воду.

“ Океан действует как грандиозный насос, забирая из атмосферы в холодных областях и отдавая его в тропических областях” (А. П. Виноградов – ученый – геохимик).

Распределение углерода на Земле

Углерод углекислого газа совершает полный оборот на поверхности Земли благодаря фотосинтезу примерно за 400 лет (рис. 1). Это большой отрезок времени, с точки зрения человека, но сравнительно небольшой в геохимическом смысле. Углерод атмосферы, гидросферы, биосферы находится в подвижном состоянии. Часть атомов углерода с течением времени переходит в состояние длительной геохимической неподвижности. Углекислый газ, связываясь с оксидами металлов, образует горные породы. При извержении вулканов часть углекислого газа освобождается из земных недр и выносится на поверхность планеты. В современных условиях к этим природным факторам добавляются также выбросы при сжигании человеком ископаемого топлива. В связи с влиянием CO 2 на парниковый эффект исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы (рис. 2).


Важную роль в жизнедеятельности живых организмов играет круговорот углерода в природе. Углерод входит в состав всех органических веществ и участвует в большинстве химических и физических процессов планеты.

Общее описание

Углерод – шестой элемент периодической таблицы Менделеева с относительной атомной массой 12. Углерод находится в четвертой группе и проявляет постоянную валентность IV. Это активное вещество, вступающее в реакцию с металлами, неметаллами, оксидами, кислотами.

В природе встречается в виде твёрдых веществ в составе горных пород. Элемент имеет несколько аллотропных модификаций – графит, алмаз, сажа, уголь. Большая часть газообразного углерода находится в атмосфере. Соединяясь с кислородом, образует угарный и углекислый газы.

Аллотропные модификации углерода

Рис. 1. Аллотропные модификации углерода.

Угарный газ (СО) – ядовитое вещество без цвета, запаха, вкуса. Соединяясь с гемоглобином крови, нарушает клеточное дыхание, что приводит к удушению.

Значение углерода

Углерод входит в состав угольной кислоты (H2CO3), соды (Na2CO3), всех органических соединений. Это один из жизненно важных элементов. Углерод участвует в процессах дыхания, синтеза веществ, энергетического обмена.

В живых организмах элемент содержат:

  • ДНК (дезоксирибонуклеиновая кислота);
  • нуклеиновые кислоты;
  • аминокислоты;
  • АТФ (аденозинтрифосфат) – универсальный источник энергии;
  • липиды и жирные кислоты.

Благодаря четырём валентным электронам атом углерода способен образовывать четыре связи с атомами различных элементов. Именно этим объясняется распространённость элемента в природе в составе сложных веществ.

Круговорот

Краткая схема круговорота углерода в природе:

  • углекислый газ используется растениями для фотосинтеза;
  • продуктом фотосинтеза являются органические вещества, в частности углеводы;
  • углерод попадает в тело травоядных животных, затем – хищников;
  • обратно элемент возвращается в природу при дыхании животных и после их смерти в результате гниения (осуществляют бактерии, грибы).

Общее количество углерода в природе можно разделить на четыре части:

  • оставшийся в составе клеток растения;
  • находящийся в животных клетках;
  • высвободившийся в атмосферу при дыхании или сжигании топлива;
  • отложившийся в грунте, куда попадает в результате разложения.

Углекислый газ (СО2) является конечным продуктом метаболизма. Он образуется в процессе дыхания и полного распада углеводов, жиров, аминокислот. Из клетки с током крови углекислый газ попадает в лёгкие, а оттуда – в атмосферу при внешнем дыхании.

Углекислый газ – продукт не только жизнедеятельности живых организмов. Газ образуется при сжигании органического топлива – нефти, природного газа, древесины, угля. При попадании углекислого газа в атмосферу круговорот элемента начинается заново.

Углерод накапливается в земной коре или на дне океана в виде горных пород или донных отложений. Именно так образуются каменный уголь, нефть, графит, алмаз.

Что мы узнали?

Углерод – жизненно важный элемент, участвующий в круговороте веществ в природе. Углерод в составе углекислого газа поглощают растения в процессе фотосинтеза и преобразуют в органические вещества, которые служат пищей для травоядных животных. Используя других животных в качестве пищи, хищники получают углерод в составе органических веществ. Обратно в природу углерод попадает при дыхании (выделяется в виде углекислого газа) и при гниении органических тканей.

Жизнь на Земле состоит из непрекращающихся циклов различных элементов, циркулирующих между биологическими организмами и земными оболочками (литосфера, атмосфера и гидросфера).

Жизнь на Земле состоит из непрекращающихся циклов различных элементов, циркулирующих между биологическими организмами и земными оболочками (литосфера, атмосфера и гидросфера).

 опишите круговорот углерода в природе

Наиболее важным процессом, обеспечивающим жизнедеятельность всех живых существ, является круговорот углерода в природе. Реферат по этой теме охватывает краткое описание факторов, влияющих на взаимодействие всех соединений.

Основные принципы

Химический элемент углерод (карбонеум) занимает шестую позицию в таблице Дмитрия Менделеева. Распространённость углерода объясняется его постоянной валентностью, которая равна четырём атомам. Благодаря этому образуется связь с другими химическими элементами. Все молекулы, из которых состоит любой организм, имеют в своей основе углеродный скелет. Любые соединения, существующие на земле, представлены двумя классами:

 углерод в природе

  • органическими — они появляются в результате жизнедеятельности всех живых существ;
  • неорганическими — причиной их возникновения могут быть химические реакции.

Преобразование одного соединения в другое называется круговорот веществ в природе. Схема представляет собой движение атомов основных элементов, таких как фтор, кислород, азот и другие. Однако лидирующую позицию в цикле занимает углерод.

Значительная часть карбонеума, находящаяся в газообразном состоянии, попадает в атмосферу. При соединении с кислородом образуется углекислый газ, а также метан и угарный газ. Зная основные принципы, можно кратко описать круговорот углерода в природе.

Биосферный процесс

Цикл, в который вовлекаются животный и растительный мир, выглядит как перемещение химических веществ через пищевую цепь любого живого организма. Это биологический круговорот углерода в природе, схема и рисунок которого представляет следующую упрощённую последовательность:

  • фотосинтез растений с поглощением углекислого газа и выделением кислорода;
  • переработка погибшей флоры другими организмами (грибами, гнилостными бактериями). Если органические остатки попадают в почву, они преобразуются в полезные ресурсы (уголь, торф);
  • поедание растений травоядной фауной, которая становится пищей для хищников. Углерод возвращается атмосферу во время дыхания живых организмов либо при разложении после их гибели.

 круговорот веществ в природе схема

Важную роль в непрерывном обороте углерода играет Мировой океан. Растворённый C в гидросфере находится в приповерхностном слое, глубоких водах и придонных морских осадках. Углекислота на начальном этапе поглощается планктоном, который становится пищей для высших обитателей морской стихии. Погибшие организмы оказываются на дне, где в процесс переработки включаются микроорганизмы. Количество углерода в океане в 100 раз выше, чем в атмосфере.

Углекислый газ — это конечный продукт метаболизма. Его образует полный распад различных аминокислот, белков, углеводов. При дыхании кислород усваивается организмом, CO2 выводится через дыхательные пути.

После попадания газа в атмосферу процесс кругооборота повторяется. Углеродный оборот в биосфере происходит с участием солнечной энергии, без которой жизнь была бы невозможна.

Геохимический цикл

Оборот углерода, происходящий без участия биологических организмов, называется геохимическим круговоротом. Особенности этого цикла заключаются в продолжительных по времени изменениях и в природных катаклизмах. Особенно мощное воздействие на цикл оказывает вулканическая деятельность планеты. Во время извержения вулканов образуется CO2 и вода, часть которых попадает в осадочные породы, постепенно перерождаясь в известняки.

В недрах земли находятся аллотропные углероды (нефть, уголь, графит, карбид, алмазы). В случае нахождения элемента в глубине грунта, он не попадает в атмосферу и временно теряется из неё. Высвобождение C из почвы происходит в результате горения метана, нефти или торфа. Так возобновляется оборот элемента в природе.

Значение элемента

В процессе многолетних исследований учёными было установлено, что для существования жизни отдельных организмов и планеты в целом углерод имеет решающее значение.

Кратко охарактеризовать роль элемента можно с помощью следующих данных:

 круговорот углерода в природе

  • участие в синтезе веществ;
  • процессе дыхания;
  • в энергетическом обмене;
  • присутствие в молекуле дезоксирибонуклеиновой кислоты (ДНК);
  • содержание элемента в аденозинтрифосфате (АТФ) — универсальном источнике энергии.

Не менее высока роль C в промышленности и производстве. Он позволяет изготавливать материалы с высокой электропроводностью, а также непроводящую электричество продукцию. Аллотропные модификации углерода охватывают довольно широкий диапазон. Самые известные из них — графит и алмаз.

Влияние цивилизации

Хозяйственная деятельность человека оказывает существенное влияние на содержание углекислого газа в атмосфере, что вызывает дисбаланс углеродного оборота. Рост населения, освоение новых территорий приводит к вырубке лесных массивов.

 круговорот углерода в природе кратко

Также с каждым годом всё больше сжигается топлива, в результате чего повышается концентрация CO2 в атмосфере.

Такая стратегия в дальнейшем неизбежно приведёт к экологической катастрофе и парниковому эффекту. Избыток тепловой энергии в нижних слоях атмосферы станет причиной роста температуры воздуха и таяния ледников. Повышение уровня воды в Мировом океане грозит затоплением обширных территорий суши и исчезновением многих видов флоры и фауны.

Мировые запасы

За время существования планеты Земля, на ней зарождались, вымирали и появлялись новые существа. За миллионы лет в природе накопились колоссальные запасы углерода, равные 6х10 6 млрд тонн. В эту массу входят как ископаемые углеродсодержащие вещества, так и все живые организмы.

Круговое перемещение элемента позволяет накапливать примерно 400 миллиардов тонн C, часть которого остаётся в неорганических соединениях. Остаток непрерывно циркулирует в живой природе, давая ей возможность продолжать существование.

Читайте также: