Композиты в стоматологии реферат

Обновлено: 30.06.2024

Стоматологические композиты сегодня являются основным классом реставрационного (пломбировочного) материала. Преимуществами композитов перед многими другими пломбировочными материалами являются высокая прочность, которая позволяет их использовать в любых клинических ситуациях (как на фронтальных, так и на жевательных зубах); высокие и гибкие эстетические характеристики, которые позволяют манипулировать цветом реставраций и их блеском в широком диапазоне значений; высокая технологичность при выполнении реставраций; минимальная полимеризационная усадка.

Однако композиты, даже с максимальным содержанием неорганического наполнителя, все же имеют некоторую усадку при отверждении, достаточно высокий коэффициент теплового расширения и меньшую, чем у зубных тканей, жесткость. Указанные недостатки композитов способствуют возникновению краевых щелей между пломбой и зубной поверхностью, просачиванию через эти щели жидкостей полости рта и, как следствие, разгерметизации полости. Это приводит либо к выпадению пломбы (нарушению реставрации), либо к развитию вторичного кариеса. Недостатки композитов устраняются применением адгезивов (адгезивных систем обеспечивают “склеивание” композита с зубной тканью) или других приемов. Поэтому полимеризационная усадка стоматологических композитов в настоящее время не является проблемой в восстановительной стоматологии.

По определению композитным материалом называется смесь нескольких разнородных компонентов. В случае стоматологических композитов – это смесь наполнителя (как правило, неорганического) и органической матрицы, причем содержание наполнителя весьма значительно (не менее 30% по объему; при меньшем содержании наполнителя материал обычно относят к “малонаполненному полимеру”).

Дополнительными компонентами органической матрицы (в исходном состоянии) являются полимерный ингибитор (для увеличения времени отверждения и сроков хранения материала), катализатор (в случае композитов химического отверждения; отдельный компонент в виде пасты или жидкости), фотоинициатор (в случае композитов светового отверждения),ускоритель полимеризации (в композитах химического отверждения), светопоглотитель ультрафиолетового диапазона (для улучшения светостабильности) и красители.

Типичными наполнителями стоматологических композитов являются аморфный кремнезем, кварц, бариевое стекло, стронциевое стекло, силикат циркония, силикат титана, оксиды и соли других тяжелых металлов, полимерные частицы. Современные технологии производства и введения наполнителей включают: улучшенные технологии размола для получения более мелких частиц; технологии получения химически осажденных частиц наполнителей (т.н. золь-гель процесс; позволяет получать гибриды наполнителей); упрочение композитов волокнами (армирование; но это приводит к снижению прозрачности композита); введение пористых (химически осажденных) наполнителей и трехмерных структур (для снижения напряжения усадки); введение наполнителей с антикариозными свойствами (в первую очередь – выделяющих фтор; однако ограничением является малая проницаемость органической матрицы композита); технологии модификации поверхности частиц наполнителей для возможности сополимеризации с органической матрицей (например, алкоксисиланами); нанотехнологии.

Размер и количество наполнителя являются основой наиболее распространенной классификации стоматологических композитов. По размеру частиц наполнителя выделяют композиты: макронаполненные, макрофилы (10-100 мкм); мидинаполненные (1-10 мкм); мининаполненные (0,1-1 мкм) микронаполненные, микрофилы (0,01-0,1 мкм);гибридные (содержат макро- и микрочастицы); гетерогенные (обычные или гибридные композиты с добавками частиц полимерного материала размером 1-20 мкм).

По содержанию частиц наполнителя (степень наполнения стоматологического композита) выделяют сильнонаполненные композиты (более 60% по объему), средненаполненные композиты (40-60% по объему) и слабонаполненнные композиты (30-40% по объему). От размера частиц наполнителя зависят полируемость, устойчивость к истиранию и цветостабильность стоматологического композита. От степени наполнения зависят прочность, степень теплового расширения и полимеризационной усадки.

В последнее время среди стоматологических композитов выделили так называемые нанокомпозиты, которые условно можно рассматривать как гибридные микрофильные (микрогибридные) материалы. В нанокомпозитах в качестве наполнителя используют частицы “наноразмера” (наномеры), которые имеют размер до 0,1 мкм (100 нм). Наномеры имеют тенденцию к агрегации с образованием нанокластеров, поэтому реально нанокомпозит в качестве наполнителя содержит смесь наномеров и нанокластеров. Нанокластеры ведут себя как отдельные частицы, и современные технологии позволяют управлять их размерами и формой. В результате объединения в одном материале наномеров и нанокластеров материал имеет высокую наполненность (более 75%), что обеспечивает высокую прочность. В обычных гибридных стоматологических композитах в процессе истирания прочные частицы наполнителя покидают поверхность и оставляют за собой “кратеры”, что снижает блеск реставрации или пломбы. В случае истирания нанокомпозитов происходит удаление нанокластеров не целиком, а их более мелких составляющих, что позволяет нанокомпозиту обладать более стойким блеском и хорошей полируемостью. Нанокомпозиты последних поколений (например, Эстет-Икс) содержат три фазы наполнителя: наночастицы, фазу мидичастиц и фазу миничастиц. Соотношение трех фаз строго дозировано. Для таких нанокомпозитов предложено название “микроматричные”.

Основой органической матрицы стоматологических композитов (до стадии их отверждения) являются мономеры, молекулы которых содержат фрагменты эпоксидной смолы и две метакрилатные группы. Известно, что метакриловая кислота и ее производные легко вступают в реакции полимеризации (например, с образованием полиметилметакрилата, который обычно называют “оргстеклом”), причем реакция идет по свободно-радикальному механизму. Первый мономер такого типа был запатентован еще в 1959 году (мономер GMA) и с тех пор GMA и его производные входят в состав практически всех современных стоматологических композитов и адгезивов. Причиной доминирования мономеров этого типа является относительно низкая полимеризационная усадка (около 6% в чистом виде), быстрое отверждение, низкая летучесть, хорошие механические характеристики конечного полимера.

Инициаторами полимеризации служат вещества, генерирующие свободные радикалы при световом облучении или химическим путем. Поэтому по способу полимеризации (отверждения) стоматологические композиты разделяют на композиты светового (светокомпозиты, фотокомпозиты, гелеокомпозиты) и химического отверждения (самоотверждаемые).

Химически отверждаемые стоматологические композиты представляют собой системы типа “паста-паста” или “порошок-жидкость”. Реакцией, инициирующей полимеризацию (отверждение), служит взаимодействие (после смешивания исходных компонентов) амина и перекиси бензоила с образованием свободных радикалов. Скорость полимеризации зависит от количества инициаторов, температуры и присутствия ингибиторов. Основное преимущество таких стоматологических композитов – равномерное отверждение, независимо от глубины полости и размеров пломбы.

Стоматологические композиты светового отверждения представляют собой однокомпонентную исходную форму (пасту или жидкотекучий материал). В качестве инициатора полимеризации (отверждения) используется светопоглощающее вещество (фотоинициатор; наиболее традиционный – камфорохинин, максимум спектра поглощения – 475 нм), которое при поглощении света с длиной волны 400-500 нм (синий свет) образует свободные радикалы. Светокомпозиты не требуют смешивания (поэтому более однородны), позволяют до светового отверждения провести моделирование реставрации (пломбы), а отсутствие химически активных добавок (отсутствие аминов) придает им цветоустойчивость и эстетичность. Однако следует учитывать, что степень и глубина полимеризации может быть неоднородна и зависит, в первую очередь, от прозрачности и цвета композита, мощности источника света. Обычно производят послойное нанесение и отверждение стоматологического композита, что позволяет уменьшить усадку и напряжения в матрице и более точно подобрать цвет реставрации (пломбы).

Источником света при отверждении стоматологических композитов, как правило, служат обычные галогенные лампы (галогенные фотополимеризаторы). Их недостатки – малая “полезная” составляющая излучения (менее 2%), необходимость использования интерференционного фильтра, отсекающего паразитное тепловое излучение, и вентилятора (для отвода тепла). В последнее время в качестве источников света все чаще используют излучающие светодиоды, спектр излучения которых практически совпадает со спектром поглощения камфорохинона, и которые лишены всех недостатков галогенных ламп.

Отдельная группа стоматологических композитов при помощи которых осуществляется пломбирование зубов — это реставрационные (пломбировочные) материалы “гибридного” типа – компомеры.

Компомеры – светоотверждаемые реставрационные (пломбировочные) материалы, объединяющие основные преимущества композитов (простота применения, прочность, эстетические свойства) и стеклоиономерных цементов (химическая адгезия к тканям зуба, хорошая биосовместимость, выделение фтора). Термин “компомер” происходит от сочетания слов КОМПОзит и стеклоионоМЕР. Исходная (до полимеризации) органическая матрица компомеров представляет собой мономер (кислотный метакрилат), молекула которого содержит метакрилатные (как у композита) и кислотные (как у стеклоиономерного цемента) группы. Наполнителями компомеров служат частицы фторалюмосиликатного стекла. Кислотные метакрилаты могут одновременно отверждаться по свободно-радикальному механизму (как в случае полимеризации композитов светового отверждения), так и по механизму ионного обмена (как в случае стеклоиономерных цементов). Отверждение компомеров происходит только за счет светоиндуцированной полимеризации. Отверждение по типу стеклоиономерных цементов (требующее присутствия воды для диссоциации кислотных групп) происходит только на участках материала, контактирующих с водой.

Компомеры отличаются от классических гибридных стеклоиономерных цементов, модифицированных (усиленных) композитами. В последних ионообменная реакция, инициирующая отвердение материала, является доминирующей частью всего процесса отверждения. В отличие от них компомеры – это материалы, которые содержат основные компоненты стеклоиономерных цементов в количестве, недостаточном для поддержания ионо-обменной реакции в обычных (безводных) условиях. Несмотря на то, что компомеры были разработаны с целью объединения лучших свойств свотокомпозитов и стеклоиономерных цементов, их поведение более похоже на поведение стоматологических композитов.

Отвлекаясь от основных физических и химических характеристик материалов, весь спектр современных стоматологических композитов, по особенностям их применения, можно разделить на 5 основных групп.

    1. Универсальные композиты с одноцветной концепцией восстановления цвета. К этой группе относятся практически все композиты химического отверждения и некоторые светоотверждаемые композиты.

    Харизма ППФ (Charisma PPF). Композитный материал химического отверждения. Используют для пломбирования, восстановления коронковой части зуба, фиксации подвижных зубов.

    Церам Икс (Ceram X). Светоотверждаемый нанокомпозит для небольших реставраций (пломбирования) жевательных зубов. Материал был оптимизирован для высокоэстетических реставраций с минимальным количеством расцветок.

      1. Универсальные композиты с двухслойной концепцией воспроизведения цвета. Такие композиты (реставрационные системы) имеют в своем ассортименте один или несколько дентинов, обеспечивающих создание внутренней структуры зуба, и набор эмалевых оттенков (включая прозрачный режущий край), обеспечивающий преломление света на поверхности зуба. Эти материалы позволяют достичь довольно высоких результатов при реставрации фронтальных и жевательных зубов, но все же несколько ограничивают творческие возможности стоматолога в воспроизведении цвета.

      Филтек Z 250 (Filtek Z 250). Эстетический светоотверждаемый микрогибридный композит. Содержит повышенное количество частиц меньшего размера. Используется для пломбирования полостей всех типов во фронтальных и жевательных зубах, выполнения виниров, реставрации коронковой части зуба, шинирования. Имеет 15 различных оттенков.

        1. Реставрационные материалы с трехслойной концепцией воспроизведения цвета. Реставрационные (пломбировочные) материалы этой группы являются “художественными” системами. В ассортименте оттенков присутствует широкий спектр опановых (непрозрачных) оттенков дентина, основные оттенки тела зуба и набор прозрачных эмалей.

        Эстет-Икс (Estet-X). Светоотверждаемый микроматричный композитный материал. Наполнитель представлен в виде трех фаз (до 2,5 мкм, 0,4-0,8 мкм и наночастицы 0,01-0,02 мкм), соотношение которых строго дозировано. Имеет чрезвычайно высокие эстетические возможности. Используют врачи-стоматологи, ориентирующиеся прежде всего на достижение высокого эстетического результата. При той же прочности и цветостабильности, что и, например, Спектрум ТРН, стирается в 3 раза меньше, не требует обновления блеска и имеет в 2 раза меньшую усадку (что оправдывает высокую стоимость этого материала).

        Филтек Суприм (Filtek Supreme). Светотверждаемый нанокомпозитный материал. Наполнитель (силикат циркония) представлен в виде наночастиц (размером 0,02-0,75 мкм) и нанокластеров. Технология позволяет управлять размерами нанокластеров (создавать заданной величины) и этим способом влиять на прочность, полируемость и полимеризационную усадку материала. Универсальный реставрационный (пломбировочный) материал, сочетающий механические свойства микрогибридов и эстетику микрофилов.

        Выбор врача-стоматолога в пользу конкретного материала из этих трех групп связан с совокупностью нескольких факторов (цена материала, стоимость работы, время работы с пациентом и квалификация врача, конечный эстетический результат). Для относительно простой реставрации (пломбирования) преимущественно используют стоматологические композиты 1-й и 2-й групп. Если врач-стоматолог не сильно ограничен во времени, а его пациент менее ограничен в средствах, он может использовать материалы 3-й группы, предоставляющие ему более широкие возможности.

          1. Стоматологические композитные материалы для реставрации (пломбирования) жевательной группы зубов. Основные требования – высокая устойчивость к истиранию и к деформации под жевательной нагрузкой.

          КвиксФил (Quixfil). Светоотверждаемый композитный материал, предназначенный специально для реставрации (пломбирования) жевательных зубов. Имеет высокую (на 30% большую, чем большинство других композитов) наполненность, благодаря чему обладает повышенной твердостью и низкой полимеризационной усадкой. Наполнитель (стекло) представлен в виде двух фракций: 1 и 10 мкм. Специально разработанная органическая матрица (мономер) обеспечивает большую глубину полимеризации (толщина полимеризуемого слоя – до 2,5 мм). Высокий уровень прозрачности материала делает реставрации (пломбы) слегка отличными от естественной эмали, что позволяет без труда определить локализацию материала при сложном восстановлении боковых зубов. Имеет один универсальный оттенок.

          1. Жидкотекучие композитные материалы. Используют при пломбировании небольших полостей, фиссур, пришеечных дефектов в технике минимального вмешательства. Для небольших полостей усадка и последующая краевая проницаемость не так важны, как для полостей большого размера, поэтому жидкотекучие материалы являются оптимальными для адаптации реставрационного материала в полости. Все жидкотекучие композиты относятся к средне- и слабонаполненным (содержание наполнителя менее 47%). Жидкотекучие композиты обладают свойством тиксотропности (текучие под действием нагрузки инструмента и вязкие после снятия нагрузки), поэтому до полимеризации не вытекают за границы полости даже на зубах верхней челюсти. Другое важное свойство жидкотекучих композитов – низкий модуль эластичности. Это позволяет им компенсировать напряжение, возникающее под действием жевательной нагрузки на границе “пломба-зуб” (что особенно важно при реставрации пришеечных дефектов).

          Икс-флоу (X-flow). Универсальный текучий светоотверждаемый композит. Адаптируется к стенкам полости без применения ручных инструментов. Наполнитель (38% по объему, частицы размером 1,6 мкм) представлен специальным стеклом, высокодисперсным диоксидом кремния, диоксидом титана. Используют при пломбировании небольших полостей передних и боковых зубов (без жевательной нагрузки), герметизации фиссур, реставрации неглубоких пришеечных дефектов. Может быть использован для фиксации ортопедических конструкций (например, непрямых виниров), при условии доступа света к границе зуб/реставрация. Имеет ряд оттенков.

          Филтек Флоу (Filtek Flow). Жидкотекучий светоотверждаемый композит. Содержание наполнителя – 47% по объему, диметр частиц – 1,4-1,6 мкм. Имеет высокую износоустойчивость, совместим с другими композитами. Имеет ряд оттенков.

          Дайрект Сил (Dyract Seal). Светоотверждаемый компомерный материал (герметик), разработанный специально для пломбирования (запечатывания) фиссур. Благодаря хорошей текучести и идеальной смачивающей способности глубоко проникает в углубления и фиссуры, обеспечивает качественное краевое прилегание. Устойчив к истиранию. Будучи компомером, длительное время выделяет активный фтор, что обеспечивает дополнительную защиту зубных тканей.

          Современные композиционные пломбировочные материалы. Классификация композитов по природе и размеру частиц наполнителя. Композиционные материалы химического и светового отверждения. Определение термина "компомер". Требования, предъявляемые к материалам.

          Рубрика Медицина
          Вид реферат
          Язык русский
          Дата добавления 14.01.2016
          Размер файла 616,4 K

          Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

          Министерство здравоохранения Российской Федерации

          Государственное образовательное учреждение высшего профессионального образования

          Комолых Алексей Владимирович

          1. Современные композиционные пломбировочные материалы

          2. Классификация композитов

          2.1 Общая классификация

          2.2 Классификация по природе и размеру частиц наполнителя

          3. Свойства композиционных материалов

          3.1 Композиционные материалы химического отверждения

          3.2 Композиционные материалы светового отверждения

          3.3 Макронапоненные композиты

          3.4 Микронаполненные композиты

          5. Основные требования, предъявляемые к композитным материалам

          5.2 Низкая величина усадки при полимеризации

          5.3 Хорошее краевое прилегание

          Восстановление зубов пломбировочными материалами имеет многовековую историю. Бурное развитие химической науки на рубеже 19-20 веков предоставило стоматологам широкий спектр новых материалов, расширяющих возможности применения металлических амальгам и силико-фосфатных цементов. Промышленное производство каучуков, эпоксидных, полиэфирных и других видов смол подтолкнуло развитие стоматологической практики.

          Современный прогресс в технике восстановления зубных и других твердых живых тканей (костных, кератиновых) связан с появлением полимеризуемых, особенно (мет)акриловых, мономеров .

          Первые полимеризуемые мономер-полимерные составы на основе метилметакрилата и полиметилметакрилата получили применение для пломбирования и протезирования зубов практически сразу после пуска их промышленного производства компанией ICI почти 70 лет назад. Весь последующий период до настоящего времени метакриловые смолы являются лидирующими синтетическими полимеризующимися материалами для восстановления и протезирования твердых живых тканей. Преимущество метакрилатов перед другими типами полимеризуемых смол заключается не столько в их прочностных характеристиках, сколько в большей устойчивости к агрессивным средам, биосовместимости, адгезии, простоте и технологичности применения. Метакрилаты легко полимеризуются при инициировании известными химическими, термическими и радиационными методами.

          Попытки устранения известных недостатков метакрилатов (существенная полимеризационная усадка, недостаточная биосовместимость) привели к разработке ряда новых мономеров и материалов. Однако ни один из них не достиг положительного баланса свойств сопоставимого с метакрилатами.

          Современная практика восстановления и протезирования зубов основана на адгезионной технике, базирующейся на полифункциональных метакриловых смолах.

          1. Современные композиционные пломбировочные материалы

          Стоматологические композиты сегодня являются основным классом реставрационного (пломбировочного) материала. Позволяют проводить эстетическое восстановление зубов, пораженных кариесом, в том числе проводить реставрацию передних зубов, менять их цвет и форму Преимуществами композитов перед многими другими пломбировочными материалами являются: высокая прочность, которая позволяет их использовать в любых клинических ситуациях (как на фронтальных, так и на жевательных зубах); высокие и гибкие эстетические характеристики, которые позволяют манипулировать цветом реставраций и их блеском в широком диапазоне значений; высокая технологичность при выполнении реставраций; минимальная полимеризационная усадка.

          Однако композиты, даже с максимальным содержанием неорганического наполнителя, все же имеют некоторую усадку при отверждении, достаточно высокий коэффициент теплового расширения и меньшую, чем у зубных тканей, жесткость. Указанные недостатки композитов способствуют возникновению краевых щелей между пломбой и зубной поверхностью, просачиванию через эти щели жидкостей полости рта и, как следствие, разгерметизации полости. Это приводит либо к выпадению пломбы (нарушению реставрации), либо к развитию вторичного кариеса. Недостатки композитов устраняются применением адгезивов (адгезивных систем; обеспечивают"склеивание" композита с зубной тканью) или других приемов. Поэтому полимеризационная усадка стоматологических композитов в настоящее время не является проблемой в восстановительной стоматологии.

          Композиты - полимерные пломбировочные материалы, состоящие из трех компонентов:

          органической матрицы (акриловые и эпоксидные смолы),

          неорганического наполнителя - не менее 50% по массе

          поверхностно активного вещества - силана.

          2. Классификация композитов

          2.1 Общая классификация

          Композитные пломбировочные материалы классифицируют:

          1)По размеру частиц наполнителя .

          мининаполненные (размер частиц - 1-5 мкм);

          микронаполненные (размер частиц - 0,04-0,4мкм);

          микрогибридные (смесь частиц различного размера: 0,04-0,1 и до 1-5 мкм);

          наногибридные (смесь частиц размером от 0,004 до 3 мкм).

          По составу частиц:

          однородные (макрофильные, микрофильные);

          неоднородные (микрофильные, гибридные, микрогибридные).

          По степени наполнения неорганическим наполнителем:

          сильнонаполненные (более 70% по весу);

          средненаполненные (66-75% по весу);

          слабонаполненные (66% и меньше)

          По способу отверждения:

          двойного отверждения (химического и светового).

          для пломбирования жевательной группы зубов;

          для пломбирования фронтальной группы зубов;

          2.2 Классификация по природе и размеру частиц наполнителя

          Традиционные композиты содержат стеклянный наполнитель со средним размером частиц 10-20 мкм и максимальным размером 40 мкм. У этих композитов есть один недостаток, заключающийся в том, что состояние отполированной поверхности оказывается неудовлетворительным, она имеет тусклый вид из-за того, что частицы наполнителя выдаются над поверхностью, поскольку вокруг них полимер убывает при полировании и износе (Рис.1).

          Рис 1. Частицы наполнителя выступают над поверхностью из-за преимущественного удаления полимерной матрицы.

          Первые микронаполненные полимеры были выпущены в конце 70х годов. Они содержали коллоидный оксид кремния со средним размером частиц 0,02 мкм и с колебаниями размера от 0,01 до 0,05 мкм. Этот очень маленький размер частиц наполнителя означает, что композит может быть отполирован до очень гладкого состояния поверхности, и что очень большая площадь поверхности наполнителя контактирует с полимером. Эта большая площадь поверхности (по сравнению с обычно использовавшимся в композитах наполнителем) означает, что очень трудно получить высокое содержание наполнителя в композите, так как требуется большое количество полимера для смачивания суммарной поверхности частиц этого наполнителя. Если этот микронаполнитель добавить к полимеру в таком количестве, чтобы была сохранена приемлемая текучая консистенция, тогда максимальное его количество, которое удастся ввести, может быть порядка 20 об.%.

          Гибридные композиты содержат крупные частицы наполнителя со средним размером 15-20 мкм, а так же небольшое количество коллоидного оксида кремния с размером частиц 0,01-0,05 мкм (Рис. 2.). Следует отметить, что практически все композиты сегодня содержат небольшое количество коллоидного оксида кремния, но их свойства в очень значительной степени определяются основным наполнителем с более крупным размером частиц.

          Рис 2. Структура гибридного композита, состоящего из больших частиц наполнителя в полимерной матрице, содержащей коллоидный оксид кремния

          Гибридные композиты с малым размером частиц. Улучшенные методы позволили измельчать стекло до частиц размером, значительно меньшим, чем это было возможно ранее. Это привело к внедрению композитов со средним размером частиц наполнителя меньше 1 мкм и типичным распределением размеров в диапазоне 0,16,0 мкм, которые сочетают с микронаполнителем -- коллоидным оксидом кремния (Рис. 2.2.23). Меньшие размеры частиц наполнителя позволяют этим композитам лучше полироваться до гладкой блестящей поверхности, чем тем, которые содержат более крупные частицы. Полирование этих композитов дает хорошие результаты, блестящую отполированную поверхность, потому что любая неровность поверхности, возникшая изза присутствия частиц наполнителя, будет меньше длины волны .

          Рис. 3. Композит с наполнителем из небольших по размеру частиц .

          В основном на рынке представлены микронаполненные и гибридные композиты, причем последние являются более универсальными материалами. Доктор Christensen, кроме этих основных типов композитов, классифицирует восстановительные материалы на герметики, текучие смолы, пакуемые (конденсируемые или уплотняемые) и микронаполненные поверхностные герметики.

          Из вышесказанного можно сделать вывод, что четкой универсальной классификации стоматологических композитов до сих пор не существует. Большинство исследователей применяют классификацию по типу и размеру наполнителя. Между тем на характеристики композитов оказывают влияние и тип модификатора наполнителя, образующего химическую связь между полимерной матрицей и поверхностью наполнителя, и форма частиц наполнителя, и природа наполнителя (органический или неорганический), а также ряд других факторов, которые необходимо учитывать при применении и классификации композитов. Модернизация стоматологических композитов идет и по пути поиска новых составов полимерных матриц.

          композит пломбировочный наполнитель отверждение

          3. Свойства композиционных материалов

          3.1 Композиционные материалы химического отверждения

          1. равномерность полимеризации

          1. требуют смешивания компонентов, вследствие этого возможна пористость материала;

          2. простота применения

          2. сложны в приготовлении и в работе - сложно рассчитать количество материала, необходимое на реставрацию, меняют вязкость в процессе работы;

          3. высокая скорость изготовления реставрации;

          4. экономичность (низкая стоимость).

          4. низкая износостойкость;

          5. невысокие эстетические качества.

          3.2 Композиционные материалы светового отверждения

          1. высокая степень готовности к использованию, не требуют замешивания;

          1. увеличение времени реставрации;

          2. хорошие рабочие характеристики:

          * не меняют вязкости в процессе работы;

          * возможность послойного внесения пломбировочного материала и моделирования пломбы длительное время;

          3. более прочные и эстетичные по сравнению с композитами химического отверждения;

          3. высокая стоимость пломбировочного материала и фотополимеризационных устройств.

          4. высокая цветостабильность (на характеристику влияет качество полирования)

          3.3 Макронапоненные композиты

          1. достаточная механическая прочность;

          1. плохая цветостойкость;

          2. высокая шероховатость поверхности из-за плохой полируемости и возможность быстрого накопления зубного налета;

          3. удовлетворительные эстетические свойства.

          3. невысокая абразивная износостойкость (стирание как антагониста, так и самой пломбы).

          3.4 Микронаполненные композиты

          1. хорошая полируемость;

          1. недостаточная механическая прочность;

          2. хорошие эстетические свойства;

          2. высокий коэффициент термического расширения;

          3. абразивная износостойкость;

          3. сорбция влаги.

          4. Компомеры

          Рисунок 4. Циклоалифатические и гетероциклические СООН-содержащие диметакрилаты для компомеров.

          Рисунок 5. Синтез поли(акриловой кислоты), модифицированной глицидилметакрилатом.

          Кислотные метакрилаты в компомерах могут одновременно свободно-радикально полимеризоваться по двойным связям и вступать в кислотно-основное взаимодействие с катионами, выделяемыми из частиц стеклонаполнителя в присутствии воды. В отсутствие воды ионного обмена не происходит. Поэтому отверждение компомеров происходит за счет свето-инициируемой полимеризации. Ограниченная кислотно-основная реакция происходит на поверхности, контактирующей с водой.

          Все компомеры демонстрируют уменьшение прочности на сжатие и изгиб, вызываемое водо-инициируемым разложением на границе раздела матрица - наполнитель. Несмотря на то, что компомеры были разработаны с целью объединения лучших свойств композитов (высокие механические показатели, простота клинического применения, слабое влияние воды на полимер) и стекло-иономерных цементов (отсутствие полимеризационной усадки, высокая адгезия к зубной структуре, выделение фтора), их поведение более похоже на поведение композитных смол, чем на стекло-иономеры.

          5. Основные требования, предъявляемые к композитным материалам

          5.1 Универсальность

          Для того, чтобы обеспечить функциональную эффективность и эстетическое совершенство реставраций для жевательных и передних зубов, универсальные пломбировочные материалы должны обладать достаточно высоким пределом прочности на сжатие и на изгиб, а также совершенно определенным набором оптических свойств. Подавляющее большинство современных пломбировочных материалов позволяет изготовить реставрации любого оттенка цвета классической палитры Vita, а также в достаточно широких пределах варьировать такие параметры, как насыщенность цвета и прозрачность реставрации. В то же время, благодаря оптимизации состава, структуры и концентрации наполнителей, большинство композитных материалов с легкостью выдерживают повышенные функциональные нагрузки, характерные для жевательных зубов.

          5.2 Низкая величина усадки при полимеризации

          5.3 Хорошее краевое прилегание

          Композиты должны хорошо соединяться с твердыми тканями зуба и в то же время не приклеиваться к поверхности моделировочного инструмента.

          Одной из основных задач, которые необходимо решить при изготовлении композитных пломб, является оптимальная адаптация ко всем стенкам и краям препарированной полости. Успешное выполнение этой задачи позволяет гарантировать высокую плотность краевого прилегания и долговечность пломб. По своей консистенции в неотвержденном состоянии большинство композитных материалов больше всего похожи на сливочное масло. При этом оптимальная плотность краевого прилегания достигается только в том случае, если нанесение материала осуществляется в направлении от центра полости к ее краю. Кроме того, желательно, чтобы материал немного выходил за границы полости. Основная сложность заключается в том, что это должно происходить во всех направлениях и на всех участках внешнего края полости. Порционное нанесение материала значительно облегчает выполнение этих требований, однако при этом резко возрастает опасность образования пустот и воздушных пузырей, что крайне не желательно. В некоторых случаях, например, при пломбировании прямоугольных полостей, для обеспечения высокой плотности краевого прилегания пломбы к боковым стенкам полости на эти участки рекомендуется наносить жидкотекучие композитные материалы.

          Рассмотрение разработок в области стоматологических композитов можно вывести следующим образом:

          1. Композитные материалы активно используются при реставрации. Позволяют проводить эстетическое восстановление зубов, пораженных кариесом, в том числе проводить реставрацию передних зубов, менять их цвет и форму.

          Как правило, их использование невозможно без адгезивных (скрепляющих) веществ. Например, при установке композитной пломбы непременно нужно применение адгезивной системы.

          2. Компомеры , разработаны с целью объединения лучших свойств композидов , демонстрирующие уменьшение прочности на сжатие и изгиб.

          Список литературы

          1.Л.А. Дмитриева. Терапевтическая стоматология, Москва, 2003

          2.А.В. Салова, В.М. Рехачев. Энциклопедия пломбировочных материалов, С.-Петербург,2005.

          Наше общество вступило в период, который все чаще называют эрой новых технологий и новых материалов. Грандиозные достижения фундаментальной науки, небывалая интеграция науки и техники стали катализаторами изменений, происходящих в нашей жизни, и это, в большей степени, относится к конструкционным и функциональным материалам, которые и создают окружающий нас материальный мир. Медицина в отличие от других областей знаний и практики, в наибольшей степени использует все то, что создали современная наука и производство.

          Содержание

          Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
          Основная часть:
          Композиционные материалы в стоматологии. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
          Композиционные пломбировочные материалы. . . . . . . . . . . . . . . . . . . . . . . . . . 7
          Этапы пломбирования зубов композиционными материалами . . . . . . . . . . . . . 9
          Нанонаполненные композиты в стоматологии. . . . . . . . . . . . . . . . . . . . . . . . . . 13
          Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
          Список литературы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

          Прикрепленные файлы: 1 файл

          Kompozitsionnye_materialy_v_stomatologii_-_Zarga.docx

          Государственное бюджетное образовательное учреждение

          высшего профессионального образования

          Министерства здравоохранения Российской Федерации

          (ГБОУ ВПО НГМУ Минздрав России)

          Кафедра терапевтической стоматологии

          Студент – группы №9

          Ковалёв Андрей Дмитриевич

          Егжова Марина Сергеевна

          Композиционные материалы в стоматологии. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

          Композиционные пломбировочные материалы. . . . . . . . . . . . . . . . . . . . . . . . . . 7

          Этапы пломбирования зубов композиционными материалами . . . . . . . . . . . . . 9

          Нанонаполненные композиты в стоматологии. . . . . . . . . . . . . . . . . . . . . . . . . . 13

          Список литературы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

          Наше общество вступило в период, который все чаще называют эрой новых технологий и новых материалов. Грандиозные достижения фундаментальной науки, небывалая интеграция науки и техники стали катализаторами изменений, происходящих в нашей жизни, и это, в большей степени, относится к конструкционным и функциональным материалам, которые и создают окружающий нас материальный мир. Медицина в отличие от других областей знаний и практики, в наибольшей степени использует все то, что создали современная наука и производство. С другой стороны, именно медицина, как никто другой, в решении проблем сохранения жизни и здоровья людей, постоянно ставит задачи перед различными отраслями науки и техники. Особенно это касается средств воздействия на отдельные органы человека, временного или длительного замещения их функций Основополагающей, в этом случае, является задача применения существующих и создания современных материалов для разработки новых технологий и производства более качественных изделий медицинской техники. Чем больше медицина проникает вглубь человеческого организма, познает его законы на клеточном и генетическом уровнях, тем больше возникает потребность в использовании существующих и создании новых материалов, совместимых с отдельными органами человека, не оказывающих вредного влияния на его здоровье. В современной медицине используются изделия из материалов, создаваемых в металлургии, химической, нефтяной и газовой промышленности, с применением биохимических, биофизических и генно-инженерных методов. Это металлы и сплавы, пластмассы и полимеры, жидкие кристаллы, композиционные и другие материалы. Для повышения качества, надежности и экономичности изделий медицинской техники при снижении их материалоемкости разрабатываются высокоэффективные методы повышения прочностных свойств, коррозийной стойкости, тепло- и хладостойкости сплавов; расширяется производство новых полимерных и композиционных материалов с заданным комплексом свойств; используются эффективные методы обработки материалов и изделий с целью существенного улучшения их свойств.

          Поверхностные слои во многом определяют работоспособность деталей машин, поэтому износостойкость и коррозийная стойкость деталей полностью зависят от состояния их поверхности. Применением износостойких покрытий стремятся решить проблему экономии вольфрама в инструментальных сталях, а также повысить работоспособность деталей из конструкционных сталей.

          Задача создания высокожаростойких и жаропрочных сплавов для новой техники неразрывно связана с разработкой надежных защитных покрытий. Поверхностное легирование приводит к экономии дефицитных металлов, так как в этом случае их требуется меньше, чем при объемном легировании сплавов, с целью получения указанных специ-фических свойств.

          Перед инженером, работающим в сфере производства, эксплуатации и технического обслуживания медицинской техники, часто встает проблема выбора необходимых материалов, решение которой, в первую очередь, определяется информированностью специалиста о материалах, применяемых в медицине, их свойствах (физических, химических, биофизических и биохимических) , их совместимости с тканями органов человека и характере воздействия на них.

          По мере развития общества, в медицине стали применяться материалы, создаваемые в процессе деятельности различных отраслей промышленности. В дальнейшем медицина становится заказчиком производства в соответствующих отраслях производства, занимающихся созданием материалов для медицины и медицинской промышленности. От металлов к различным видам неорганических, органических и композиционных материалов - такова история их применения в медицине.

          Композиты: разновидности по составу, внешнему виду и свойствам

          Композиты – это материалы, которые воплощают в себя преимущества органических и неорганических компонентов. Начиная с 1960 г., они используются для прямого восстановления твердых тканей зуба. По внешнему виду они практически не отличаются от естественных тканей зубов, помещаются в препарированную область и обладают относительно невысокой ценой. Материалы выглядят эстетично, демонстрируют высокую устойчивость к истиранию, прочность, близкую к естественной, и просты в применении.

          Разновидности композитов

          По способу отверждения бывают:

          • химически отверждаемые (паста – паста, порошок – жидкость);
          • светоотверждаемые (фотополимеры).

          Консистенция исходного пастообразного композита зависит от количества наполнителя и дисперсности. Есть пасты высокой вязкости (пакуемые и плотные), а также низкой (текучие). В большинстве материалов использованы наполнители со средними частицами диаметром 0,2-3 мкм. Также встречаются частицы диаметром 0,04 мкм – микродисперсный наполнитель. Доля частиц, которые были бы еще меньше, – от нескольких % до 35 %. Недавно появились разновидности композитов с нанонаполнителем размером 1-10 нм.

          Микрогибридные и микронаполненные композиты

          Композиты: разновидности по составу, внешнему виду и свойствам

          В составе гладких и блестящих микрогибридных композитов – смесь мелко- и микродисперсных частиц (84 % наполнителя по весу). По объему концентрация наполнителя достигает 70 %, поскольку в промежутках между мелкодисперсными находятся микродисперсные частицы.

          Отличительная черта микронаполненных композитов – большая площадь поверхности микродисперсного наполнителя. Чтобы паста приобрела достаточную вязкость, хватает 30-50 % их объема. В составе могут встречаться армированные микрочастицами частицы полимера величиной 10-20 мкм, смешанные с полимерной матрицей. Мелкодисперсный наполнитель в таких композитах – кварц, алюмосиликат лития, фарфоровая мука или стекло – бариевое, цинковое, иттербиевое, обладающие часто нерентгеноконтрастными свойствами. Микродисперсный – коллоидные частицы кремнезема.

          Степень рентгеноконтрастности производитель указывает в характеристиках композита. Если материал проницаем для рентген-излучения, его желательно использовать на боковых зубах. Мелкодисперсные разновидности внешне матовые и недостаточно прозрачные, а микродисперсные – обладают оптическими свойствами, близкими к эмали.

          Современные светоотверждаемые композитные пломбировочные материалы занимают значительное место в практике как начинающего, так и опытного врача — стоматолога. На стоматологическом рынке представителей светооверждаемых композитов очень много. И здесь немало важно помнить не только о технике работы с композитом, но и форме частиц, наполненности,но и,конечно же, цели, с которой будет использоваться светоотверждаемый композит.


          Светоотверждаемый композит имеет несколько синонимов – это и гелиоотверждаемый композит, и фотоотверждаемый композит. Состав композита как бы от названия не меняется.


          Нужно запомнить то, что фотоотверждаемый композит состоит из матрицы органической и наполнителя – это основной состав. Кроме этого композит светоотверждаемый имеет инициатора отверждения, активатора отверждения, различные пигменты, добавки, стабилизаторы. Органической матрицей в составе композита является Bis-GMA, TEGDMA, UDMA. Наполнитель – это представитель неорганической матрицы, в состав которой входят оксиды кремния, бария, алюминия, стронция и тд. Между всеми этими наполнителями располагаются кремнийорганические соединения, которые относят к группе межсиланового наполнителя. Активатором отверждения для фотоотверждаемых композитов является свет, длиной волны равной 400-450 нм.


          Под действием света происходит активация камфорохинона, и начинает происходить необратимая реакция между органическим и неорганическим наполнителями композита. В принципе этот механизм лежит в основе того, почему пломбы затвердевают.


          Классификация композитов

          Классификация композитов достаточно объемна и включает в себя следующие пункты:

          • Классификация композитов по размерам частиц;
          • Классификация композитов по составу полимерной матрицы;
          • Классификация композитов по вязкости;

          А теперь остановимся на каждой группе композитов более подробно.

          Классификация композитов по размерам частиц разделяет композиты на:

          • Макронаполненные композиты;
          • Микронаполненные композиты;
          • Гибридные композиты;
          • Микрогибридные композиты;
          • Нанокомпозиты.

          Макронаполненные композиты


          Макронаполненные композитные материалы характеризуются большим размером частиц, цифры варьируют от 8 – 12 мкм, средний размер частиц макронаполненного композита около 10 мкм. Кроме больших размеров частиц макронаполненного композита, частицы эти имееют нерегулярную, неточную форму. Наполненнность макранаполненного композита близится к 60%, но не взирая на такие хорошие физические свойства, макранаполненный композит обладает низкой устойчивостью к износу. При воздействии сильных жевательных нагрузок просто – напросто из матрицы макронаполненного композита выпадают молекулы органического наполнителя, и, естественно, образуются пустоты. Вследствие потери наполнителя теряется стабильность поверхностного слоя материала. Так же к минусам макронаполненных композитов следует отнести чрезмерное влияние на твердые ткани зубов – антагонистов, это приводит к преждевременному стиранию. Недостаточные положительные характеристики отмечаются и при полировании, и цветостойкости макронаполненного композита. Из плюсов использования макронаполненных композитов можно сказать то, что это рентгеноконтрастный материал и прочный композитный материал, поэтому используется для восстановления культей зубов.

          Микронаполненные композиты

          Микронаполненные композиты дали возможность стоматологом видеть, как хорошо можно подобрать пломбу в цвет зуба, как она блестит при качественной полировке. Микранаполненные композиты имеют размер частиц равный 0,01 – 0,1 мкм, наполненность составляет 55% от общего объема. Из – за недостаточной наполненности микранаполненнных композитов, они имеют ряд негативных качеств. В первую очередь микранаполненные композитные материалы являются низкопрочными, то есть не пригодными для восстановления 1 и 2 классов по Блэку. Кроме этого микранаполненные композитные материалы нерентгеноконтрастны, не обладают гидрофобностью, имеют высокий коэффициент теплового расширения.


          Гибридные композиты

          Гибридные композитные материалы отличаются тем, что в самом материале нет частиц одинаковых рамеров. Гибридные композиты включают в свой состав частицы размером от 0, 01 мкм до 10 мкм. Наполненность гибридных материалов тоже вариабильна, составляет от 50% до 70% по объему.

          Гибридные композиты являются как бы границей между ранее описанными макро/микранаполненными композитами, где негативных характеристик больше, чем положительных, и микрогибридными композитами, которые в настоящее время не теряют своей популярности в практике врачей – стоматологов.

          Микрогибридные композиты

          Как я описывала ранее, микрогибридные композиты – одни из самых популярных видов композита в современном стоматологическом мире. И неспроста. Именно с микрогибридных композитов начался этап в использовании адгезивной техники реставрации зубов.


          Микрогибридные композиты характеризуются размерами частиц, приближающимися к сферической форме, размером около 1 мкм. Кроме таких мелких частиц в составе микрогибридного композита есть частицы, размер которых достигает 3,5 мкм.

          Микрогибридные композиты включают положительные свойства, такие как:

          • Прочность;
          • Низкое водопоглощение;
          • Устойчивость к отлому;
          • Хорошие эстетические свойства, что позволяет подобрать качественный пломбировочный материал не только по цвету, но и по прозрачности;
          • Хорошая полируемость;
          • Ретгеноконтрастность.

          Микрогибридный композит не является идеальным композитным материалом, так как данный композит обладает полимеризационной усадкой, которая может достигнуть 3,5% от объема.

          Микрогибридные пломбировочные материалы используются врачами – стоматологами достаточно широко не только в терапевтической стоматологии, но и ортопедии.

          Показаниями к использованию микрогибридных композитов могут быть:

          • Реставрация полостей 1 -5 класса по Блэку;
          • Для изготовления мостовидных протезов, если дефект не очень протяженный;
          • Формирование культи зуба;
          • Шинирование зуба;
          • Починка ортопедических конструкций из керамики либо же пластмассы;
          • Вкладки, виниры.


          Следовательно, можно сказать, что микрогибридные композиты – это универсальные композиты, которые могут использоваться в стоматологии для реставрационной терапии, однако следует помнить об усадке данного композита и о требовательной работе.

          Нанокомпозиты


          Нанокомпозиты характеризуются не только маленькими частицами ( для понимания или же сравнения с микрогибридными композитами 0, 01 мкм = 10 нм), но и хорошей наполненностью около 75% от объема. Из этого вытекают плюсы нанокомпозитов:

          • Прочный композит;
          • Низкая усадка (максимум 2,3%);
          • Хорошая эстетика композита;
          • Полировка;
          • Длительный блеск после качественной полировки;

          На нанокомпозитах заканчивается классическое представление о композитных материалах, которые могут применяться в стоматологии. Чтобы добиться идеальных как физических, так и эстетических свойств, постоянно композиты модифицировались и сочетались с другими материалами. Так на стоматологический рынок вышли ормокеры, силораны, компомеры, гиомеры.

          Ормокеры

          Ормокеры – это ОРганическая МОдифицированная КЕРАмика. Данный вид материалов состоит из частиц – бариевое стекло, фторапатит, который составляют органическую матрицу. Рамер частиц в ормокерах достигает до 1,7 мкм. Ормокеры хорошо наполнены до 70% по объему. Ормокеры обладают хорошей прочностью, в некоторых источниках литературы даже рекомендуют использовать ормокеры у пациентов с аллергией на композиты, однако подтвержденных клинических случаев нет. К положительным свойствам ормокеров, что приводит к использованию их в реставрации любых классов по Блэку, следует отнести:

          • Хорошая прочность;
          • Минимальная усадка;
          • Износостойкость;
          • Эстетика;
          • Полируемость.

          Однако по своему применению ормокеры уступают микрогибридным композитам.


          Силораны

          Силораны являются представителями веществ новой эры в стоматологии. В снове силоранов лежат вещества, используемые в химической промышленности. Однако этот материал отличается своей хорошей биосовместимостью, низкой усадкой, износостойкостью. Силораны имеют удобное рабочее время, котрое доходит до 9 минут при наличии общего освещения.


          Силораны используются для восстановления 1 – 2 класса по Блеку. Есть некоторые нюансы в работе с силоранами. Первое – это необходимость в постановке прокладки; второе – это несомвестимость с адгезивными системами компомеров и жидкотекучих композитов. Однако в работе силораны приятны: не липнут к инстурменту, хорошо пакуются и полируются.

          На данный момент времени, к сожалению, нет отдаленных клинических результатов с использованием силоранов, но перспектива у данной группы материалов неплохая!


          Компомеры

          Компомеры – это дуэт композита и стеклоиномерного цемента. Данная группа материалов объединяет свойства как композита, так и СИЦа. Механизм отверждения компомеров описывается как каскад, где сперва под действием света происходит полимеризация, а потом под действием воды активируется кислотно – основная реакция, характерная для цемента.


          Компомеры обладают следующими свойствами:

          • Эластичный пломбировочный материал;
          • Выделение фтора;
          • Нетребовательный к условиям работы: может вносится большой порцией, не требует тщательной изоляции от воды, можно пропустить этап протравливания;
          • Меньше реагирует на конкретно направленные лучи полимеризационной лампы.

          С такими свойствами компомер используется для восстановления 3, 5 классов по Блэку, реставрации на молочных зубах, герметизация фиссур.


          Гиомеры

          Гиомеры являются усовершенствованием гибридных материалов. Гиомеры, как и компомеры, включают в свой состав композит и стеклоиномерный цемент.

          Гиомеры – это материал, который обладает хорошими физическими свойствами, прост в работе, так как внесение в полость зуба возможно одной порцией.

          Уникальностью гиомеров является не только то, что они способны выделять фтор определенный промежуток времени, но и препятствовать образованию зубного налета на поверхности пломбы.

          При использовании гиомеров получаются естественные и эстетические реставрации.

          Современные Светоотверждаемые Композитные Пломбировочные Материалы обновлено: Октябрь 5, 2018 автором: Валерия Зелинская

          Читайте также: