Компьютер и музыка реферат

Обновлено: 04.07.2024

Понятие, виды и принципы информационных технологий. Педагогические цели и методические возможности использования информационных технологий в обучении музыке. Классификация педагогических программных средств. Тенденции развития музыкальной педагогики.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 16.12.2010
Размер файла 221,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Реферат по информационным технологиям

Применение информационных технологий в музыке

1.1 Информационная технология. Виды информационных технологий, их основные принципы

1.2 Информационные системы, их классификация

ГЛАВА 2. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДАГОГИКЕ

2.1 Педагогические цели использования информационных технологий

2.2 Методические возможности средств информационных технологий

2.3 Классификация педагогических программных средств

ГЛАВА 3. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МУЗЫКЕ

3.1 Программные средства обучения музыке

3.2 Интернет-технологии в обучении музыке

3.3 Музыкальная педагогика и тенденции её дальнейшего развития

ГЛАВА 4. ЗНАЧЕНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИХ ИНТЕГРАЦИЯ В СФЕРЕ ОБРАЗОВАНИЯ

Совершенствование информационных коммуникационных технологий (создание локальных и глобальных сетей, баз данных и знаний, а также экспертных систем) формирует специфическую учебную информационную компьютерную область, которая обогащает традиционные формы обучения. Быстрое развитие информационных коммуникационных технологий позволяет реализовать два главных принципа будущей системы образования: принцип доступности и принцип непрерывности. Именно информационные и телекоммуникационные технологии сделали личностно-ориентированное образование более доступным.

Процесс информатизации и компьютеризации общества трансформировал привычные представления об образовании и раскрыл необходимость новых подходов связанных с открытым образованием. Стратегическое значение информационных и коммутационных технологий, применяемых в области образования неоспоримо. Тем не менее, широкое применение информационных технологий не повлекло коренных изменений в системе образования, к глобальному переосмыслению методической системе обучения. По-прежнему отмечается необходимость осуществление широкомасштабных исследований в области применения педагогических возможностей коммуникационных технологий в образовании.

Сегодня в образовательном процессе многих стран отмечается устойчивая тенденция внедрения и применения современных информационных технологий в обучении. В последние годы в общеобразовательной школе все чаще прибегают к использованию информационных технологий при изучении большинства учебных дисциплин, происходит информатизация сферы образования.

Под информатизацией понимается активный процесс введения компьютерной техники и новых информационных технологий в различные сферы производства, образования, общественной и личной жизни людей.

1.1 Информационная технология. Виды информационных технологий, их основные принципы

Сегодня информация воспринимается как важный ресурс, наряду с такими традиционными видами ресурсов, как нефть, газ, полезные ископаемые и др. Процесс переработки ресурсов называют технологией, следовательно, о процессе переработки информации можно говорить как о специфической технологии.

Таким образом, информационная технология - это процесс обработки и передачи данных для получения информации о состоянии объекта, процесса или явления, применяющий совокупность средств и методов сбора информации. Производство информации для ее анализа человеком - главная цель информационной технологии. На основе данной информации принимается решение по выполнению какого-либо действия.

Инструментами информационной технологии выступают различные виды программных продуктов: текстовые процессоры, издательские системы, электронные таблицы, системы управления базами данных, электронные календари, информационные системы функционального назначения.

Основными видами информационных технологий являются:

1. Информационная технология обработки данных. Она предназначена для решения хорошо структурированных задач, с известными алгоритмами и всеми необходимыми входными данными. Информационная технология обработки данных используется на уровне исполнительской деятельности персонала невысокой квалификации для автоматизации повторяющихся операций управленческого труда.

2. Информационная технология управления предполагает информационное обслуживание всех работников предприятий, связанных с принятием управленческих решений. Информационная технология управления предоставляет информацию в виде регулярных или специальных управленческих отчетов и содержит сведения о прошлом, настоящем и возможном будущем предприятия.

3. Информационная технология автоматизированного офиса дополняет систему связи персонала предприятия. Автоматизация офиса предполагает организацию и осуществление коммуникационных процессов как внутри фирмы, так и с внешней средой, базируясь на компьютерные сети и другие современные средства передачи и работы с информацией.

4. Информационная технология поддержки принятия решений осуществляет выработку управленческого решения в результате итерационного процесса, в котором участвуют система поддержки принятия решений (вычислительное звено и объект управления) и человек (управляющее звено, задающее входные данные и оценивающее полученный результат).

5. Информационная технология экспертных систем основана на применении искусственного интеллекта. Экспертные системы позволяют менеджерам получать консультации экспертов по ряду проблем, о которых в этих системах содержится информация.

Новая информационная технология основывается на ряде принципов, например:

1. Диалоговый режим работы с компьютером

2. Взаимодействие с другими программными продуктами

3. Гибкость процесса изменения данных и постановок задач.

1.2 Информационные системы, их классификация

Информационная система представляет собой организационно-упорядоченную взаимосвязанную совокупность средств, и методов информационных технологий, применяемых для хранения, обработки и выдачи информации для достижения поставленной цели. Основным техническим средством переработки информации являются ЭВМ и средства связи, которые осуществляют информационные процессы и выдают информацию, необходимую для принятия решений.

Информационная система включает компьютеры, компьютерные сети, программные продукты, базы данных, людей, различного рода технические и программные средства связи и т.д. Нужно отметить, что компьютеризация значительно повысила эффективность информационных технологий и расширила сферы их применения.

Информационные системы можно классифицировать по различным критериям.

По признаку структурированности задач можно выделить

· информационные системы для структурированных задач

· информационные системы для частично структурированных или неструктурированных задач:

- создающие управленческие отчеты;

- разрабатывающие альтернативные решения (модельные и экспертные).

По функциональному признаку и уровням управления выделяют:

· финансовые и учетные системы;

· системы кадров (человеческих ресурсов);

· прочие типы, выполняющие вспомогательные функции в зависимости от специфики деятельности фирмы.

По степени автоматизации информационные системы делятся на ручные, автоматизированные и автоматические.

По характеру использования информации существуют следующие виды информационных систем:

· управляющие информационные системы,

· советующие информационные системы,

В зависимости от сферы применения выделяют:

· информационные системы организационного управления,

· информационные системы управления технологическими процессами (ТП),

· информационные системы автоматизированного проектирования (САПР),

· Интегрированные (корпоративные) информационные системы.

Использование информационных систем невозможно без знания ориентированной на нее информационной технологии. Информационная технология может существовать и вне сферы информационной системы. Таким образом, информационная технология - это более емкое понятие. Оно отражает современное представление о процессах преобразования информации в информационном обществе.

ГЛАВА 2. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДАГОГИКЕ

2.1 Педагогические цели использования информационных технологий

Информатизация в значительной степени преобразовала процесс получения знаний. Новые технологии обучения на основе информационных и коммуникационных делают образовательный процесс более интенсивным, повышают скорость восприятия, понимания и, что важно, глубину усвоения большого объема знаний.

В педагогике существует понятие информационной технологии обучения. Это понятие характеризует процесс подготовки и передачи информации обучаемому. Средством осуществления данного процесса выступают компьютерная техника и программные средства.

В информационных технологиях обучения выделяются два компонента, служащих для передачи учебной информации:

· технические средства: компьютерная техника и средства связи;

· программные средства, которые могут быть различного назначения.

Для разработки уроков с применением компьютера преподаватель должен знать функциональные возможности и условия применения каждого из данных компонентов. Как технические, так и программные средства обладают своей спецификой и определенным образом влияют на учебный процесс.

Педагогические цели применения информационных технологий заключаются:

- в развитии личности, то есть в развитии мышления, эстетического воспитания, развитии умений экспериментально-исследовательской деятельности, формировании информационной культуры.

- в интенсификации учебно-воспитательного процесса, что предполагает повышение эффективности и качества обучения, обеспечение мотивов познавательной деятельности, углубление межпредметных связей за счет интеграции информационной и предметной подготовки.

2.2 Методические возможности средств информационных технологий

Методическим возможностями информационных технологий считают:

- индивидуализацию, дифференциацию обучения;

- возможность проследить процесс развития объекта, построение чертежа, последовательность выполнения операций (компьютерные демонстрации);

- моделирование объектов, процессов и явлений;

- разработку и применение информационных баз данных;

- доступ к большому объему информации, представленному в занимательной форме, благодаря использованию средств мультимедиа;

- развитие умений обрабатывать информацию при работе с компьютерными каталогами и справочниками;

- возможность тренировки и самоподготовки;

- усиление мотивации обучения (посредством игр, средств мультимедиа);

- формирование умений принимать оптимальное решение в сложной ситуации;

- развитие определенного вида мышления (например, наглядно-образного);

- формирование культуры учебной деятельности;

- формирование информационной культуры;

- экономию учебного времени.

2.3 Классификация педагогических программных средств

Информационная технология обучения предполагает использование наряду с компьютерной техникой специализированные программные средства. Программное средство учебного назначения - это программное средство, в котором воссоздается некоторая предметная область, где реализуется технология ее изучения, создаются условия для осуществления различных видов учебной деятельности. Такие программные средства, функционально поддерживающие различные виды учебного процесса, получили называние педагогических программных средств.

В настоящее время существует большое количество различных классификаций и типологий педагогических программных средств.

По методическому назначению педагогическими программными средствами могут выступать:

- компьютерные учебники (уроки);

- контролирующие (тестовые оболочки);

- демонстрационные (слайд- или видео-фильмы);

- досуговые (компьютерные игры: аркадные, квесты, стратегии, ролевые, логические, спортивные и др. типы).

ГЛАВА 3. ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МУЗЫКЕ

Современный урок музыки - это урок, в ходе которого применяются современные педагогические технологии, компьютерные технологии, используются электронные музыкальные инструменты. Урок музыки характеризуется созданием творческой обстановки, так как содержание музыкальных занятий составляют эмоции и их субъективное переживание. Подобное специфическое содержание обуславливает выбор разнообразных методик, видов работы и новых мультимедийных средств.

Мультимедиа системы. Компьютер и музыка Образец 91126

Актуальность темы в том, что мультимедийные системы — необходимая составляющая современных офисов, учебных и культурных заведений, а также государственных структур. Их основная задача —оптимизация рабочих процессов с помощью удаленной конференцсвязи, трансляции видео и аудио сигналов с рекламной, информационной или обучающей целью.

В целом мультимедийные решения представляют собой взаимодействие визуальных и аудиоэффектов под управлением интерактивного программного обеспечения с использованием современных технических и программных средств, они объединяют текст, звук, графику, фото, видео в одном цифровом представлении.

Различные формы предоставления информации делают возможным интерактивное взаимодействие потребителя с информацией.

Если системы мультимедиа домашнего назначения используются в основном для развлечения и отдыха, то в образовании мультимедиа используется для обучения, в промышленном секторе - как способ презентации информации для акционеров, руководства и коллег. Врачи также могут получить подготовку с помощью виртуальных операций. В бизнес-среде мультимедиа используется для упрощения работы и создания комфортных условий для развития персонала и компании.

Степень изученности. В разработке данной темы были использованы работы таких авторов как: Румянцева Е.Л., Слюсарь В. В., Советов Б.Я., Барановская В. И., Лойко М.И., Семенов А. И., Панарин И.Н. и др.

Целью данной работы является раскрытие мультимедиа систем, исходя из поставленной цели, были определены следующие задачи:

  • рассмотреть понятие мультимедийных технологий;
  • исследовать виды мультимедийных технологий на современном этапе;
  • выявить сущность компьютерной музыки.

Структура данной работы состоит из: введения, 3 глав, заключения и списка используемой литературы.

Фрагмент работы для ознакомления

1 Понятие мультимедийных технологий

Мультимедиа (англ. "multimedia" от лат. "multum" - много и "media", "medium" - средоточие; средства) - это электронный носитель, среда распространения или программно-технический комплекс (устройство), включающие несколько видов информации .

Мультимедиа – это совокупность компьютерных технологий, одновременно использующих несколько информационных сред: графику, текст, видео, фотографию, анимацию, звуковые эффекты, высококачественное звуковое сопровождение. Технологию мультимедиа составляют специальные аппаратные и программные средства.

2 Виды мультимедийных технологий на современном этапе

Изначально нашему вниманию специалисты и разработчики представили именно линейное мультимедиа. Самым ярким и распространенным примером линейного мультимедиа является кино. Главным отличием линейных мультимедийных технологий является то, что в данном случае человек, который пользуется ими, никаким образом не может повлиять на ход событий. Также в качестве примера можно рассматривать и любую презентацию, записанную на определенный источник.

3 Сущность компьютерной музыки

Сегодня персональный компьютер (ПК) настолько прочно вошел в нашу жизнь, что многие без него не представляют своего существования. Компьютер используют как вычислитель, игровую приставку, телевизор, факс, записную книжку и т. д. Эти примеры наверняка известны нашим читателям. Но есть еще одна очень интересная возможность использования компьютера, о которой знают далеко не все, - музыка. И здесь ПК - основа для создания небольшой личной "звукозаписывающей студии". Такая область применения еще недостаточно отражена на страницах журнала, поэтому мы решили восполнить пробел и начать знакомить наших читателей с "музыкальными" возможностями ПК.

Таблица 1 - Демоверсии некоторых музыкальных программ

ЗАКЛЮЧЕНИЕ

Таким образом, мультимедиа– одновременное использование различных форм представления информации и ее обработки в едином объекте–контейнере.

Термин мультимедиа также, зачастую, используется для обозначения носителей информации, позволяющих хранить значительные объемы данных и обеспечивать достаточно быстрый доступ к ним.

Мультимедийная технология предоставляет возможность работы со звуковыми, графическими и видеофайлами, что открывает новые направления использования компьютерной техники в области социально–культурного сервиса и туризма, более наглядное преподнесение продукта пользователю, вплоть до разработки виртуальных экскурсий и путешествий.

Список литературы [ всего 7]

  1. Информационные технологии: учебник / под ред. В. В. Трофимова. — М.: Издательство Юрайт ; ИД Юрайт, 2013. — 624 с.
  2. Информационные системы в экономике: учебник / по ред. Г. А. Титоренко. – 2-е изд., перераб. и доп. – М.: Юнити-Дана, 2014. – 463 с.
  3. Информационные системы и технологии в экономике: Учебник. - 2-е изд., доп. и перераб. / Т. П. Барановская, В.И. Лойко, М. И. Семенов, А.И. Трубилин; Под ред. В. И. Лойко. - М.: Финансы и статистика, 2013. - 416 с
  4. .

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Мультимедийные системы превратились в популярную тему многих конференций по информатике, научно-технической информации, искусственному интеллекту, лингвистике, психологии и теории обучения. Интерес вызывает принципиально нелинейная организация информационных единиц, которые могут быть представлены текстом, аудио и видео информацией, дружелюбная и гибкая форма нелинейного управления этими единицами в мультимедийных системах.

Содержание

ВВЕДЕНИЕ 2
1. МУЛЬТИМЕДИЙНЫЕ СИСТЕМЫ 4
1.1. Основные понятия и разновидности мультимедиа 4
1.2. Области применения 8
1.3. Некоторые примеры мультимедийных систем 10
ЧАСТЬ 2. СОЗДАНИЕ МУЗЫКИ С ПОМОЩЬЮ КОМПЬЮТЕРА 13
2.1. Основные понятия 13
2.2. Принципы создания музыки 14
ЗАКЛЮЧЕНИЕ 20
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 21

Работа состоит из 1 файл

Мультимедийные системы.Компьютер и музыка.doc

Что означает мультимедиа? Каковы сферы ее применения? Целесообразно начать рассмотрение вопросов данной работы с главных исходных понятий, просмотреть существующие варианты определений, далее рассмотреть какие задачи в зависимости от требований сферы применения решают мультимедийные системы, что входит в их состав, как использовать компьютер в качестве основы для создания звукозаписывающей студии.

Мультимедийные системы превратились в популярную тему многих конференций по информатике, научно-технической информации, искусственному интеллекту, лингвистике, психологии и теории обучения. Интерес вызывает принципиально нелинейная организация информационных единиц, которые могут быть представлены текстом, аудио и видео информацией, дружелюбная и гибкая форма нелинейного управления этими единицами в мультимедийных системах.

Быстро расширяется спектр успешного применения мультимедийных систем во многих сферах науки, техники, образования, экономики, искусства.

Системы мультимедиа коммерческого или общего назначения предназначены для организации комфортных и прогрессивных условий работы сотрудников на переговорах, совещаниях, проведении конференций. Они широко применяются в учебных классах, в диспетчерских, в центрах обработки информации и пр. Коммерческие системы мультимедиа включают в себя: систему аудио и видео конференц-связи (конгресс-система, система голосования, терминалы ВКС и проч.), систему видеоотображения (плазменные панели, видеостены, мониторы LCD, электронные доски и проч.), систему интегрированного управления (управление видео и аудио системами, электрическими системами, климатическим оборудованием, освещением и проч.).

Коммерческие мультимедийные системы выполняют функции сопровождения бизнес-процессов (сюда относится оптимизация работы сотрудников, организация ситуационных центров и диспетчерских и т. п.), а также служат для повышения их эффективности.

Отдых и общение современного человека автоматизированы настолько, что нет необходимости отслеживать какую-либо систему или функцию, если под рукой пульт управления с заданными заранее сценариями. Современные системы мультимедиа – это новый уровень комфорта дома и в офисе.

Резкий рывок, произошедший в этом направлении, обеспечен, прежде всего, развитием технических и системных средств. Это и прогресс в развитии ЭВМ: резко возросшие объем памяти, быстродействие, графические возможности, характеристики внешней памяти, и достижения в области видеотехники, лазерных дисков – аналоговых и CD-ROM, а также их массовое внедрение.

1.1. Основные понятия и разновидности мультимедиа

Мультимедиа – это интерактивные системы, обеспечивающие работу с неподвижными изображениями и движущимся видео, анимированной компьютерной графикой и текстом, речью и высококачественным звуком.

Мультимедиа – объединение в одном пользовательском продукте текста, графики, аудио- и видео информации, анимации, при этом для пользователя добавляется возможность обратной связи, свойство интерактивности. А значит, мультимедиа – это средства обмена информацией между компьютером и внешней средой.

Мультимедиа может быть классифицирована как линейная и нелинейная.

Простейшая форма представления множества элементов мультимедиа – линейный проект. В случае линейной мультимедиа человек никаким образом не может повлиять на вывод информации. В этом случае пользователь может выполнять только пассивный просмотр элементов мультимедиа. Последовательность просмотра элементов мультимедиа определяется сценарием.

Нелинейный способ представления информации позволяет человеку участвовать в выводе информации, взаимодействуя каким-либо образом со средством отображения мультимедийных данных.

Если пользователю предоставлена возможность выбора и управления, то мультимедиа становится нелинейным и интерактивным. Такой способ взаимодействия человека и компьютера наиболее полным образом представлен в категориях компьютерных игр.

В качестве примера линейного и нелинейного способа представления информации, можно рассматривать такую ситуацию, как проведение презентации.

Если презентация была записана на пленку и показывается аудитории, то этот способ донесения информации может быть назван линейным, так как просматривающие данную презентацию не имеют возможности влиять на докладчика.

В случае же живой презентации, аудитория имеет возможность задавать докладчику вопросы и взаимодействовать с ним прочим образом, что позволяет докладчику отходить от темы презентации, например, поясняя некоторые термины или более подробно освещая спорные части доклада.

Таким образом, живая презентация может быть представлена, как нелинейный (интерактивный) способ подачи информации.

Если пользователю предоставляется структура связанных элементов мультимедиа, которые он может последовательно выбирать, интерактивное мультимедиа становится гипермедиа.

Связывание элементов мультимедиа в проект выполняется с помощью программных инструментальных средств. Результаты представления элементов мультимедиа на экране и средства управления мультимедиа, называется пользовательским интерфейсом. Аппаратные и программные средства, обеспечивающие воспроизведение мультимедиа и ограничивающие возможности проекта, называются платформой или средой мультимедиа.

Мультимедийный продукт – интерактивная компьютерная разработка, в состав которой могут входить:

    • музыкальное и речевое сопровождение;
    • видеоклипы;
    • анимация;
    • графические изображения и слайды;
    • базы данных;
    • текст и т.д.

    Важной характеристикой мультимедийных систем является высокое качество воспроизведения всех составляющих ее компонент данных, а также возможность их взаимосвязанного или взаимодополняющего использования. Например, сочетания видеоряда с текстом и звуковым сопровождением; звуковых фрагментов музыкального произведения с текстовыми данными об исполняющих его музыкантах и инструментах; изображения художественного произведения с музыкальным фоном и текстом и т.п.

    Стандарты, устанавливающие для разработчиков ПО состав аппаратных средств, относящихся к технологии мультимедиа: МРС-1, МРС-2, МРС-3.

    Аппаратные средства мультимедиа

    Основные – компьютер с высокопроизводительным процессором, большим объемом оперативной памяти, жёстким диском от 100 Гбайт и выше, манипуляторами, мультимедиа-монитором со встроенными стереодинамиками и видеоадаптером SVGA.

    Специальные – приводы CD-ROM, CD-R, CD-RW, DVD; TV-тюнеры и фрейм-грабберы; графические акселераторы (ускорители), в том числе, для поддержки трёхмерной графики; платы видеовоспроизведения; устройства для ввода видеопоследовательностей; звуковые платы с установленными микшерами и музыкальными синтезаторами, воспроизводящими звучание реальных музыкальных инструментов; акустические системы с наушниками или динамиками и др.

    Программные средства мультимедиа

      • энциклопедии;
      • интерактивные курсы обучения по всевозможным предметам;
      • игры и развлечения;
      • работа с Интернет;
      • тренажёры;
      • средства торговой рекламы;
      • электронные презентации и др.

      Средства создания мультимедийных приложений:

        • редакторы видеоизображений;
        • профессиональные графические редакторы;
        • средства для записи, создания и редактирования звуковой информации, позволяющие подготавливать звуковые файлы для включения в программы, изменять амплитуду сигнала, наложить или убрать фон, вырезать или вставить блоки данных на каком-то временном отрезке;
        • программы для манипуляции с сегментами изображений, изменения цвета, палитры;
        • программы для реализации гипертекстов и др.

        Технологии мультимедиа:

        Телевизионный приём – вывод телевизионных сигналов на монитор компьютера на фоне работы других программ.

        Анимация – воспроизведение последовательности картинок, создающее впечатление движущегося изображения.

        Звуковые эффекты – сохранение в цифровом виде звучания музыкальных инструментов, звуков природы или музыкальных фрагментов, созданных на компьютере, либо записанных и оцифрованных.

        Трёхмерная (3D) графика – графика, создаваемая с помощью изображений, имеющих не только длину и ширину, но и глубину.

        Музыка MIDI (Musical Instrument Digital Interface, цифровой интерфейс музыкальных инструментов) – стандарт, позволяющий подсоединять к компьютеру цифровые музыкальные инструменты, используемые при сочинении и записи музыки.

        Виртуальная реальность – это высокоразвитая форма компьютерного моделирования, которая позволяет пользователю погрузиться в модельный мир и непосредственно действовать в нём. Зрительные, слуховые, осязательные и моторные ощущения пользователя при этом заменяются их имитацией, генерируемой компьютером.

        Признаки устройств виртуальной реальности:

          • моделирование в реальном масштабе времени;
          • имитация окружающей обстановки с высокой степенью реализма;
          • возможность воздействовать на окружающую обстановку и иметь при этом обратную связь.

          1.2. Области применения

          Мультимедиа, как самостоятельное направление в компьютерной периферии, возникло в начале 90-х годов в Америке. Тогда стали появляться первые программные продукты на компакт-дисках. В 1990 году было издано всего 10 мультимедийных программ на CD, а сегодня их в тысячи раз больше.

          Мультимедийные системы, в зависимости от сферы применения, решают следующие задачи:

          Компьютеры неразрывно связаны с нашей жизнью, они применяются во всевозможных сферах деятельности и жизни человека, расширяют возможности, значительно упрощают работу. С их помощью люди изобретают новые технологии, добиваются прогресса в науке, познают космос и делают множество полезных, важных открытий. Точно также применение компьютерных технологий повлияло и на развитие искусства. В частности — появление электронной музыки.


          Молодой американский инженер, изобретатель и футуролог Рэймонд Курцвейл отличился новаторским подходом к конструированию. Он создал читающую машину для слепых. В основе был заложен метод, позволяющий устройству читать практически любые печатные документы. На занятиях по информатике Курцвейл столкнулся с довольно сложной задачей из области искусственного интеллекта. Он пытался понять, как запрограммировать компьютер, чтобы тот мог улавливать общность в различных версиях одного и того же объекта? Способность распознавать образы помимо остального, давала компьютеру возможность узнавать и печатные буквы, независимо от шрифта.


          Рэймонд Курцвейл

          В 1973 г. Курцвейл занялся разработкой читающей машины. Он собрал команду специалистов из Гарвардского университета, выбирая все возможные области знаний — от программирования и механики до филологии и педагогики. Сформировавшейся компании не доставало средств, молодые разработчики ютились в общежитии. Тем ни менее через полтора года публике была представлена действующая модель читающей машины. А уже через год первый коммерческий образец поступил в продажу, сразу завоевав всеобщее признание.


          Личный вариант читающей машины

          Под вдохновением музыки

          Одним из первых обладателей машины стал известный рок-музыкант и певец Стиви Уандер, который с рождения был слепым. Он так впечатлился разработкой, что самолично посетил изобретателя. Между ними завязались приятельские отношения, послужившие стартом для новых изобретений. Уандер поставил перед Курцвейлом более сложную задачу и внес ряд полезных предложений-правок по усовершенствованию читающей машины.

          В 1982 г. Уандер предложил изобрести другое устройство — электронный инструмент, который мог бы точно воспроизводить звуки фортепьяно или любого другого музыкального инструмента. Существующие электронные синтезаторы музыки казались музыканту не совершенными по красоте и сложности звучания. И несмотря на то, что Курцвейл мало интересовался музыкой, он решил попробовать сделать новаторское устройство.


          Стиви Уандер

          Курцвейл открыл новую компанию — Kurzweil Music Systems (KMS), а Стиви Уандер стал ее музыкальным консультантом. Ровно через два года компания создала первый в мире цифровой синтезатор Kurzweil250 — представляющий из себя подобие специализированного компьютера.

          Kurzweil250 хранил в памяти оцифрованные фрагменты звуков живых инструментов, а также имел клавиатуру, необычайно чувствительную к скорости нажатия на клавиши. У синтезатора был исключительно высокий синтез звука, что даже на тестовых прослушиваниях профессиональные пианисты едва различали разницу звучание между устройства и концертным роялем. Но самой удивительной была архитектура синтезатора. Фактически он выполнял простые функции перестраиваемого цифрового сигнального процессора, позволявшего исключительно тонко управлять всеми параметрами виртуального звукового тракта.


          Синтезатор Kurzweil250

          Очень быстро компания KMS стала лидером цифрового синтеза, а Kurzweil250 практически полностью вытеснила аналоговые синтезаторы. Изобретение Курцвейла стало популярным и за несколько лет объемы продаж цифровых синтезаторов выросли в пять раз. Компания разрабатывала новые модели инструментов, одновременно повышая качество и снижая цены. Конечно же конкурирующие крупные фирмы тут же активизировались, переключаясь на цифровой синтез. И тем ни менее синтезаторы Kurzweil прочно заняли лидирующие позиции в рейтингах оценок музыкантов.


          Уандер и Курцвейл за синтезатором Kurzweil

          Первый электрический музыкальный инструмент был сконструирован американским инженером Тадеушем Кэхиллом в 1897 г. Он получил название телармониум. Инструмент весил 200 тонн, а в длину достигал 19 м. Работал на основе электрических генераторов и тональных колес. Электрический сигнал звуковой частоты в нём создавался с помощью 145 специальных динамо-машин. Он передавался по телефонной сети в квартиры, отели и рестораны, где проигрывался через мегафоны, соединенные с телефонным аппаратом. Амплитудный диапазон находился в области 40-4000 Гц.


          Телармониум стоил целое состояние. Принципы, лежащие в его основе, не утратили своей силы и в течении нескольких десятилетий находили применение.

          Синтезатор RCA Mark


          Синтезатор RCA Mark I был продемонстрирован публике в 1955 г.

          RCA Mark I насчитывал 12 ламповых осцилляторов (по одному на каждую ноту октавы), и огромное количество частотных фильтров, делителей, модуляторов, резонаторов, позволявших в теории получать бесконечное число звуков. На практике он легко синтезировал неслыханные ранее неземные звуки, однако не мог сымитировать, к примеру, плавные скрипичные или тромбонные переходы от ноты к ноте.

          За RCA Mark I последовал Mark II с удвоенным числом осцилляторов, с четырёхнотной полифонией и использовавший магнитную ленту для хранения информации.


          Композиторы: Милтон Бэббитт, Питер Моузи, Владимир Усачевский на фоне синтезатора RCA Mark II (1958 г.)

          Одним из наиболее известных сочинений, созданных на RCA Mark II, стала работа Чарльза Вуоринена “Time Enconium” (за которую в 1970 г. композитор получил Пулитцеровскую премию). Mark II теоретически мог выпускаться серийно для студий электронной музыки, если бы не его габариты и цена.

          Советский синтезатор АНС

          Советский изобретатель и полковник артиллерии Евгений Александрович Усачев в 1958 г. разработал первый советский синтезатор (фотоэлектронный оптический музыкальный инструмент) АНС. Инструмент получил название в честь русского композитора Александра Николаевича Скрябина. Примечательно, что разработчик использовал технологии синтеза, абсолютно отличающиеся от американских. В АНС применялся метод фотооптического синтеза и были представлены очень интересные возможности, такие, как хранение информации на сменных носителях.


          Мурзин в процессе работы над синтезатором АНС

          Принцип действия устройства основывался на используемом в кинематографе методе оптической записи звука. При оптической записи звуковой сигнал управлял световым потоком, создающим на кинопленке засвеченную полоску переменной ширины или плотности. Для воспроизведения оптической фонограммы использовался источник света и фотоэлемент, между которыми протягивается кинопленка. Изменение яркости светового потока при прохождении через кинопленку вызывает изменение тока через фотоэлемент. Полученный электрический сигнал усиливается и воспроизводится через громкоговоритель.


          Пример записи звуков на АНС


          Синтезатор АНС находится в Музее имени Глинки, Москва

          Музыка математики

          Электронная музыка, создаваемая аналоговыми синтезаторами, постепенно внедрялась в массовую культуру. И вместе с этим проводились эксперименты с использованием цифровых компьютеров для подобных целей.

          В конце 50-х американский инженер Макс Мэтьюс занимался исследованиями искусственного синтеза голоса. Он увлекался игрой на скрипке и мог по-достоинству оценить возможность применения полученных компьютерных знаний в музыке.


          Макс Мэтьюс в процессе работы

          Мэтьюс пошел дальше и в 1969 г. создал программу MUSIC-V, которая превращала большой универсальный компьютер (типа System/360 фирмы IBM) в музыкальный инструмент. Программа в два этапа сочиняла музыкальное произведение. Сперва нужно было сделать математическое описание характеристик инструментов, которые компьютеру требовалось имитировать. После чего прописывалась партитура, соединяющая партии имитируемых инструментов. Далее вся информация переводилась в двоичные числа, представляющие частоты и амплитуды музыкальных звуков. Компьютер занимался обработкой полученных чисел, получая новые, которые составляли звуковой файл, записанный на магнитной ленте. Запись можно было модифицировать. Музыкант имел возможность послушать свое сочинение. Для этого компьютер находил нужный файл и после его считывания передавал двоичные сигналы на цифро-аналоговый преобразователь, соединенный с усилителем.

          Хоть система и отличалась мощностью, она работала довольно медленно. К примеру, чтобы синтезировать музыкальную фразу продолжительностью в 1 секунду, проводилось огромное количество вычислений. Композитору нужно было вводить все параметры его сочинения в компьютер. После чего ему приходилось ждать (порой и часами), пока магнитная запись будет готова для прослушивания.


          Лаборатория Белл

          Не все в работе Мэтьюса шло гладко, возникали трудности (медлительность работы, чистота звука и т.д.) с которыми команде разработчиков не всегда удавалось справляться. Несмотря на это, новаторские эксперименты в музыкально-компьютерной области привлекали внимание молодых композиторов. В 60-х компанию Мэтьюса стали все чаще посещать музыканты. Использование программы MUSIC-V не требовало подачи звука, генерируемого аналоговыми устройствами и перед композиторами открывались безграничные просторы для творчества. Они могли придумывать, что угодно.

          Одним из значимых достижений являлся пакет компьютерных программ для музыкального синтеза MUSIC4. Эта программа была расширенной версий предыдущих разработок, написанных Мэтьюсом для воспроизведения музыки прямым цифровым вычислением. Записи можно было услышать, преобразовав образцы в звук с помощью цифро-аналоговый конвертора (digital-to-analog converter, DAC).


          Мэтьюс в роли преподавателя Стэнфордского университета (1988 г.)

          По конструкции, пакет не был предназначен для прямой генерации музыки, в отличии от современных портативных электронных клавишных инструментов. Вместо этого, все песни или музыкальные части были закодированы и обработаны в виде цифрового файла на диске или ленте, содержащего поток образцов. До появления экономичного механизма цифровой звукозаписи в конце 80-х, образцы, как правило, отправляли в DAC и регистрировали на аналоговой ленте.

          В последствии MUSIC4 была преобразована Годфри Винхэмом и Хьюбертом Хоу в MUSIC4B, а затем в MUSIC4BF (на ее основе была разработана компьютерная программа CSound).

          FM-синтез Чоунинга


          Джон Чоунинг

          Техника частотной модуляции FM была взята композитором из области радиоприема. С помощью компьютерной реализации, она позволила простыми и дешевыми средствами синтезировать чрезвычайно сложные динамические спектры, которые поддавались контролю. Создание FM-синтеза имело большую значимость для музыкантов, открывая им новый мир варьируемых изменений и настроек звука. Синтез мог быть применен для производства высокоточных цифровых репликаций реальных инструментов.

          Электронная композиция Turenas

          В 1972 г. была создана первая электронная композиция Turenas, включающая в себя звуковую иллюзию. Впервые применялась расширенная техника FM-синтеза, вместе с перемещением звука в пространстве вокруг слушателя (на 360 градусов).

          FM-синтез использовался во многих электронных музыкальных инструментах. В 1974 г. японская фирма аналоговых электронных синтезаторов Yamaha высоко оценила возможности цифрового FM-синтеза и даже приобрела лицензию на использование разработки. В 1983 г. была выпущена первая модель синтезатора DX-7, которая применяла FM-синтез. DX-7 имел 6 тон-генераторов (операторов), соединить которые можно было с помощью 32-х способов (алгоритмов). Обладая соответствующими знаниями в области FM-синтеза непосредственно в синтезаторе была возможность создавать новые звуки. У DX-7 также была панель для подключения картриджа памяти — это позволяло расширить первоначальное количество звуков. Специалисты компании вложили не мало сил и средств, чтобы сделать синтезатор максимально высокотехнологичным.


          Синтезатор Yamaha DX7

          Yamaha продолжала выпуск синтезаторов, преобразовывая и совершенствуя модели, они становились более компактными, универсальными и дешевыми. Наделенные большей памятью и более сложным программным обеспечением, цифровые музыкальные синтезаторы становились специализированными компьютерами.

          Синтезатор Роберта Муга

          В конце 60-х американский изобретатель и предприниматель Роберт Муг разработал первый в мире коммерчески успешный клавишный синтезатор Moog. Он также прославился тем, что самостоятельно собрал терменвокс (разработка советского изобретателя Льва Сергеевича Термена).

          Муг начал разрабатывать свой синтезатор ещё в Принстон-центре Колумбийского университета. Совместно с композитором Гербертом Дойчем он создал электронный генератор, управляемый напряжением, а также генератор ADSR-огибающей и другие модули. После этого были добавлены дополнительные цепи и синтезатор был готов к производству.


          Роберт Муг на фоне синтезатора

          В 1964 г. состоялся съезд инженеров и учёных, работающих с профессиональной музыкальной аппаратурой, где и был представлен модульный управляемый напряжением клавишный синтезатор Moog. В 1969 г. Муг получил патент на изобретённый им фильтр нижних частот.

          Инструмент не пользовался слишком большим спросом. Дело все в том, что мало кто имел представление о том, как работает большая часть модулей синтезатора. И потому первыми покупателями стали композиторы-эксперементаторы, а также университеты, имеющие технические возможности разобраться в работе синтезатора. Да и стоил синтезатор Moog довольно таки дорого (от $30 000).


          Вэнди Карлос

          Захват движений в хореографии

          В 80-х совместные усилия хореографов и специалистов по вычислительной технике помогли разработать систему, фиксирующую основные шаги и движения в танце. Кинесиолог и биомедицинский техник Том Калверт был одним из первых, кто начал проводить эксперименты, соединяя компьютерную графику с системой хореографической нотации. Он закреплял на себе резисторы, чтобы считать и оцифровать собственные движения.


          Движения на экране компьютера

          Калверт продолжил работу над усовершенствованием системы. Он хотел добиться того, чтобы для управления движениями можно было обойтись без клавиатуры. Для этого им применялись гониометры, которые прикреплялись к суставам танцора. Приборы посылали электрические сигналы компьютеру через аналого-цифровой преобразователь, заставляющий фигуру на экране повторять позы танцора.

          По сути разработанная Калвертом система очень походила на современную motion capture (захват движения), технологии которой широко применяется в игровой индустрии, анимации и для создания спецэффектов.

          Читайте также: