Корни и степени степенные функции реферат

Обновлено: 05.07.2024

Основными элементарными функциями являются: постоянная функция (константа), корень n-ой степени, степенная функция, показательная, логарифмическая функция, тригонометрические и обратные тригонометрические функции.

Файлы: 1 файл

Osnovnye_elementarnye_funktsii.doc

Основные элементарные функции, их свойства и графики.

Основными элементарными функциями являют ся: постоянная функция (константа), корень n-ой степени, степенная функция, показательная, логарифмическая функция, тригонометрические и обратные тригонометрические функции.

Постоянная функция.

Постоянная функция задается на множестве всех действительных чисел формулой , гдеC – некоторое действительное число. Постоянная функция ставит в соответствие каждому действительному значению независимой переменной x одно и то же значение зависимой переменной y – значение С. Постоянную функцию также называют константой.

Графиком постоянной функции является прямая, параллельная оси абсцисс и проходящая через точку с координатами (0,C). Для примера покажем графики постоянных функций y=5,y=-2 и , которым на рисунке, приведенном ниже, отвечают черная, красная и синяя прямые соответственно.

Свойства постоянной функции.

  • Область определения: все множество действительных чисел.
  • Постоянная функция является четной.
  • Область значений: множество, состоящее из единственного числа С.
  • Постоянная функция невозрастающая и неубывающая (на то она и постоянная).
  • Говорить о выпуклости и вогнутости постоянной не имеет смысла.
  • Асимптот нет.
  • Функция проходит через точку (0,C) координатной плоскости.

Корень n-ой степени.

Рассмотрим основную элементарную функцию, которая задается формулой , где n – натуральное число, большее единицы.

Корень n-ой степени, n - четное число.

Начнем с функции корень n-ой степени при четных значениях показателя корня n.

Для примера приведем рисунок с изображениями графиков функций и , им соответствуют черная, красная и синяя линии.

Аналогичный вид имеют графики функций корень четной степени при других значениях показателя.

Свойства функции корень n-ой степени при четных n.

  • Область определения: множество всех неотрицательных действительных чисел .
  • При x=0 функция принимает значение, равное нулю.
  • Эта функция общего вида (не является четной или нечетной).
  • Область значений функции: .
  • Функция при четных показателях корня возрастает на всей области определения.
  • Эта функция имеет выпуклость, направленную вверх, на всей области определения, точек перегиба нет.
  • Асимптот нет.
  • График функции корень n-ой степени при четных n проходит через точки (0,0) и(1,1).

Корень n-ой степени, n - нечетное число.

Функция корень n-ой степени с нечетным показателем корня n определена на всем множестве действительных чисел. Для примера приведем графики функций и , им соответствуют черная, красная и синяя кривые.

При других нечетных значениях показателя корня графики функции будут иметь схожий вид.

Свойства функции корень n-ой степени при нечетных n.

  • Область определения: множество всех действительных чисел.
  • Эта функция нечетная.
  • Область значений функции: множество всех действительных чисел.
  • Функция при нечетных показателях корня возрастает на всей области определения.
  • Эта функция вогнутая на промежутке и выпуклая на промежутке , точка с координатами (0,0) – точка перегиба.
  • Асимптот нет.
  • График функции корень n-ой степени при нечетных n проходит через точки (-1,-1),(0,0) и (1,1).

Степенная функция.

Степенная функция задается формулой вида .

Рассмотрим вид графиков степенной функции и свойства степенной функции в зависимости от значения показателя степени.

Начнем со степенной функции с целым показателем a. В этом случае вид графиков степенных функций и свойства функций зависят от четности или нечетности показателя степени, а также от его знака. Поэтому сначала рассмотрим степенные функции при нечетных положительных значениях показателя a, далее - при четных положительных, далее - при нечетных отрицательных показателях степени, и, наконец, при четных отрицательных a.

Свойства степенных функций с дробными и иррациональными показателями (как и вид графиков таких степенных функций) зависят от значения показателя a. Их будем рассматривать, во-первых, при a от нуля до единицы, во-вторых, при a больших единицы, в-третьих, при a от минус единицы до нуля, в-четвертых, при a меньших минус единицы.

В заключении этого пункта для полноты картины опишем степенную функцию с нулевым показателем.

Степенная функция с нечетным положительным показателем.

Рассмотрим степенную функцию при нечетном положительном показателе степени, то есть, при а=1,3,5,….

На рисунке ниже приведены графики степенных фнукций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=1 имеем линейную функцию y=x.

Свойства степенной функции с нечетным положительным показателем.

  • Область определения: .
  • Область значений: .
  • Функция нечетная, так как .
  • Функция возрастает при .
  • Функция выпуклая при и вогнутая при (кроме линейной функции).
  • Точка (0;0) является точкой перегиба (кроме линейной функции).
  • Асимптот нет.
  • Функция проходит через точки (-1;-1), (0;0), (1;1).

Степенная функция с четным положительным показателем.

Рассмотрим степенную функцию с четным положительным показателем степени, то есть, при а=2,4,6,….

В качестве примера приведем графики степенных функций – черная линия, – синяя линия, – красная линия. При а=2 имеем квадратичную функцию, графиком которой является квадратичная парабола.

Свойства степенной функции с четным положительным показателем.

  • Область определения: .
  • Область значений: .
  • Функция четная, так как .
  • Функция возрастает при , убывает при .
  • Функция вогнутая при .
  • Точек перегиба нет.
  • Асимптот нет.
  • Функция проходит через точки (-1;1), (0;0), (1;1).

Степенная функция с нечетным отрицательным показателем.

Посмотрите на графики степенной функции при нечетных отрицательных значениях показателя степени, то есть, при а=-1,-3,-5,….

На рисунке в качестве примеров показаны графики степенных функций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=-1имеем обратную пропорциональность, графиком которой является гипербола.

Свойства степенной функции с нечетным отрицательным показателем.

  • Область определения: .
    При x=0 имеем разрыв второго рода, так как приа=-1,-3,-5,…. Следовательно, прямая x=0 является вертикальной асимптотой.
  • Область значений: .
  • Функция нечетная, так как .
  • Функция убывает при .
  • Функция выпуклая при и вогнутая при .
  • Точек перегиба нет.
  • Горизонтальной асимптотой является прямая y = 0, так как

Степенная функция с четным отрицательным показателем.

Перейдем к степенной функции при а=-2,-4,-6,….

На рисунке изображены графики степенных функций – черная линия, – синяя линия, – красная линия.

Свойства степенной функции с четным отрицательным показателем.

  • Область определения: .
    При x=0 имеем разрыв второго рода, так как приа=-2,-4,-6,…. Следовательно, прямая x=0 является вертикальной асимптотой.
  • Область значений: .
  • Функция четная, так как .
  • Функция возрастает при , убывает при .
  • Функция вогнутая при .
  • Точек перегиба нет.
  • Горизонтальной асимптотой является прямая y=0, так как

Степенная функция с рациональным или иррациональным показателем, значение которого больше нуля и меньше единицы.

Обратите внимание! Если a - положительная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными положительными показателями степени множество . Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Рассмотрим степенную функцию с рациональным или иррациональным показателем a, причем .

Приведем графики степенных функций при а=11/12 (черная линия), а=5/7 (красная линия), (синяя линия), а=2/5 (зеленая линия).

При других значениях показателя степени a, графики функции будут иметь схожий вид.

Свойства степенной функции при .

  • Область определения: .
  • Область значений: .
  • Функция не является ни четной, ни нечетной, то есть она общего вида.
  • Функция возрастает при .
  • Функция выпуклая при .
  • Точек перегиба нет.
  • Асимптот нет.
  • Функция проходит через точки (0;0), (1;1).

Степенная функция с нецелым рациональным или иррациональным показателем, большим единицы.

Рассмотрим степенную функцию с нецелым рациональным или иррациональным показателем a, причем .

Приведем графики степенных функций, заданных формулами (черная, красная, синяя и зеленая линии соответственно).

При других значениях показателя степени a, графики функции будут иметь схожий вид.

Свойства степенной функции при .

  • Область определения: .
  • Область значений: .
  • Функция не является ни четной, ни нечетной, то есть она общего вида.
  • Функция возрастает при .
  • Функция вогнутая при , если ; при , если .
  • Точек перегиба нет.
  • Асимптот нет.
  • Функция проходит через точки (0;0), (1;1).

Степенная функция с действительным показателем, который больше минус единицы и меньше нуля.

Обратите внимание! Если a - отрицательная дробь с нечетным знаменателем, то некоторые авторы считают областью определения степенной функции интервал . При этом оговариваются, что показатель степени a – несократимая дробь. Сейчас авторы многих учебников по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Мы будем придерживаться именно такого взгляда, то есть, будем считать областями определения степенных функций с дробными дробными отрицательными показателями степени множество соответственно. Рекомендуем учащимся узнать взгляд Вашего преподавателя на этот тонкий момент, чтобы избежать разногласий.

Переходим к степенной функции , кгода .

Чтобы хорошо представлять вид графиков степенных функций при , приведем примеры графиков функций (черная, красная, синяя и зеленая кривые соответственно).

Определение. Функция, заданная формулой у=а х (где а>0, а≠1), называется показательной функцией с основанием а.

Сформулируем основные свойства показательной функции :

1. Область определения — множество (R) всех действительных чисел.

2. Область значений — множество (R+) всех положительных действительных чисел.

3. При а > 1 функция возрастает на всей числовой прямой; при 0 n , где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

Степенная функция у=х²

1. D(x)=R – функция определена на все числовой оси;

2. E(y)=[0;∞) - функция принимает положительные значения на всей области определения;

3. При х=0 у=0 - функция проходит через начало координат O(0;0).

4. Функция убывает на промежутке (-∞;0] и возрастает на промежутке [0;∞).

5. Функция является четной (симметрична относительно оси Оу).

В зависимости от числового множителя, стоящего перед х², функция может быть уже/шире и направлена вверх/вниз.

Степенная функция у=х³

1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

2. D(x)=R – функция определена на все числовой оси;

3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

4. При х=0 у=0 – функция проходит через начало координат O(0;0).

5. Функция возрастает на всей области определения.

6. Функция является нечетной (симметрична относительно начала координат).

В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

Степенная функция с целым отрицательным показателем:

Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

1. D(x)=(-∞;0)U(0;∞) для любого n;

2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.

Степенная функция с дробным показателем

Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

1. D(x) ÎR, если n – нечетное число и D(x)=[0;∞), если n – четное число ;

2. E(y) Î (-∞;0)U(0;∞), если n – нечетное число; E(y)=[0;∞), если n – четное число;

3. Функция возрастает на всей области определения для любого числа n.

4. Функция проходит через начало координат в любом случае.

Логарифмическая функция у = loga x обладает следующими свойствами :

Свойства степенной функции

Приведены основные свойства степенной функции, включая формулы и свойства корней. Представлены производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел степенной функции.

Определение

Степенная функция с показателем степени p – это функция f ( x ) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
Кроме этого, f (0) = 0 p = 0 при p > 0 .

Для натуральных значений показателя , степенная функция есть произведение n чисел, равных x :
.
Она определена для всех действительных .

Для положительных рациональных значений показателя , степенная функция есть произведение n корней степени m из числа x :
.
Для нечетных m , она определена для всех действительных x . Для четных m , степенная функция определена для неотрицательных .

Для отрицательных , степенная функция определяется по формуле:
.
Поэтому она не определена в точке .

Для иррациональных значений показателя p , степенная функция определяется по формуле:
,
где a – произвольное положительное число, не равное единице: .
При , она определена для .
При , степенная функция определена для .

Непрерывность. Степенная функция непрерывна на своей области определения.

Свойства и формулы степенной функции при x ≥ 0

Степенная функция, y = x p , с показателем p имеет следующие свойства:
(1.1) определена и непрерывна на множестве
при ,
при ;
(1.2) имеет множество значений
при ,
при ;
(1.3) строго возрастает при ,
строго убывает при ;
(1.4) при ;

Корни – определение, формулы, свойства

Корень из числа x степени n – это число , возведение которого в степень n дает x :
.
Здесь n = 2, 3, 4, . – натуральное число, большее единицы.

Также можно сказать, что корень из числа x степени n – это корень (то есть решение) уравнения
.
Заметим, что функция является обратной к функции .

Квадратный корень из числа x – это корень степени 2: .
Кубический корень из числа x – это корень степени 3: .

Четная степень

Для четных степеней n = 2 m , корень определен при x ≥ 0 . Часто используется формула, справедливая как для положительных, так и для отрицательных x :
.
Для квадратного корня:
.

Здесь важен порядок, в котором выполняются операции – то есть сначала производится возведение в квадрат, в результате чего получается неотрицательное число, а затем из него извлекается корень (из неотрицательного числа можно извлекать квадратный корень). Если бы мы изменили порядок: , то при отрицательных x корень был бы не определен, а вместе с ним не определено и все выражение.

Нечетная степень

Для нечетных степеней , корень определен для всех x :
;
.

Свойства и формулы корней

Корень из x является степенной функцией:
.
При x ≥ 0 имеют место следующие формулы:
;
;
, ;
.

Эти формулы также могут быть применимы и при отрицательных значениях переменных . Нужно только следить за тем, чтобы подкоренное выражение четных степеней не было отрицательным.

Частные значения

Корень 0 равен 0: .
Корень 1 равен 1: .
Квадратный корень 0 равен 0: .
Квадратный корень 1 равен 1: .

Пример. Корень из корней

Рассмотрим пример квадратного корня из корней:
.
Преобразуем внутренний квадратный корень, применяя приведенные выше формулы:
.
Теперь преобразуем исходный корень:
.
Итак,
.

Графики степенной функции

Графики степенной функции

Графики степенной функции y = x p при различных значениях показателя p .

Обратная функция

Обратной для степенной функции с показателем p является степенная функция с показателем 1/p .

Производная степенной функции

Интеграл от степенной функции

Разложение в степенной ряд

При – 1 1 имеет место следующее разложение:

Выражения через комплексные числа

Рассмотрим функцию комплексного переменного z :
f ( z ) = z t .
Выразим комплексную переменную z через модуль r и аргумент φ ( r = |z| ):
z = r e i φ .
Комплексное число t представим в виде действительной и мнимой частей:
t = p + i q .
Имеем:

Далее учтем, что аргумент φ определен не однозначно:
,

Рассмотрим случай, когда q = 0 , то есть показатель степени - действительное число, t = p . Тогда
.

Если p - целое, то и kp - целое. Тогда, в силу периодичности тригонометрических функций:
.
То есть показательная функция при целом показателе степени, для заданного z , имеет только одно значение и поэтому является однозначной.

Если p - иррациональное, то произведения kp ни при каком k не дают целого числа. Поскольку k пробегает бесконечный ряд значений k = 0, ±1, ±2, ±3, . , то функция z p имеет бесконечно много значений. Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции.

Если p - рациональное, то его можно представить в виде:
, где m, n - целые, не содержащие общих делителей. Тогда
.
Первые n величин, при k = k 0 = 0, 1, 2, . n-1 , дают n различных значений kp :
.
Однако последующие величины дают значения, отличающиеся от предыдущих на целое число. Например, при k = k 0 + n имеем:
.
Тригонометрические функции, аргументы которых различаются на величины, кратные 2 π , имеют равные значения. Поэтому при дальнейшем увеличении k мы получаем те же значения z p , что и для k = k 0 = 0, 1, 2, . n-1 .

Таким образом, показательная функция с рациональным показателем степени является многозначной и имеет n значений (ветвей). Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции. Через n таких оборотов мы возвращаемся на первую ветвь, с которой начинался отсчет.

В частности, корень степени n имеет n значений. В качестве примера рассмотрим корень n – й степени действительного положительного числа z = x . В этом случае φ 0 = 0 , z = r = |z| = x , .
.
Так, для квадратного корня, n = 2 ,
.
Для четных k, ( – 1 ) k = 1 . Для нечетных k, ( – 1 ) k = – 1 .
То есть квадратный корень имеет два значения: + и – .

Степенна́я фу́нкция — функция y = xa, где a (показатель степени) — некоторое вещественное число. К степенным часто относят и функцию вида y = kxa, где k — некоторый масштабный множитель. Существует также комплексное обобщение степенной функции. На практике показатель степени почти всегда является целым или рациональным числом.

Область определения

Если показатель степени — целое число, то можно рассматривать степенную функцию на всей числовой прямой (кроме, возможно, нуля). В общем случае степенная функция определена при x > 0. Если a > 0, то функция определена также и при x = 0, иначе нуль является её особой точкой.

Рациональный показатель степени

Графики степенной функции при натуральном показателе n называются параболами порядка n. При a = 1 получается функция y = kx, называемая прямой пропорциональной зависимостью.


Графики функций вида y = xn , где n — натуральное число, называются гиперболами порядка n. При a = − 1 получается функция , называемая обратной пропорциональной зависимостью.


Если , то функция есть арифметический корень степени n.

Пример: из третьего закона Кеплера вытекает, что период T обращения планеты вокруг Солнца связан с большой полуосью A её орбиты соотношением: T = kA 3 / 2 (полукубическая парабола).


Параболы порядка n: n = 0 n = 1 n = 2 n = 3 n = 4 n = 5


Гиперболы порядка n: n = − 1 n = − 2 n = − 3

Свойства

Функция непрерывна и неограниченно дифференцируема во всех точках, в окрестности которых она определена. Нуль, вообще говоря, является особой точкой; например, функция определена в нуле и его правой окрестности, но её производная в нуле не определена.


В интервале функция монотонно возрастает при a > 0 и монотонно убывает при a n однозначна и n-листна.

Тригонометрические функции Функция синус



Область определения функции — множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная.

Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно начала координат.

Функция периодическая с наименьшим положительным периодом 2 π :

sin(x+2 π· k) = sin x, где k ∈ Z для всех х ∈ R.

sin x = 0 при x = π·k , k ∈ Z.

sin x > 0 (положительная) для всех x ∈ ( 2π·k , π+2π·k ), k ∈ Z.

Читайте также: