Железо фаворит на все времена реферат материаловедение

Обновлено: 02.07.2024

2119 Слова | 9 Стр.

Железо и его сплавы

ЖЕЛЕЗА СПЛАВЫ, металлич. системы, одним из компонентов к-рых (как правило, преобладающим) служит железо. Различают сплавы железа с углеродом (нелегир. и легир. чугуны и стали), сплавы с особыми физ.-хим. св-вами и ферросплавы. Система железо - углерод. Наиб. изучена важнейшая для практики часть системы фазовых состояний Fe - C с содержанием С от 0 до 6,7% по массе (см. рис.). Рис. Диаграмма состояния системы Fe - С: штриховые линии диаграмма Fe графит; сплошные линия диаграмма Fe цементит. .

3100 Слова | 13 Стр.

Реферат на тему: Сплавы железа

 РЕФЕРАТ ТЕМА: ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ План 1 Диаграмма состояния сплавов железа с углеродом 2 Производство чугуна 3 Серые чугуны 4 Производство стали 5 Углеродистые стали 6 Легированные стали Список литературы 1 Диаграмма состояния сплавов железа с углеродом К железоуглеродистым сплавам отноеятся сплавы железа с углеродом. Для того чтобы изготовить детали, машины и механизмы качественными и обеспечить надежность и долговечность их в работе, необходимо заранее.

6140 Слова | 25 Стр.

СПЛАВ ЖЕЛЕЗА С УГЛЕРОДОМ

Тема 1.2 Сплав железа с углеродом Сплавы железа. Деление железоуглеродистых сплавов на стали и чугуны Сплавляя железо с углеродом и варьируя содержание компонентов, получают сплавы с различными структурой и свойствами. Сплавы, в которых углерода менее 0,02%, называются технически чистым железом (армко-железо). Техническое железо имеет высокую магнитную проницаемость ( m= 4500 Гс/Э). Оно является электротехническим магнитно-мягким материалом (марки Э, ЭА, ЭАА) и применяется для сердечников, полюсных.

3279 Слова | 14 Стр.

Титан и его сплавы

РЕФЕРАТ Титан и его сплавы Преподаватель: _______________ Выполнил: Красноярск 2014 Содержание Содержание 2 История открытия и происхождения названия титана 3 История открытия титана 3 Происхождение названия титана 4 Свойства титана 5 Сплавы на основе титана 6 Примеры сплавов 8 Применение титана 12 Список, используемой литературы: 15 .

2411 Слова | 10 Стр.

Железо

тему: Железо и его сплавы Выполнил: студент II-го курса группы ТЭ-09 Харлампьев Гаврил Афанасьевич Проверил: Герасимов П.А. Якутск – 2010г. Содержание Введение…………………………………………………………………………. 3 1.Железо…………………………………………………………………………..4 2.Сплавы на основе железа…………………………………………….……….5 2.1.Сталь………………………………………………………..………….5 2.2.Чугун…………………………………………………………………..12 Заключение…………………………………………………………….…………16 Список использованной литературы…………………………………..………18 Введение Железо англ. Iron.

2777 Слова | 12 Стр.

Материаловедение Алюминий и его сплавы

3445 Слова | 14 Стр.

Железо, его химические превращения и роль в организме человека

группа восьмой группы…………………………………….4 Физические свойства железа………………………………………….5 Диаграмма состояния системы железо-углерод…………………..5 Производство чугуна и стали………………………………………. 10 Термическая обработка стали………………………………………..13 Сплавы железа…………………………………………………………..16 Химические свойства. Соединение железа………………………. 19 Биологическая роль железа…………………………………………. 23 Список используемой литературы…………………………………. 26 Введение Железо — самый распространенный после алюминия металл на земном.

7859 Слова | 32 Стр.

Сплавы в современном мире

РЕФЕРАТ Сплавы в современном мире Исполнитель: учащийся группы 201 Бахтер Николай Руководитель: преподаватель химий Бирюкова С. А. Нижний Тагил 2008 год Содержание 1. Введение 3 2. Понятие сплавов 5 3. Сплавы железа с углеродом.

17139 Слова | 69 Стр.

Железо-цементит

964 Слова | 4 Стр.

Кристаллическое строение металлов и сплавов, применяемых в машиностроение

металлов и сплавов, применяемых в машиностроение. Выполнил студент гр. 320491 Н.Г Назаренко Проверил проф., д.т.н. А.С. Рыбаков Тула, 2012 г. Содержание: 1. Металлы………………………………………………………………..3 1.1 Свойства металлов………………………………………………….3 1.2 Кристаллическое строение металлов……………………………. 3 2. Сплавы…………………………………………………………………4 2.1 Строение сплавов…………………………………………………. 5 3. Железоуглеродистые сплавы…………………………………………5 .

2277 Слова | 10 Стр.

Железо

Железо - химический элемент VIII группы периодической системы Менделеева. Имеет атомный номер 25 и атомную массу 55,847, способно существовать в виде следующих кристаллических решеток: объемноцентрированной кубической и гранецентрированной кубической. Железо известно человеку с древнейших времен и сегодня применяется в самых разных отраслях промышленности. Высокая востребованность железа обуславливается как его широким распространением в природе, так и сочетанием очень ценных свойств. Этот металл.

3605 Слова | 15 Стр.

Никель и сплавы

земных глубин (в ультраосновных породах мантии его 0,2% по массе). Существует гипотеза, что земное ядро состоит из никелистого железа; в соответствии с этим среднее содержание Н. в земле в целом по оценке около 3%. В земной коре, где никеля 5,8×10-3 %, он также тяготеет к более глубокой, так называемой базальтовой оболочке. Ni в земной коре - спутник Fe и Mg, что объясняется сходством их валентности (II) и ионных радиусов; в минералы двухвалентных железа и магния никеля входит в виде изоморфной примеси.

3073 Слова | 13 Стр.

реферат металы и их сплавы

называют полублагородным металлом. Чистая медь имеет ряд ценных технических свойств. Высокая пластичность, высокая электро- и теплопроводность, малая окисляемость - всё это обусловило широкое применение меди. Кроме того медь является основой важнейших сплавов - латуней и бронз. Высокая электропроводность меди обусловливает её преимущественное применение в электротехнике как проводникового металла. После серебра медь стоит на втором месте по электропроводности. Все примеси уменьшают электропроводность меди.

8071 Слова | 33 Стр.

Сплавы

Сплавы Сплавы Реферат по химии на тему "Сплавы" Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволка имеют чистоту около 99,9%. В большинстве же других случаев люди имеют дело со сплавами. Сплавы - это системы, состоящие из двух или нескольких металлов.

1362 Слова | 6 Стр.

Сплавы

большинстве же других случаев люди имеют дело со сплавами. Сплавы - это системы, состоящие из двух или нескольких металлов, а также из металлов и неметаллов, обладающие свойствами, присущи металлическому состоянию. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Все сплавы имеют специльную маркировку, т.к. сплавы с одним названием (например, латунь) могут.

1365 Слова | 6 Стр.

Железо

Реферат: Железо Работу выполнил 2012 Йошкар- Ола Содержание 1. Общая характеристика 2. Железо и его свойства 3. Сплавы железа 4. Биологическая роль железа 5. Физиологическая роль железа 6. Дефицит железа в организме 7. Роль питания 8. Обмен железа в организме человека 9. Содержание организма в организме человека Общая характеристика Железо – один из самых важных.

4480 Слова | 18 Стр.

Цветные металлы и их сплавы

2397 Слова | 10 Стр.

Металлы и сплавы в химии и технике.

4512 Слова | 19 Стр.

Цветные металлы и сплавы

металлы и сплавы. Алюминий и его сплавы Алюминий — металл серебристо-белого циста, характеризуется низкой плотностью 2,7 г/см3, высокой электропроводностью, температура плавления 660"С. Механические свойства алюминия невысокие, поэтому в чистом виде как конструкционный материал применяется ограниченно. Для повышения физико-механических и технологических свойств алюминий легируют различными элементами (Си, Mg, Si, Zn). Железо и кремний являются постоянными примесями алюминия. Железо вызывает .

1960 Слова | 8 Стр.

Анализ диаграммы состояния сплава железо-углерод, влияние примесей на характеристики сталей, стали и чугуны

4444 Слова | 18 Стр.

Диаграмма состояния железо-цементит

3376 Слова | 14 Стр.

Диаграмма состояний двухфазной системы : cu –ba . Сплавы на основе меди

3005 Слова | 13 Стр.

Железо

Железо 26 | Fe | | | Железо Iron | | (Ar)3d64s2 | | | Атомный номер | 26 | Атомная масса | 55,845 | Плотность, кг/м³ | 7860 | Температура плавления, °С | 1536 | Температура кипения, °С | | Теплоемкость, кДж/(кг·°С) | 0,46 | Электроотрицательность | 1,8 | Ковалентный радиус, Å | 1,17 | 1-й ионизац. потенциал, эв | | | Железо (лат. Ferrum), Fe, химический элемент VIII группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий.

2410 Слова | 10 Стр.

Сплавы на основе никеля

Введение……………………………………………………………………………………………………………3 Сплавы на основе никеля………………………………………………………………………………….4 Жаропрочное литьё…………………………………………………………………………………………..9 Список используемых источников…………………………………………………………………..11 Введение Ни́кель — элемент побочной подгруппы восьмой группы, четвертого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 28. Обозначается символом Ni (лат. Niccolum). Простое вещество никель— это пластичный ковкий переходный металл.

2259 Слова | 10 Стр.

Конструкционные углеродистые стали и сплавы

3 Строение и свойства сталей и сплавов 8 4 Классификация конструкционных сталей 10 5 Углеродистые стали 12 Заключение 18 Список использованных источников 19 ВВЕДЕНИЕ Конструкторы при выборе материала для какой-либо конструкции или изделия не могут учитывать только один или два каких-либо критерия, характеризующие свойства материала, им необходимо знать его конструктивную прочность. Конструктивная.

3012 Слова | 13 Стр.

Пирофорное железо

Простое вещество Никель 1.Состав и строение молекул простого вещества в газообразном состоянии, вытекающие из строения электронной оболочки атома элемента: Метод молекулярных орбиталей (МО) наиболее нагляден в его графической модели линейной комбинации атомных орбиталей ,но мы не можем рассматривать этот метод, т.к. простое вещество образует только ионную связь. Никель не молекулярного строения, поэтому мы не можем рассматривать валентные схемы. Аллотропия-возможность существования химических.

1456 Слова | 6 Стр.

Медно-никилевые сплавы

Введение Медно-никелевые сплавысплавы на основе меди, содержащие никель в качестве главного легирующего элемента. Никель образует с медью непрерывный ряд твёрдых растворов. При добавлении никеля к меди возрастают её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, сильно повышается стойкость против коррозии. Медно-никелевые сплавы хорошо обрабатываются давлением в горячем и холодном состоянии — из них получают листы, ленты, проволоку, прутки, трубы.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Материаловедение: металлы и сплавы

Самостоятельная работа №1

2. Самостоятельная работа № 2

«Диаграмма состояния “железо-цементит”

3. Самостоятельная работа №3

4. Самостоятельная работа № 4

5. Самостоятельная работа № 5

Самостоятельная работа 1

Вариант задания № 9

Объясните, к какой деформации (холодной или горячей), следует отнести прокатку низкоуглеродистой стали, свинца и вольфрама при комнатной температуре.

Горячая деформация производится при температуре выше температуры рекристаллизации для получения полностью рекристаллизованной структуры. Холодная прокатка производится ниже температуры рекристаллизации, сопровождается упрочнением (наклепом) металла. Прокатка низкоуглеродистой стали, свинца и вольфрама при комнатной температуре следует отнести к холодной деформации.

В цветной металлургии холодная прокатка применяется для получения тонких полос, листов и лент из алюминия и его сплавов, меди и ее сплавов, никеля, титана, цинка, свинца и многих других металлов.

Напишите, каким способом надо измерять твёрдость листовой мягкой стали толщиной 1мм.

Твёрдость в большинстве случаев испытывается при статическом характере вдавливания индентора в виде шарика, конуса или пирамиды в тело исследуемого объекта или царапанием поверхностного слоя пирамидой из твёрдого материала (склерометрический метод).

Для определения твёрдости тонких слоёв или мелких образцов используют прибор “Супер-Роквелл”, отличающийся от обычного прибора “ТК” меньшими нагрузками.

Объясните, когда процесс кристаллизации протекает быстрее – при небольшой, большой и очень большой степени переохлаждения? (ответ обосновать).

Пространственные кристаллические решетки образуются в металле при переходе из жидкого состояния в твердое. Этот процесс называется кристаллизацией.

Процесс кристаллизации может протекать только при переохлаждении металла ниже равновесной температуры Тп (температура плавления).

На рис.1. изображены термические кривые, характеризующие процесс кристаллизации металлов при охлаждении с разной скоростью. При очень медленном охлаждении степень переохлаждения невелика (рис.1 кривая ?Т). В этих условиях будет получено крупное зерно. С увеличением степени переохлаждения (кривые ?Т1, ?Т2) число зародышей возрастает в большей мере, чем скорость их роста, и размер зерна в металле уменьшается.

Зерно металла сильно влияет на механические свойства: чем мельче зерно, тем выше вязкость и пластичность.

При увеличении степени переохлаждения скорость образования кристаллов и скорость их роста возрастают, при определенной степени переохлаждения достигают максимума, после чего снижаются.

Самостоятельная работа 2

Вариант Задания № 9

Рис..1. Диаграмма состояния железо – цементит

К углеродистым сталям относятся сплавы железа с углеродом с массовой долей углерода от 0,02 до 2,14 %.

Основными компонентами углеродистых сталей являются железо и углерод.

Железо является полиморфным металлом. При температурах ниже 910° С, железо существует в ? -модификации. Эта аллотропическая модификация железа называется ? -железом. В интервале температур от 910° С до 1392° С существует ? -железо с гранецентрированной кубической решеткой.

Углерод является неметаллическим элементом. В углеродистых сталях эти компоненты взаимодействуют, образуя, и зависимости от их количественного соотношения и температуры, разные фазы, представляющие собой однородные части сплава. Углерод может растворяться как в жидком (расплавленном) железе, так и в различных его модификациях в твердом состоянии. В углеродистых сталях различают следующие фазы (рис.1): жидкий сплав (Ж), твердые растворы -феррит (Ф) и аустенит (А) и химическое соединение цементит (Ц),

Феррит - твердый раствор внедрения углерода в ? -железе. Содержит при нормальной температуре 0,006 % углерода. У феррита низкие твердость (HB = 790 МПа) и прочность (?6 = 245МПа), высокие пластичность (? = 50%, ? = 85%) и ударная вязкость (KCU = 2940кДж/м 2 ).

Аустенит - твердый раствор внедрения углерода в ? -железе, при нормальной температуре в углеродистых сталях в равновесном состоянии не существует.

Цементит - химическое соединение железа с углеродом, карбид железа Fc3C. Содержит 6,67 % углерода. Для цементита характерна высокая твердость (НV = 9800 МПа) и очень низкая пластичность.

Перлит – эвтектоидная механическая смесь феррита и цементита (Ф+Ц). Существует ниже 727° С и содержит 0,8% С.

Определить вид углеродистой стали и белого чугуна по заданному содержанию углерода, отметить эти точки на своей диаграмме.

Линия ликвидус системы. На участке АВ начинается кристаллизация феррита (), на участке ВС начинается кристаллизация аустенита, на участке СD – кристаллизация цементита первичного.

Линия солидус. На участке АН заканчивается кристаллизация феррита (). На линии HJB при постоянной температуре 1499°С идет перетектическое превращение, заключающееся в том, что жидкая фаза реагирует с ранее образовавшимися кристаллами феррита (), в результате чего образуется аустенит.

На участке JЕ заканчивается кристаллизация аустенита.

На участке ECF при постоянной температуре 1147 o С идет эвтектическое превращение, заключающееся в том, что жидкость, содержащая 4,3 % углерода превращается в эвтектическую смесь аустенита и цементита первичного

При 1147°С протекает эвтектическая реакция Lc-AE+Ц.

Жидкость, состав которой соответствует точке С, превращается в эвтектическую смесь аустенита, состав которого соответствует точке Е, и цементита, называемую ледебуритом.

При 727°С протекает эвтектическая реакция A - Фр+Ц.

В отличие от эвтектики, образующейся из жидкости, эвтектоид возникает из твердых фаз. Продукт превращения – эвтектоидная смесь феррита и цементита, называемая перлитом.


Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

computer

Требуются доработки?
Они включены в стоимость работы


Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

avatar

avatar

avatar

avatar

Работа выполнена досрочно,но не были проставлены ссылки которые дожны быть.Замечания исправлены.В целом отзыв положительный!

Спасибо, заказала у автора две работы, одна была выполнена за несколько дней до срока, другая - на день раньше срока. Работы медицинской тематики, написаны отлично, придраться не к чему.

Последние размещённые задания


Ежедневно эксперты готовы работать над 1000 заданиями. Контролируйте процесс написания работы в режиме онлайн

Решение задач, теоретические основы электротехники

Срок сдачи к 31 мар.

Контрольная, Деловой этикет

Срок сдачи к 17 мар.

Лабораторная, Языки программирования

Срок сдачи к 27 февр.

Требуется проверка на АП Вуз

Другое, Управление ресурсами проекта

Срок сдачи к 27 февр.

Срок сдачи к 1 мая

Контрольная, безопасность жизнедеятельности

Срок сдачи к 17 мар.

Реферат, уголовное право

Срок сдачи к 5 мар.

право и организация социального обеспечения

Отчет по практике, отчет по учебной практике

Срок сдачи к 3 мар.

Решение задач, Информатика

Срок сдачи к 15 апр.

Решение задач, Маркетинг

Срок сдачи к 14 мар.

12 вариант на странице 84 узнать стоимость работы

Курсовая, матероловединие и термическая обработка метала

Срок сдачи к 27 февр.

Срок сдачи к 5 мар.

Влияние детско-родительских отношений на становление личности детей

Срок сдачи к 5 мар.

выполнить курсовую работу по теории ландшафтной архитектуры

Срок сдачи к 10 мар.

Тема " Групповая проектная деятельность как форма развития навков.

Курсовая, Педагогика и психология

Срок сдачи к 1 мар.

Ответ на защиту лаб. раб.

Ответы на билеты, безопасность жизнедеятельности

Срок сдачи к 2 мар.

Реферат, Правоохранительная деятельность

Срок сдачи к 5 мар.

Решить два задания по ТДУ

Решение задач, теория дискретных устройств

Срок сдачи к 4 мар.

planes
planes

Размещенные на сайт контрольные, курсовые и иные категории работ (далее — Работы) и их содержимое предназначены исключительно для ознакомления, без целей коммерческого использования. Все права в отношении Работ и их содержимого принадлежат их законным правообладателям. Любое их использование возможно лишь с согласия законных правообладателей. Администрация сайта не несет ответственности за возможный вред и/или убытки, возникшие в связи с использованием Работ и их содержимого.

Гирич Светлана Анатольевна

Описан феномен и суть явления эффекта памяти механической формы сплавов металлов, материалы с эффектом памяти формы и сферы их применения.

ВложениеРазмер
metally_s_ef_pamyati.docx 35.37 КБ

Предварительный просмотр:

ДЕПАРТАМЕН ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

КОЛЛЕДЖ ГРАДОСТРОИТЕЛЬСТВА И СЕРВИСА № 38

ГБОУ СПО КГиС № 38

Алексеев Дмитрий Михайлович

Гирич Светлана Анатольевна

Любой природный материал обладает своими уникальными качествами. Так многим металлам присущи такие качества, как твердость, прочность и долговечность. Также металлы могут обладать еще одним интереснейшим свойством, о котором не все знают, а именно, металлы могут обладать памятью.

Работы по изучению данного свойства велись и ведутся до сих пор во многих странах. Поэтому тема данной работы весьма актуальна. Для нас кажется весьма привычным и естественным, что пружина всегда возвращается в исходное положение, так же как и изогнутая стальная линейка, и это никого не удивляет. Однако если предел упругости материала будет превышен, то непременно наступит пластическая деформация и тогда предмет уже не примет исходную форму сам, если только не продеформировать материал в противоположном направлении. Но это лишь привычные для нас, общепринятые представления.

Глава 1. Феномен и суть явления. Мартенситное превращение.

Чтобы понять феномен явления его достаточно один раз увидеть. Для эксперимента можно взять металлическую проволоку и изогнуть ее, а затем нагреть. Проволока от нагрева начинает распрямляться и затем восстанавливает свою исходную форму.

Данный феномен происходит потому что при деформации внешние слои материала вытягиваются, а внутренние в свою очередь сжимаются, при этом средние вовсе остаются неизменными. [3]

Такие вытянутые структуры называют мартенситными пластинами, которые не являются чем-то необычным для металлических сплавов. Здесь необычность проявляется в другом: в мартенсит термоупругий в материалах с памятью формы. И начинает проявляться эта термоупругость мартенситных пластин при именно при нагреве, когда появляется внутреннее напряжение, стремящееся вернуть в исходное состояние структуру, а именно растянуть сплюснутые пластины и сжать вытянутые. Поэтому материал восстанавливает свою исходную форму, так ка в целом получается, что он проводит автодеформацию только в обратном направлении. [2]

Все металлы и сплавы имеют свою кристаллическую решетку, параметры которой заданы изначально. Но может осуществляться перестройка этой кристаллической решетки в связи с изменением температуры и давления. В данном случае говорят, что происходит полиморфное превращение, то есть смена типа кристаллической решетки (происходит ее перестройка). Полиморфное превращение может осуществляться при помощи двух способов: воздействия высоких температур, при которой подвижность атомов возрастает и мартенситного превращения.

Что бы понять сущность первого способа можно представить в виде атомов детские кубики, а в виде кристаллической решетки- здание из этих кубиков-атомов. Чтобы осуществить полиморфное превращение, то есть построить из этих же кубиков, но уже другое здание необходимо просто разобрать старое и собрать новое здание. Поскольку путь каждого кубика при перестройке совершенно не связан с другими, то он может оказаться абсолютно в любом месте нового здания. Перестройка решетки по такой схеме может произойти только в случае, когда диффузия, то есть подвижность атомов достаточно высока, для того чтобы осуществить перемещение их на совершенно новые места.

Однако, для того чтобы произвести перестройку кристаллической решетки, когда температура полиморфного превращения не достаточно высока, нужно применять бездиффузионный способ.

При изучении закалки – одного из древнейших и основных процессов термической обработки стали был и обнаружен такой бездиффузионный способ. В результате закалки образуется фаза с новой кристаллической решеткой, то есть мартенсит. Именно поэтому второй способ смены типа кристаллической решетки (полиморфного превращения) получил название мартенситного превращения. [4]

Мартенситное превращение является одним из фундаментальных способов перестройки кристаллической решетки. Данный способ характерен для сталей, чистых металлов, полупроводников, цветных сплавов и полимеров всегда в случае перестройки решетки при отсутствии диффузии.

Если вернуться к примеру с кубиками-атомами, то в случае с мартенситным превращением особенность заключается в том, что отсутствует диффузия и поэтому старое здание невозможно просто разобрать. Здесь кубики перемещаются без разрушения межатомных связей, то есть не отрываясь друг от друга и почти одновременно из старых положений в новые. Мартенситное превращение потому иногда называют сдвиговым, что такое согласованное и коллективное перемещение носит характер сдвига.

Именно кооперативный сдвиг атомов приводит к неизбежному изменению формы объема сплава, а изменение формы и является главной особенностью мартенситного превращения.

С данной особенностью и связан эффект памяти сплавов, однако не все сплавы, которые претерпевают мартенситное превращение, могут обладать памятью. При мартенситном превращении изменение формы является необходимым условием, но все же недостаточным для проявления памяти.

Можно выделить три основных события в истории изучения мартенситных превращений, оказавших непосредственное влияние на формировании нового направления, которое занимается изучением эффекта памяти формы в сплавах и применением данного эффекта.

В данной статье описывалась особенность мартенситного превращения в медном сплаве. Она заключалась в том, что при охлаждении этого медного сплава мартенситные кристаллы росли медленно, а при нагреве и вовсе постепенно исчезали. В данном случае, если провести аналогию с пружиной, можно сказать, что она способна останавливать рост кристалла прежде, чем разрушится сама. Подпружиненным оказывается кристалл мартенсита, что в свою очередь и обеспечивает динамическое равновесие границы между ним и исходной фазой. Получается, что если охлаждать, то граница будет смещаться в одну сторону, а если нагревать- в другую, т.е. обратную.

Описанное явление получило название термоупругого равновесия фаз в твердом теле. Стоит отметить, что изменением формы сопровождается и термоупругое мартенситное превращение, только в данном случае изменение имеет обратимый характер. И именно такое превращение и обеспечивает память металлов.

Второе событие относят к 1958 году, когда на Всемирной выставке в Брюсселе было представлено устройство двух американских ученых: Т. Рида и Д. Либермана. Основой такого устройства служил тонкий длинный стержень из золото-кадмиевого сплава. Один его конец был жестко закреплен в стойке в горизонтальном положении, а на другой вешали груз и под тяжестью он изгибался. Однако необычным было то, что когда стержень нагревали, то он выпрямлялся и спокойно поднимал груз, если же его охлаждали, то он снова становился изогнутым. Таким способом было наглядно продемонстрированно свойство памяти формы у металлов.

В начале 60-х годов в Америке произошло третье ключевое событие, когда в результате поиска прочного, относительно легкого и при этом имеющего способность работать в агрессивных средах, ученые создали сплав никеля с титаном в пропорции один к одному.

Данный сплав при обработке проявил свойство памяти формы, о котором даже не подозревали. Эффект памяти проявлялся очень сильно и это открывало широкие перспективы для использования такого сплава.

Новый материал получил название нитинол- производное от трех слов: никель, титан и название лаборатории НОЛ. Как стало известно позже, и в данном случае свойство памяти формы основывалось на мартенситном превращении. [1]

Глава 2. Материалы с эффектом памяти формы и сферы их применения.

В современном мире существуют сотни сплавов с мартенситным превращением, однако не все из них способны вспоминать свою форму. И известно лишь несколько сплавов, где эффект памяти формы может иметь практическое значение.

Наиболее перспективным и распространенным из всех материалов с памятью формы является нитинол. Именно нитинол часто используют в устройствах и приборах разного назначения. Так происходит еще и потому, что он имеет ряд других полезных свойств помимо памяти формы. Так нитинол обладает высокой коррозионной стойкостью, технологичностью и значительной прочностью. [5]

Таким образом получается довольно прочное соединение, которое способно выдержать давление до 800 атм. Такой тип соединения заменяет собой сварку, предотвращая недостатки сварного шва. Помимо этого, метод можно применять при сборке конструкции, когда сварка труднодоступна из-за переплетения узлов и трубопроводов. Данные втулки нашли свое применение не только а авиационной технике, но и космической, а так же в автомобильной.

Металлы с эффектом памяти формы нашли свое применение в такой важной области нашей жизни, как медицина. С помощью металлов с таким свойством, как память формы были разработаны перчатки, которые применяются в процессе реабилитации, фильтры для введения в сосуды кровеносной системы, зажимы для защемления слабых вен, стержни для коррекции позвоночника при сколиозе, оправа для очков, ортопедические импланты, проволока для исправления зубного ряда и еще огромное множество других полезных и жизненно необходимых медицинских устройств.

Так же свойство эффекта памяти широко применяется в тепловых сигнализациях, а именно в пожарных сигнализациях, противопожарных заслонках, различных сигнальных устройствах для ванн, бойлерных баках тепловой регенерации. Также свойство широко применяется в автомобилестроении, а именно в системах для предотвращения выхлопа газов, которые содержат пары топлива, в устройствах для удаления тепла из радиатора, устройствах для включения противотуманных фар.

Металлы с эффектом памяти применяются и в других различных областях, например, для герметизации корпусов микросхем, изготовления кофеварок, электронных кухонных плит конвекционного типа, чувствительных клапанов кондиционера, при изготовлении электромагнитных кухонных комбайнов, и разнообразных зажимных инструментов. Также сплавы с таким свойством могут быть использованы в качестве рабочего тела холодильников и тепловых насосов.

Читайте также: