Классификация живых организмов и их экологическое значение реферат

Обновлено: 02.07.2024

Как мы уже выяснили на предыдущих уроках, пределы выносливости организмов по отношению к различным экологичным факторам сильно различаются. Набор соответствующих адаптаций и широта пределов выносливости определяют распространение данного вида, возможность его обитания в данной природной зоне. По отношению к различным экологическим факторам выделяют экологические группы организмов. В основе экологической классификации организмов положено отношение организмов к данному экологическому фактору. Таким образом, существует множество классификаций - по отношению к свету, к теплу, к влажности и т.п.

Сегодня мы рассмотрим экологические группы организмов по отношению к свету, к теплу, а также особенности этих экологических факторов.

Однако вначале пара слов об адапатциях (то есть приспособительных реакциях) вообще. Учение об адаптациях - одна из наиболее разработанных частей экологии. Здесь лежит сфера пересечения таких наук как экология, эволюционное учение (так как процесс эволюции, по сути, представляет собой процесс появления эффективных адапатций), физиология (физиологические механизмы адаптаций) и проч.

Различают три основных пути адаптации к неблагоприятным условиям среды:

активный - активная перестройка функций организма (например, возникновение теплокровности, а по-научному - гомойотермности);

пассивный - пассивное подчинение функций организма изменениям внешней среды (например, холоднокровные, или пойкилотермные, животные);

избегание - избегание неблагоприятных условий (таксисы у растений, миграция у животных, выработка циклов развития у животных и растений).

Практически единственным источником энергии для всех живых организмов является энергия солнца. Напрямую утилизировать солнечную энергию может только одна группа организмов - зеленые растения (об этом разговор пойдет в последующих уроках) и фотосинтезирующие организмы. Речь, разумеется, об уникальном явлении - фотосинтезе. Все остальные организмы, по сути, поглощают энергию солнца, преобразованную зелеными растениями в энергию химических связей.

Солнечная радиация, с физической точки зрения, представляет собой электромагнитное излучение с широким диапазоном длин волн. Экологические и биологические эффекты волн различной длины различны.

Ионизирующее излучение (длина волн меньше 150 нм). Естественный, а также техногенный радиоактивный фон. Биологическое действие осуществляется, прежде всего, на субклеточном уровне. Возможно повреждающее действие на генетический аппарат половых клеток (мутагенный эффект), соматических клеток (канцерогенный эффект).

Ультрафиолетовые лучи (150-400 нм). Наиболее коротковолновая (200-280 нм) часть спектра практически полностью поглощается озоновым экраном. УФ-лучи с длиной волны 280-320 нм обладают канцерогенным действием, однако механизм этого действия до конца неясен. Эти лучи также активируют некоторые микроорганизмы. Часть спектра от 300 нм (именно эти лучи, в основном, достигают поверхности Земли) оказывает на организмы, главным образом, химическое действие; активируют процессы клеточного синтеза; под воздействием этих лучей в организме синтезируется витамин D3, регулирующий обмен кальция и фосфора и нормальный рост организмов. Многие млекопитающие, выводящие детенышей в норах, регулярно выносят их на освещенные солнцем места вблизи норы (например, лисицы, барсуки). Основная роль этого поведения, как считают, нормализация синтеза витамина D, регуляция продукции меланина (черного пигмента). В то же время избыток УФ-лучей играет отрицательную роль.

Гигантское значение играет видимый свет . Помимо химического (в верхней, сине-фиолетовой, части спектра) и теплового (в нижней, красно-желтой, части спектра) действия, видимый свет имеет сигнальное значение. Ориентация многих животных в пространстве, сигнализация между животными (благодаря зрению), синхронизация ритмов жизни растений с сезонной динамикой (благодаря изменению продолжительности светого дня) невозможны без видимого света.

Здесь нужно сделать краткое отступление. Среди множества классификаций экологических факторов, существует интересная классификация, различающая витальные (энергетические) и сигнальные экологические факторы. Первые оказывают непосредственное воздействие на жизнедеятельность организмов, меняют их энергетическое состояние. Примеры таких факторов: температура, хищничество и другие. Факторы второй группы (сигнальные) несут информацию об изменении характеристик среды, вызывают изменение в поведении, жизненной стратегии организмов и т.д. Примеры таких факторов: феромоны, продолжительность светового дня. При этом СВЕТ является примером экологического фактора, обладающего как витальным, так и сигнальным действием. С одной стороны, он служит главным источником энергии для фотосинтеза растений, а с другой -- он играет важную роль в осуществлении биологических ритмов разной продолжительности.

По отношению к свету выделяют следующие экологические группы растений:

теневыносливые (факультативные гелиофиты).

Гелиофиты . Световые растения. Обитатели открытых мест обитания: лугов, степей, верхних ярусов лесов, ранневесенние растения, многие культурные растения.

Характеризуются следующими признаками:

мелкие размеры листьев; встречается сезонный диморфизм: весной лестья мелкие, летом - крупнее;

листья располагаются под большим углом, иногда почти вертикально;

листовая пластинка блестящая или густо опушенная;

образуют разряженные насаждения.

Сциофиты . Не выносят сильного света. Места обитания: нижние затемненные ярусы; обитатели глубоких слоев водоемов. Прежде всего, это растения, растущие под пологом леса (кислица, костынь, сныть).

Характеризуются следующими признаками:

листья крупные, нежные;

листья темно-зеленого цвета;

характерна так называемая листовая мозаика (то есть особое расположение листьев, при котором листья макимально не заслоняют друг друга).

Теневыносливые . Занимают промежуточное положение. Часто хорошо развиваются в условиях нормального освещения, но могут при этом переносить и затемнение. По своим признакам занимают промежуточное положение.

Температура, в отличие от света, является исключительно витальным (энергетическим) фактором. У растений и животных (особенно холоднокровных животных) повышение температуры тела вызывает ускорение всех биохимических и физиологических процессов. Так, при повышении температуры сокращается время, необходимое для прохождение отдельных стадий развития. Наример, для развития гусениц бабочки-капустницы от яйца до куколки при температуре 10 С требуется 100 суток, а при 26 С - только 10 суток.

Зависимость скорости развития от температуры описывается S-образной кривой:


Точка а, в которой кривая v=f(t) пересекает шкалу температур (то есть ось OX), называется порогом развития. При температуре ниже данной развитие не происходит.

Так называемая сумма активных температур, то есть сумма температур, которые необходимо набрать для завершения цикла развития, используется в сельском хозяйстве. Описывается сумма активных температур Stэфф так:

y - это время развития, t - температура, при которой происходит развитие. Stэфф - постоянная (конечно, в статистическом смысле - индивидуальные различия, безусловно, есть) величина для данного вида. Найденная закономерность (а математики, наверно, уже успели привести предыдущую зависимость к виду y=S/(t-a) ) находит практическое применение. Зная длительность развития при различных температурах, можно вычислить сумму активных температур. Обычно сумма активных температур для сельскохозяйственных растений уже известна; на основании ее значения и конкретных температур делается фенологический прогноз, определяется возможность акклиматизации данного вида, необходимость и длительность выращивания в закрытом грунте (теплицах).

Температура также воздействует и на течение других физиологических процессов (количество потребляемой пищи, поведение, плодовитость и так далее). Температурный режим, связанный с географической широтой и другими факторами, определяет границы распространения видов.

Тепло для растений может выступать формообразующим фактором. Так, при недостатке тепла у высокогорных видов возникает форма "подушки", внутри которой создается более теплый микроклимат; у обитателей тундры возникают стелящиеся, или шпалерные, и карликовые формы.

По отношению к теплу выделяют следующие экологические группы:

Эвритермные и стенотермные организмы (см. предыдущий урок)

Термофилы и криофилы (теплолюбивые и холодолюбивые)

По степени адаптации к условиям дефицита тепла различают нехолодостойкие (гибнут при температуре замерзания воды из-за инактивации ферментов), неморозостойкие (гибнут, если в клетках начинают образовываться кристаллики льда; поэтому основной адаптацией является накопление сахаров и других веществ при понижении температуры), морозостойкие (например, переохлажденное состояние холодноводных рыб поддерживается накоплением в жидкостях тела так называемых биологических антифризов - гликопротеидов, понижающих точку замерзания).

По степени адаптации к повышенным температурам выделяют нежаростойкие виды (повреждаются при t=30. 40 o C); жаровынослиые (выносят +50. + 60 o С); жароустойчивые (это, преждевсего, термофильные бактерии, некоторые виды сине-зеленых ворослей).

Рассмотрение физиологических механизмов адаптации к повышенным и пониженным температурам не входит в задачи нашего курса. Однако, если будут вопросы - пишите, попробуем уделить этому вопросу какой-нибудь из спецвыпусков.

На сегодня все (выпуск и так получился очень объемным). Следующий урок будет посвящен рассмотрению сред жизни.

комплекс морфофизиологических и поведенческих особенностей особи, популяции или вида, обеспечивающий успех в конкуренци с другими видами (популяциями, особями) и устойчивость к воздействию экологических факторов.

превращение зелеными растениями и фотосинтезирующими микроорганизмами (т.н. бактериальный Ф.) энергии Солнца в энергию химических связей органических соединений.

направленное перемещение организмов, отдельных клеток и даже их органелл под влиянием односторонне действующего фактора (например, ориентация хлоропластов в зависимости от направления освещения - фототаксис).

изменение наследственных свойств организма

вещество или физический агент, приводящий к возникновению злокачественных (раковых) новообразований.

СУММА АКТИВНЫХ ТЕМПЕРАТУР

сумма температур (превышающих порог развития), необходимых для завершения жизненного цикла.

температура (или значение другого фактора), ниже которой развитие данного вида не происходит.

ЦИКЛ РАЗВИТИЯ, ЦИКЛ ЖИЗНЕННЫЙ

совокупность всех фаз индвидуального роста и развития особи, в результате которого она достигает характерных величин, приобретает характерные признаки.

биологически активные вещества, вырабатываемые животными; оказывают влияние на поведение, а иногда рост и развитие особоей того же вида. К Ф. относят вещества, привлекающие особей другого пола (аттрактанты), вещества тревоги и т.д. Ф. - разновидность химической сигнализации (коммуникации) между организмами.

В настоящее время органический мир Земли насчитывает около 1,5 млн видов животных, 0,5 млн видов растений, около 10 млн микроорганизмов. Изучить такое многообразие организмов невозможно без их систематизации и классификации.

Работа содержит 1 файл

экология №3.docx

СРСП
Классификация живых организмов.
Выполнила: Кузумбаева Молдир БЖ-118 Проверила:

СИСТЕМА КЛАССИФИКАЦИИ ЖИВЫХ ОРГАНИЗМОВ

Большой вклад в создание систематики живых организмов внес шведский натуралист Карл Линней (1707–1778). В основу классификации организмов он положил принцип иерархии,

или соподчиненности, а за наименьшую систематическую единицу принял вид.

Для названия вида была предложена бинарная номенклатура,

согласно которой каждый организм идентифицировался (назывался) по его роду и виду. Названия систематических таксонов было предложено давать на латинском языке. Так, например, кошка домашняя имеет систематическое название Felis domestica. Основы линнеевской систематики сохранились до настоящего времени.

Современная классификация отражает эволюционные взаимоотношения и родственные связи между организмами. Принцип иерархии сохраняется.

– это совокупность особей, сходных по строению, имеющих одинаковый набор хромосом и общее происхождение, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к сходным условиям обитания и занимающих определенный ареал.

В настоящее время в систематике используют девять основных систематических категорий: империя, надцарство, царство, тип, класс, отряд, семейство, род, вид (схема 1, таблица 4, рис. 57).

По наличию оформленного ядра все клеточные организмы

делятся на две группы: прокариоты и эукариоты.

(безъядерные организмы) – примитивные организмы, не имеющие четко оформленного ядра. В таких клетках выделяется лишь ядерная зона, содержащая молекулу ДНК. Кроме того, в клетках прокариот отсутствуют многие органеллы. У них имеются только наружная клеточная мембрана и рибосомы. К прокариотам относятся бактерии.

– истинно ядерные организмы, имеют четко оформленное ядро и все основные структурные компоненты клетки. К ним относятся растения, животные, грибы.

Примеры классификации организмов

Кроме организмов, имеющих клеточное строение, существуют и неклеточные формы жизни

и бактериофаги.

Эти формы жизни представляют собой как бы переходную группу между живой и неживой природой.

Современная биологическая система

* В столбце представлены только некоторые, но не все существующие систематические категории (типы, классы, отряды, семейства, роды, виды).

Вирусы состоят из молекул ДНК или РНК, покрытой белковой оболочкой, а иногда дополнительно липидной мембраной (рис. 58).

Вирус ВИЧ (А) и бактериофаг (Б)

Вирусы могут существовать в виде кристаллов. В таком состоянии они не размножаются, не проявляют никаких признаков живого и могут сохраняться длительное время. Но при внедрении в живую клетку вирус начинает размножаться, подавляя и разрушая все структуры клетки-хозяина.

Проникая в клетку, вирус встраивает свой генетический аппарат (ДНК или РНК) в генетический аппарат клетки-хозяина, и начинается синтез вирусных белков и нуклеиновых кислот. В клетке-хозяине идет сборка вирусных частиц. Вне живой клетки вирусы не способны к размножению и синтезу белка.

Вирусы вызывают различные заболевания растений, животных, человека. К ним относятся вирусы табачной мозаики, гриппа, кори, оспы, полиомиелита, вирус иммунодефицита человека (ВИЧ),

вызывающий заболевание СПИД.

Генетический материал вируса ВИЧ представлен в виде двух молекул РНК и специфического фермента обратной транскриптазы, который катализирует реакцию синтеза вирусной ДНК на матрице вирусной РНК в клетках лимфоцитов человека. Далее вирусная ДНК встраивается в ДНК клеток человека. В таком состоянии она может сохраняться долго, не проявляя себя. Поэтому антитела в крови у инфицированного человека образуются не сразу и обнаружить заболевание на этой стадии сложно. В процессе деления клеток крови ДНК вируса передается соответственно в дочерние клетки.

Эволюция систем классификации

Животные и растения населяют всю планету Земля, воздух, сушу, воду. Значение животных и растений в природе очень важно, между ними образуются постоянные связи. Например, многие животные опыляют и распространяют семена растений; принимают активное участие в образовании почвы. А зеленые растения обогащают воздух кислородом, являются пищей растительноядным животным.
Животные не могут существовать без растений, и наоборот.

Животные и растения - живые организмы, поэтому имеют много общего между собой. Они образованы одинаковыми веществами: белками, жирами, углеводами и др. Все имеют клеточное строение, похожие жизненные процессы. То есть происхождение животных и растений идет от одного предка, они являются родственниками. Хотя между ними есть значительные различия: зеленые растения, с помощью фотосинтеза, из неорганических веществ окружающего мира могут создавать органические вещества своего тела. Животные, в основном, не способны к фотосинтезу, они строят свое тело из веществ растений и других животных (хищники). Растения самостоятельно не способны перемещаться и совершать движения.

Растений насчитывают около 500 000 видов, а животных приблизительно 1 500 000 видов. Мир животных и растений многообразен, чтобы в нем разобраться, нужно дать каждой особи название, определить его родственников, объеденить на группы. Это объединение живых организмов на группы по общим признакам и называютклассификацией.
Общие признаки одного вида (самой маленькой единицы классификации) могут быть такие: близкое родство, сходство по строению, одинаковый образ жизни, в природе обитают на определенной территории, они размножаются и дают потомство, сходное по строению и образу жизни с родителями.
Такое объединение делается учеными не произвольно, а по строгой системе.

Ученые создали классификацию животных так: близкие виды объединили в общийрод, близкие роды - в семейство. Семейства объединяют в отряд, а отряды - вкласс. Самая крупная группа животных - тип.
Классификация растений: близкие виды объединяют в род, роды - в семейства, а семейства - в классы. Классы могут объдинять в крупные отделы.

В современной флоре и фауне существует колоссальное количество форм жизни, которые можно наблюдать при изучении; микроорганизмов, грибов, растений и животных. Разнообразие органического мира на нашей планете поистине поразительно (по некоторым сведениям, в биосфере существует около 5 млн разных видов организмов). Живые организмы распространены на всех территориях и акваториях Земли и представлены многообразными формами, или биоморфами. Это и гигантские деревья (эвкалипты и секвойи), достигающие в высоту более 100 м, и мельчайшие бактерии и протисты, которых можно рассмотреть только под микроскопом.

Разобраться в этом многообразии видов живых существ было бы практически невозможно без систематики — науки, занимающейся вопросами их классификации.

Систематика — одна из древнейших биологических наук. Еще с незапамятных времен человек хотел разобраться в окружающем его мире, дать названия грибам, растениям и животным, различать их. Однако серьезных успехов эта наука достигла лишь в конце XVIII — начале XIX в. Затем в научном мире наблюдается спад интереса к проблемам и задачам систематики как по объективным, так и по субъективным причинам. С одной стороны, даже в первые десятилетия XIX в. систематика не могла похвастаться значительными достижениями, а с другой — среди биологов бытовало мнение о систематике как старомодной, мало нужной науке, годящейся только для определения видового состава организмов.

Предметом изучения систематики является описание, обозначение, классификация и построение эволюционной, или филогенетической, системы органического мира на нашей планете. Со времен Дарвина систематика стала эволюционной наукой. Это означает, что если систематик объединяет различные роды растений или животных в единое семейство, то он исходит не только из внешнего сходства форм, но и из общности их происхождения (родства), которое доказывается изучением их исторического развития.

Одной из главных задач этой науки (наряду с определением и описанием видов живых существ) является приведение в систему удивительного разнообразия одно- и многоклеточных организмов с использованием современных наиболее полных и всеобъемлющих сведений о вымерших и ныне существующих бактериях, протестах, грибах, растениях и животных. При этом речь идет о создании филогенетической системы, которая должна быть генеалогической, т.е. отображающей родственные связи между таксонами различного.

Для решения этих сложных вопросов систематика развивается в тесной связи с другими биологическими науками, особенно с эволюционной морфологией, цитологией, генетикой, биохимией, экологией, биогеографией, все шире использует математические методы обработки материала с применением ЭВМ. Тем самым систематика не только интегрирует огромную информацию о процессах микроэволюции, большое разнообразие других фактов, полученных специалистами многих естественно-научных областей, но и развивает способ мышления, определенный подход к решению многих важнейших биологических проблем.

Систематика свидетельствует о единстве живой природы; устанавливает родственные связи между живыми организмами, сходство и различие растительного и животного мира. Современная систематика позволяет не только установить, но и объяснить причины различия между организмами.

Кроме того, систематика представляет основу для развития теоретической биологии, оказывает неоценимую услугу при исследовании видообразования в биосфере и объяснении популяционной структуры видов. Ни одно серьезное научное исследование не может быть проведено без точного определения вида, с которым работает биохимик, генетик, физиолог и др.

Для создания филогенетической системы органического мира систематики используют совокупность наиболее существенных признаков организмов, входящих в ту или иную таксономическую категорию. К таким признакам относятся: 1) историческое развитие группы живых организмов по ископаемым остаткам; 2) морфологическое и анатомическое строение современных видов; 3) размножение и эмбриональное развитие; 4) химический состав и физиология; 5) нуклеотидный состав ДНК или РНК; 6) тип запасных питательных веществ; 7) распространение на нашей планете и др.

По современной классификации все живое делится на две империи — Доклеточные (вирусы) и Клеточные (все живые организмы). Организмы, в свою очередь, объединяются в два надцарства — Доядерные (Прокариоты) и Ядерные (Эукариоты), которые включают пять царств: Бактерии, Протисты, Грибы, Растения и Животные. Система организмов может быть представлена в следующем виде:

Современная систематика растений и животных построена на основе единственного главного критерия – степени родства организмов. При этом внешние особенности видов, относимых к одной группе, часто могут сильно различаться. Так, например, паразит крабов саккулина, напоминающая бесформенный, набитый половыми продуктами мешок с сильно разветвленной в теле хозяина сетью тяжей, внешне совершенно не похожа на сидячих, обладающих раковинами морских желудей и морских уточек, хотя все они относятся к одному отряду усоногих раков. О родстве этих видов говорит глубокое внутреннее сходство, прослеживаемое па первых этапах развития особей.

В экологии разнообразие и разноплановость способов и путей адаптации к среде создают необходимость множественных классификаций. Используя какой‑либо единственный критерий, нельзя отразить все стороны приспособленности организмов к среде. Экологические классификации отражают сходство, возникающее у представителей самых разных групп, если они используютсходные пути адаптации. Например, если мы классифицируем животных по способам движения, то в экологическую группу видов, передвигающихся в воде реактивным путем, попадут такие разные по систематическому положению животные, как медузы, головоногие моллюски, некоторые инфузории и жгутиковые, личинки ряда стрекоз и др. (рис. 7). В основу экологических классификаций могут быть положены самые разнообразные критерии: способы питания, передвижения, отношение к температуре, влажности, солености среды, давлению и т. п. Разделение всех организмов на эврибионтных и стенобионтных по широте диапазона приспособлений к среде представляет пример простейшей экологической классификации.

Другой пример – разделение организмов на группы по характеру питания. Автотрофы – это организмы, использующие в качестве источника для построения своего тела неорганические соединения. Гетеротрофы – все живые существа, нуждающиеся в пище органического происхождения. В свою очередь, автотрофы делятся на фототрофов и хемотрофов. Первые для синтеза органических молекул используют энергию солнечного света, вторые – энергию химических связей. Гетеротрофов делят на сапрофитов, использующих растворы простых органических соединений, и голозоев. Голозои обладают сложным комплексом пищеварительных ферментов и могут употреблять в пищу сложные органические соединения, разлагая их на более простые составные компоненты. Голозои делятся на сапрофагов (питаются мертвыми растительными остатками), фитофагов (потребителей живых растений), зоофагов (нуждающихся в живой пище) инекрофагов (трупоядных животных). В свою очередь, каждую из этих групп можно подразделить на более мелкие, имеющие свою специфику в характере питания.

Иначе можно построить классификацию по способу добывания пищи. Среди животных выявляются, например, такие группы, как филътраторы (мелкие рачки, беззубка, кит и др.), пасущиеся формы (копытные, жуки‑листоеды), собиратели (дятлы, кроты, землеройки, куриные), охотники на движущуюся добычу (волки, львы, мухи‑ктыри и т. п.) и целый ряд других групп. Так, несмотря на большое несходство в организации, одинаковый способ овладения добычей приводит у львов и мух‑ктырей к ряду аналогий в их охотничьих повадках и общих чертах строения: поджарости тела, сильному развитию мускулатуры, способности развивать кратковременно большую скорость и т. п.

Экологические классификации помогают выявлять возможные в природе пути приспособления организмов к среде.

Активная и скрытая жизнь

Обмен веществ – одно из главнейших свойств жизни, определяющее тесную вещественно-энергетическую связь организмов со средой. Метаболизм проявляет сильную зависимость от условий существования. В природе мы наблюдаем два основных состояния жизни: активную жизнедеятельность и покой. При активной жизнедеятельности организмы питаются, растут, передвигаются, развиваются, размножаются, характеризуясь при этом интенсивным метаболизмом. Покой может быть разным по глубине и продолжительности, многие функции организма при этом ослабевают или не выполняются совсем, так как уровень обмена веществ падает под влиянием внешних и внутренних факторов.

В состоянии глубокого покоя, т. е. пониженного вещественно-энергетического обмена, организмы становятся менее зависимыми от среды, приобретают высокую степень устойчивости и способны переносить условия, которые не могли бы выдержать при активной жизнедеятельности. Эти два состояния чередуются в жизни многих видов, являясь адаптацией к местообитаниям с нестабильным климатом, резкими сезонными изменениями, что характерно для большей части планеты.

При глубоком подавлении обмена веществ организмы могут вообще не проявлять видимых признаков жизни.

Окончательно этот вопрос был решен лишь в первой трети XX столетия с развитием техники глубокого вакуумного обезвоживания. Опыты Г. Рама, П. Беккереля и других ученых показали возможность полной обратимой остановки жизни.

В сухом состоянии, когда в клетках оставалось не более 2 % воды в химически связанном виде, такие организмы, как коловратки, тихоходки, мелкие нематоды, семена и споры растений, споры бактерий и грибов выдерживали пребывание в жидком кислороде (-218,4 °C), жидком водороде (-259,4 °C), жидком гелии (-269,0 °C), т. е. температуры, близкие к абсолютному нулю. При этом содержимое клеток затвердевает, отсутствует даже тепловое движение молекул, и всякий обмен веществ, естественно, прекращен. После помещения в нормальные условия эти организмы продолжают развитие. У некоторых видов остановка обмена веществ при сверхнизких температурах возможна и без высушивания, при условии замерзания воды не в кристаллическом, а в аморфном состоянии.

Полная временная остановка жизни получила название анабиоза. Термин был предложен В. Прейером еще в 1891 г. В состоянии анабиоза организмы становятся устойчивыми к самым разнообразным воздействиям. Например, тихоходки выдерживали в эксперименте ионизирующее облучение до 570 тыс. рентген в течение 24 ч. Обезвоженные личинки одного из африканских комаров-хирономусов – Polypodium vanderplanki – сохраняют способность оживать после воздействия температуры в +102 °C.

Состояние анабиоза намного расширяет границы сохранения жизни, в том числе и во времени. Например, в толще ледника Антарктиды при глубоком бурении были обнаружены микроорганизмы (споры бактерий, грибов и дрожжей), развившиеся впоследствии на обычных питательных средах. Возраст соответствующих горизонтов льда достигает 10–13 тыс. лет. Споры некоторых жизнеспособных бактерий выделены и из более глубоких слоев возрастом в сотни тысяч лет.

Анабиоз, однако, – достаточно редкое явление. Он возможен далеко не для всех видов и является крайним состоянием покоя в живой природе. Его необходимое условие – сохранение неповрежденными тонких внутриклеточных структур (органелл и мембран) при высушивании или глубоком охлаждении организмов. Это условие невыполнимо для большинства видов, имеющих сложную организацию клеток, тканей и органов.

Способность к анабиозу обнаруживается у видов, имеющих простое или упрощенное строение и обитающих в условиях резкого колебания влажности (пересыхающие мелкие водоемы, верхние слои почвы, подушки мхов и лишайников и т. п.).

Гораздо шире распространены в природе другие формы покоя, связанные с состоянием пониженной жизнедеятельности в результате частичного угнетения метаболизма. Любая степень снижения уровня обмена веществ повышает устойчивость организмов и позволяет более экономно тратить энергию.

Формы покоя в состоянии пониженной жизнедеятельности делят на гипобиоз и криптобиоз, или покой вынужденный и покой физиологический. При гипобиозе торможение активности, или оцепенение, возникает под прямым давлением неблагоприятных условий и прекращается почти сразу после того, как эти условия возвращаются к норме (рис. 9). Подобное подавление процессов жизнедеятельности может возникать при недостатке тепла, воды, кислорода, при повышении осмотического давления и т. п. В соответствии с ведущим внешним фактором вынужденного покоя различают криобиоз (при низких температурах), ангидробиоз (при недостатке воды), аноксибиоз (в анаэробных условиях), гиперосмобиоз (при высоком содержании солей в воде) и др.

He только в арктических и антарктических, но и в средних широтах некоторые морозостойкие виды членистоногих (коллемболы, ряд мух, жужелицы и др) зимуют в состоянии оцепенения, быстро оттаивая и переходя к активности под лучами солнца, а затем вновь теряют подвижность при снижении температуры. Взошедшие весной растения прекращают и возобновляют рост и развитие вслед за похолоданием и потеплением. После выпавшего дождя голый грунт часто зеленеет за счет быстрого размножения почвенных водорослей, находившихся в вынужденном покое.

Глубина и продолжительность подавления обмена веществ при гипобиозе зависит от длительности и интенсивности действия угнетающего фактора. Вынужденный покой наступает на любой стадии онтогенеза. Выгоды гипобиоза – быстрое восстановление активной жизнедеятельности. Однако это относительно неустойчивое состояние организмов и при большой длительности может быть повреждающим из-за разбалансированности метаболических процессов, истощения энергетических ресурсов, накопления недоокисленных продуктов обмена и других неблагоприятных физиологических изменений.

Криптобиоз – принципиально другой тип покоя. Он связан с комплексом эндогенных физиологическихперестроек, которые происходят заблаговременно, до наступления неблагоприятных сезонных изменений, и организмы оказываются к ним готовы. Криптобиоз является адаптацией прежде всего к сезонной или иной периодичности абиотических факторов внешней среды, их регулярной цикличности. Он составляет часть жизненного цикла организмов, возникает не на любой, а на определенной стадии индивидуального развития, приуроченной к переживанию критических периодов года.

Переход в состояние физиологического покоя требует времени. Ему предшествует накопление резервных веществ, частичная дегидратация тканей и органов, уменьшение интенсивности окислительных процессов и ряд других изменений, понижающих в целом тканевый метаболизм. В состоянии криптобиоза организмы становятся во много раз более устойчивыми к неблагоприятным воздействиям внешней среды (рис. 10). Основные биохимические перестройки при этом являются во многом общими для растений, животных и микроорганизмов (например, переключение метаболизма в разной степени на путь гликолиза за счет резервных углеводов и т. п.). Выход из криптобиоза также требует времени и затрат энергии и не может быть осуществлен простым прекращением отрицательного действия фактора. Для этого необходимы особые условия, различные для разных видов (например, промораживание, присутствие капельно-жидкой воды, определенная продолжительность светового дня, определенное качество света, обязательные колебания температуры и др.).

Криптобиоз как стратегия выживания в периодически неблагоприятных для активной жизни условиях – это продукт длительной эволюции и естественного отбора. Он широко распространен в живой природе. Состояние криптобиоза характерно, например, для семян растений, цист и спор различных микроорганизмов, грибов, водорослей. Диапауза членистоногих, спячка млекопитающих, глубокий покой растений – также различные типы криптобиоза.

Состояния гипобиоза, криптобиоза и анабиоза обеспечивают выживание видов в природных условиях разных широт, часто экстремальных, позволяют сохранять организмы в течение длительных неблагоприятных периодов, расселяться в пространстве и во многом раздвигают границы возможности и распространения жизни в целом.

Вопрос.

Свет.
В свое время французский астроном Камиль Фламмарион (1842-1925) написал: "Мы об этом не думаем, но все, что ходит, двигается, живет на нашей планете, есть дитя Солнца".

Действительно, только под влиянием света осуществляется важнейший в биосфере процесс фотосинтеза, который в общем виде может быть представлен следующим образом:

У зеленых растений (высших растений и водорослей) донором электронов является вода (кислород), поэтому в результате фотосинтеза образуется кислород:

У бактерий роль донора электронов могут выполнять, например, сероводород (сера), органические вещества. Так, у зеленых и пурпурных серобактерий идет следующий процесс:

В отношении света организмы стоят перед дилеммой: с одной стороны, прямое воздействие света на клетку может быть смертельно для организма, с другой - свет служит первичным источником энергии, без которого невозможна жизнь.

Видимый свет оказывает на организмы смешанное действие: красные лучи - тепловое воздействие; синие и фиолетовые лучи - изменяют скорость и направление биохимических реакций. В целом свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным фактором, обеспечивающим суточные и сезонные биологические циклы. Каждое местообитание характеризуется определенным световым режимом, определяемым интенсивностью (силой),количеством и качеством света.

Интенсивность (сила) света измеряется энергией, приходящейся на единицу площади в единицу времени: Дж/м2Чс; Дж/см2Чс. На этот фактор сильно влияют особенности рельефа. Самым интенсивным является прямой свет, однако более полно растениями используется рассеянный свет.

Количество света определяется суммарной радиацией. От полюсов к экватору количество света увеличивается. Для определения светового режима необходимо учитывать и количество отраженного света, так называемое альбедо. Альбедо (от лат. albus - белый) - отражающая способность поверхностей различных тел - выражается в процентах от общей радиации и зависит от угла падения лучей и свойств отражающей поверхности. Например, альбедо чистого снега - 85%, загрязненного - 40-50%, черноземной почвы - 5-14%, светлого песка - 35-45%, полога леса - 10-18%, зеленых листьев клена - 10%, осенних пожелтевших листьев - 28%.

По отношению к свету как экологическому фактору различают следующие группы растений: гелиофиты (от греч. helios - солнце, phyton - растение), сциофиты (от греч. skia - тень) и теневыносливые растения (факультативные гелиофиты).

  • Световые растения (гелиофиты) - обитают на открытых местах с хорошей освещенностью и в лесной зоне встречаются редко. Процесс фотосинтеза начинает преобладать над процессом дыхания только при высокой освещенности (пшеница, сосна, лиственница). Цветки таких светолюбивых растений, как подсолнечник, козлобородник, череда, поворачиваются за солнцем.
  • Теневые растения (сциофиты) - не выносят сильного освещения и живут под пологом леса в постоянной тени (это в основном лесные травы, папоротники, мхи, кислица). На вырубках при сильном освещении они проявляют явные признаки угнетения и часто погибают.
  • Теневыносливые растения (факультативные гелиофиты) - могут жить при хорошем освещении, но легко переносят и затемненные места (большинство растений лесов, луговые растения, лесные травы и кустарники).

Теневыносливые древесные породы и теневые травянистые растения отличаются мозаичным расположением листьев. У эвкалиптов листья обращены к свету ребром. У деревьев световые и теневые листья (располагаются соответственно по поверхности и внутри кроны) - хорошо освещаемые и затененные - имеют анатомические различия. Световые листья толще и грубее, иногда они блестящие, что способствует отражению света. Теневые листья обычно матовые, неопушенные, тонкие, с очень нежной кутикулой или вовсе без нее (кутикула - наружная пленка, покрывающая эпидермис).

В лесу теневыносливые деревья образуют густо сомкнутые насаждения. Под их пологом растут еще более теневыносливые деревья и кустарники, а ниже - теневые кустарнички и травы. На рисунке показаны две сосны: одна из них росла на открытом пространстве при хорошем освещении (1), а другая в густом лесу (2).

Наибольшее значение свет как средство ориентации имеет в жизни животных. Уже у простейших появляются светочувствительные органеллы. Так, эвглена зеленая с помощью светочувствительного "глазка" реагирует на степень освещенности среды. Начиная с кишечнополостных, практически у всех животных развиваются светочувствительные органы - глаза, имеющие то или иное строение.

Среди животных различают дневные, ночные и сумеречные виды. Имеются также виды, живущие в постоянной темноте и не выносящие яркого солнечного света (почвенные животные, обитатели пещер и больших глубин, внутренние паразиты животных и растений).

Биолюминесценцией называется способность живых организмов светиться. Происходит это в результате окисления сложных органических соединений при участии катализаторов обычно в ответ на раздражения, поступающие из внешней среды. Световые сигналы, испускаемые рыбами, головоногими моллюсками и другими гидробионтами, а также некоторыми организмами наземно-воздушной среды (например, жуками семейства светляков), служат для привлечения особей противоположного пола, приманивания добычи или отпугивания хищников, ориентации в стае и др.

Важным экологическим фактором является температура.

Температура.
Одним из наиболее важных факторов, определяющих существование, развитие и распространение организмов по земному шару, является температура. Важно не только абсолютное количество тепла, но и его временнoе распределение, т. е. тепловой режим.
Растения не обладают собственной температурой тела: их анатомо-морфологические и физиологические механизмы термо-
регуляции направлены на защиту организма от вредного воздействия неблагоприятных температур.

В зоне высоких температур при пониженной влажности (тропические и субтропические пустыни) исторически сформировался своеобразный морфологический тип растений с незначительной листовой поверхностью или с полным отсутствием листьев. У многих пустынных растений образуется беловатое опушение, способствующее отражению солнечных лучей и предохраняющее их от перегрева (акация песчаная, лох узколистный).

К физиологическим приспособлениям растений, сглаживающим вредное влияние высоких температур, могут быть отнесены: интенсивность испарения - транспирация (от лат. trans - через, spiro - дышу, выдыхаю), накопление в клетках солей, изменяющих температуру свертывания плазмы, свойство хлорофилла препятствовать проникновению солнечных лучей.

В мире животных наблюдаются определенные морфологические адаптации, направленные на защиту организмов от неблагоприятного действия температур. Свидетельством этого может служить известное правило Бергмана (1847 г.), согласно которому в пределах вида или достаточно однородной группы близких видов теплокровные организмы с более крупными размерами тела распространены в более холодных областях.

Попытаемся объяснить это правило с позиций термодинамики: потеря тепла пропорциональна поверхности тела организма, а не его массе. Чем крупнее животное и компактнее его тело, тем легче поддерживать постоянную температуру (меньше удельный расход энергии), и наоборот, чем мельче животное, тем больше его относительная поверхность и теплопотери и выше удельный уровень его основного обмена, т. е. количества энергии, расходуемого организмом животного (или человека) при полном мышечном покое при такой температуре окружающей среды, при которой терморегуляция наиболее выражена.

Экологические факторы многообразны, как по своей природе, так и по воздействию на живые организмы. Условно все факторы среды подразделяются на две большие группы — абиотические и биотические. Некоторые ученые в отдельную группу выделяют антропогенные факторы.

Абиотические факторы — это факторы неживой природы, прямо или косвенно воздействующие на живые организмы. К ним относятся климатические (температура, барометрическое давление, ветер, влажность, световой режим и другие), атмосферные (химический состав атмосферы), почвенные (эдафические), геоморфологические (орографические), гидрологические и другие.

Биотические факторы — это факторы живой природы, всевозможные формы влияния живых организмов друг на друга. Они носят самый разнообразный характер. Эти влияния могут быть со стороны растений (фитогенные), животных (зоогенные), грибов и микроорганизмов. Живые существа служат источником пищи (растения — для животных-фитофагов, животные — для хищников), средой обитания (хозяин для паразитов, крупные растения для эпифитов), способствуют размножению (опылители растений), оказывают химические, физические и другие воздействия.

Антропогенные факторы - это те формы деятельности человека, которые воздействуют на окружающую среду, изменяют условия обитания живых организмов или непосредственно влияютна отдельные виды растений и животных. В последние десятилетия возрастающие действия антропогенные факторов привело к возникновению сложных экологических проблем биосферы.

Некоторые общие закономерности воздействия экологических факторов: правило оптимума, правило лимитирующих факторов, правило взаимодействия факторов и др. Каждый фактор имеет определенные пределы положительного влияния на организм. Интенсивность экологического фактора, наиболее благоприятная для жизнедеятельности организма, называется оптимумом или зоной оптимумом экологического фактора. Пределы выносливости между критическими точками называют экологической валентностью (толерантностью)организмов по отношению к конкретному фактору.

Закон толерантности гласит: присутствие или процветание каких-либо организмов в данном местообитании зависит от комплекса экологических факторов, к каждому из которых у организма существует определенный диапазон толерантности — выносливости. Диапазон устойчивости по каждому фактору ограничен его минимальными и максимальными значениями, в пределах которых только и может существовать организм (экологический стандарт вида).

Экологическая классификация организмов основана на учете различных критериев- способа питания, передвижения, места обитания, отношения к отдельному фактору и др,

По способу питания все живые организмы подразделяются на две большие группы-автотрофы и гетеротрофы. Автотрофы(гр.сам и пища)- организмы, синтезирующие из неорганических минеральных соединении органические вещества с использованием солнечной энергии ; к ним относятся, в основном, зеленые растения, осуществляющие фотосинтез. Гетеротрофы(гр. Иной)- организмы, использующие органические вещества; это- животные, грибы и большинство микроорганизмов. Среди гетеротрофов различают фитофагов, использующих растительную пищу, и зоофагов, питающихся животными. Потребители мертвых организмов по пищевой специализации подразделяются на некрофагов (от греч. nekros — мертвый) — потребителей трупов животных, коп-рофагов (от греч. kopros — помет) — потребителей экскрементов, сапрофагов (от греч. sapros — гнилой) — потребителей мертвых растительных остатков и детритофагов (от греч. detritis — истертый) — потребителей полуразложившихся органических веществ.Выделяют еще миксотрофные (от греч. mixis — смешение и trophe — пища, питание) организмы, которые в зависимости от условий внешней среды, сочетают автотрофный и гетеротрофный способы питания (сине-зеленые водоросли, растения-паразиты (сапрофиты), растения-хищники, эвгленовые).

В основу экологической классификации могут быть положены места обитания. Например, водные организмы — гидробионты подразделяются на бентосные (от греч. benthos — глубина) — живущие на дне водоема (губки, актинии, придонные рыбы), планктонные (от греч. planktos — блуждающий) — обитающие в толще воды и пассивно переносимые водными течениями (одноклеточные водоросли, медузы, крылоногие моллюски, икра, мальки рыб) и нек-тонные (от греч. nektos — плавающий) — активно плавающие (рыбы, дельфины, головоногие моллюски).

По экологической классификации можно разделять отдельные группы организмов по их отношению к свету, влажности, температуре. Например, по отношению растений к влажности их подразделяют нагигрофитов, мезофитов и ксерофитов, а по отношению к богатству почв (плодородию) выделяют растения олиготрофные, мезотрофные и эвтрофные.

Разделение организмов на эврибионты и стенобионты - пример простейшей экологической классификации.

По функции в экосистеме – продуценты, консументы, редуценты.

По способу добывания пищи среди организмов можно выделить: фильтраторов (мелкие рачки, беззубки, кит), пасущиеся формы (копытные, жуки-листоеды), собиратели (дятлы, кроты, куриные птицы), охотники на движущуюся добычу (мухи-ктыри, щуки, соколы, волки) и т.д. Деление на экологические группы может носить еще более дробный характер. У лесных птиц, например, по объектам питания можно выделить: насекомоядных, плодоядных, насекомоядно-плодоядных, семеноядных, насекомоядно-семеноядных, плотоядных, всеядных и т.д. По месту добычи пищи: кормящиеся на земле, на кустах, в нижнем ярусе леса, на стволах, в кронах, в воздухе и т.п. По месту устройства гнезд: гнездящиеся на земле, на кустах, на деревьях, в дуплах и т.д.

По отношению к свету выделяют следующие экологические группы растений: гелиофиты (светолюбивые); сциофиты (тенелюбивые); теневыносливые (факультативные гелиофиты); По отношению к теплу выделяют следующие экологические группы: Эвритермные и стенотермные организмы (см. предыдущий урок) Термофилы и криофилы (теплолюбивые и холодолюбивые) По степени адаптации к условиям дефицита тепла различают нехолодостойкие (гибнут при температуре замерзания воды из-за инактивации ферментов), неморозостойкие (гибнут, если в клетках начинают образовываться кристаллики льда; поэтому основной адаптацией является накопление сахаров и других веществ при понижении температуры), морозостойкие (например, переохлажденное состояние холодноводных рыб поддерживается накоплением в жидкостях тела так называемых биологических антифризов - гликопротеидов, понижающих точку замерзания). По степени адаптации к повышенным температурам выделяют не жаростойкие виды (повреждаются при t=30. 40 oC); жаровыносливые (выносят +50. + 60 oС); жароустойчивые (это, прежде всего, термофильные бактерии, некоторые виды сине-зеленых водорослей).

Так как нельзя полностью отразить все стороны приспособленности организмов к среде, используя лишь один критерий, разнообразные экологические классификации помогают выявлять возможные пути приспособления организмов. Следует заметить, что представители одной и той же жизненной формы могут быть отнесены к разным экологическим группам. Так к жизненной форме "деревья" относятся клен и пихта, но если первого представителя можно отнести к экологической группе светолюбивых организмов, то второго - к тенелюбивым.

Один и тот же вид в разных частях ареала, в разных экологических условиях может иметь разные жизненные формы. Жизненная форма может меняться с переменой условий существования – экологических факторов. С другой стороны, в разных флористических областях, при условиях сходства климата, почв, систематически далекие виды могут образовывать сходные жизненные формы.

Читайте также: