Классификация событий алгебра событий реферат

Обновлено: 04.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Цель работы: донести до слушателя основные сведения об этой теории, показать, как правильно производить расчёты, как нужно рассуждать при решении задачи.

Задачи работы: рассказать о принципах теории, формулах вычисления вероятностей, интересных фактах и практическом применении.

Проблемные вопросы:

Чем занимается теория вероятностей?

Каковы её основные принципы?

С какими другими разделами математики граничит?

Где она применяется?

Актуальность исследования состоит в том, что теория вероятностей имеет практическое применение, в некоторых случаях может встретиться в обыденных ситуациях, таких как участие в лотерее, розыгрыш призов и пр.

Объект исследования: теория вероятностей как раздел математики.

Методы исследования: просмотр сайтов в Интернете, чтение книги, применение собственных знаний, полученных ранее.

Определение

Теория вероятностей – один из разделов математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр, таких как кости, рулетка и др.

Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей. Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Также важный вклад в развитие теории вероятностей внесли Якоб Бернулли, Пьер-Симон Лаплас, Симеон Пуассон и некоторые другие. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

hello_html_m2015dce5.jpg

Якоб Бернулли Пьер-Симон Лаплас Симеон Пуассон

27 декабря 1654 - 16 августа 1705 23 марта 1749 — 5 марта 1827 21 июня 1781, — 25 апреля 1840

Суть этого раздела математики

Теория вероятностей в общем виде показывает, каковы шансы определенного случая (на математическом языке такие случаи называются благоприятными исходами ). Например, у нас есть монета с орлом и решкой. Какова вероятность того, что, подкинув монету, выпадет орёл? Очевидно, что ½. А какова вероятность того, что выпадет решка? Опять же, ½. Как видим, шансы выпадения орла и решки равны. В таком случае говорят, что события равновероятны. В общем виде равновероятными событиями называются такие события, которые могут случиться с одинаковой вероятностью. Вот еще пример: игральная кость. Если она является правильной фигурой, и её грани отличаются лишь количеством очков, то вероятность выпадения любого числа равна 1/6.

hello_html_77baf36e.jpg

Результаты представлены в таблице:

Как мы знаем, ½ = 50%. Из таблицы видно, что с бОльшим числом бросков отношение выпавших решек и орлов к общему количеству бросков стремится к 50%, то есть к ½.

Комбинаторика и формулы

Определение комбинаторики как раздела математики довольно трудное для понимания, поэтому приведу несколько примеров, чтобы стало понятно, чем же она занимается. Также разберём некоторые формулы, которые помогут нам в дальнейшем.

Пример 1. У нас есть 2 книги, назовём их А и В. Сколько существует способов их размещения по порядку вертикально на пустой полке? Очевидно, можно поставить сначала А, потом В. Или же сначала В, потом А. А еще как-то можно? Нет, больше никак. Значит, существует 2 способа их размещения. Идём дальше.

Пример 3. В забеге участвуют 5 спортсменов. Сколько существует вариантов первых пришедших к финишу троек? Будем считать, что никакие 2 и более участников не пришли одновременно, и все дошли до финиша.

Где А – искомое число благоприятных исходов; n 1, n 2, n k – количество возможных отдельных событий (под каждым множителем стоит отдельное событие).

По формуле получаем: А (троек первых мест) = 5*4*3 = 60

В приведённых выше примерах порядок участников на пьедестале имел значение. Нам было важно, кто будет первым, вторым и третьим. Однако существуют ситуации, когда порядок выбора не важен, и на эти ситуации тоже есть своя формула. Снова для начала рассмотрим пример, затем – формулу.

hello_html_m49f0634a.jpg

Сократим числитель и знаменатель, получим 14*13*12*11 / 4*3*2*1

Продолжим преобразование: 7*13*11 = 1001

Как видим, число получилось намного меньше того, которое мы рассчитали вначале. Поэтому, следует различать случаи в комбинаторике, которые называются РАЗМЕЩЕНИЯМИ и СОЧЕТАНИЯМИ. Размещение требует учёта порядка каких-либо предметов (под этим словом будем понимать элементы множества , множество же – совокупность каких-либо предметов, объединённых общим свойством ); сочетание не требует порядка. Как видно из прошлого примера, это очень важно понимать. А чтобы выяснить, какой из этих случаев содержится в задаче, нужно просто немного подумать, логически поразмышлять: нужно ли учитывать порядок или нет ?

А теперь перейдём к формуле. Приводить ещё один пример не стану, остановимся на этом.

В общем виде выражение выглядит так: 14*13*12*…*5 / 10*9*8*…*1

В некоторых случаях удобно использовать факториал – произведение всех натуральных чисел от 1 до n включительно. Записывается факториал с помощью значка восклицательного знака (!). Например, факториал числа 4 пишется так: 4!. Применим это и к нашему выражению: 14*…*5/10!

Итак, чем же занимается комбинаторика? Комбинаторика занимается вычислением (нахождением) возможных исходов события. Это может помочь находить вероятности каких-либо исходов.

Как подсчитать вероятность?

Для того чтобы найти вероятность какого-либо случая, нужно тоже применять некоторые формулы. Но для начала разберём свойства в теории вероятностей, принимаемые как аксиомы.

1) Любая вероятность, принадлежащая данному множеству, больше либо равна 0.

2) Вероятность достоверного события равна 1.

3) Для совокупности несовместных событий из множества исходов случайного эксперимента справедливо следующее равенство:

где P ( S k ) – вероятность какого-либо события, S 1 , S 2 , S n – события какого-либо эксперимента.

Разберём эти аксиомы.

Первая гласит о том, что любая вероятность события либо равна 0, то есть событие невозможно, либо больше 0, т.е. событие может случиться.

Вторая говорит о том, что событие, которое произойдёт в абсолютно всех экспериментах, имеет вероятность, равную 1.

Третья аксиома о том, что вероятность некоторых несовместных событий (т.е. тех, которые не могут случиться в одних и тех же экспериментах одновременно) можно определить как сумму отдельных вероятностей этих событий. Например, вероятность того, что, подбросив игральный кубик, выпадет либо 1 очко, либо 2 очка, равна сумме отдельных вероятностей этих исходов:

P (1 или 2 очка) = P (1 очко) + P (2 очка) = 1/6 + 1/6 = 1/3

Исходя из этих аксиом, можно найти и другие важные свойства:

1) Вероятность какого-либо события равна 1 минус вероятность противоположного ему события:

где S a и S b – противоположные события.

2) Вероятность любого события меньше либо равна 1, так как достоверное событие обладает наибольшей вероятностью по определению, а оно равно 1.

3) Вероятность невозможного события равна 0:

P ( ) = 0,

где - невозможное событие.

4) Для двух произвольных событий определённого множества исходов какого-либо эксперимента справедливо следующее равенство:

где S 1 и S 2 – произвольные события, P ( S 1 ∪ S 2 ) – вероятность того, что произойдёт либо S 1 , либо S 2, P ( S 1 ⋂ S 2 ) – вероятность того, что эти два события произойдут одновременно.

Теперь, зная аксиомы и свойства событий и вероятностей, перейдём к рассмотрению примеров и формул, с помощью которых мы будем находить искомые вероятности.

hello_html_m377de328.jpg

Пример 1. Снова возьмём игральный кубик. Вероятность того, что выпадет 1 очко (равно как и 2 или 3 или 4 и т.д.), равна 1/6. Как мы нашли это число? Разделили число благоприятных исходов (а именно 1) на число всех возможных исходов (их 6). Чтобы понять, почему производились такие расчёты, давайте снова нарисуем чертёж. Мы знаем, что все исходы броска кубика равновероятны. Помним, что вероятность достоверного события равна 1. Получается, нахождение вероятности сводится к решению уравнения: 6х=1, где х – искомая вероятность. Отсюда х = 1/6.

Чтобы не прибегать к составлению уравнения и решению его, выведем формулу для подсчёта вероятности:

где n – число благоприятных исходов

m – число всех возможных исходов.

ак видим, нам нужно найти вероятность выпадения ОДНОЙ из ВСЕХ сторон, т.е. число благоприятных исходов равно 1, всех возможных – 6 (так как сторон в кубике 6). Отсюда получаем ту же самую вероятность, 1/6.

Если мы захотим рассчитать вероятность для выпадения либо 1, либо 2, либо 3 очков, можем сделать это с помощью тех же формул:

2) 1/6 + 1/6 + 1/6 = 1/2

Напомню, формулы из 3-ей аксиомы действует в том случае, если события НЕ могут произойти одновременно.

Итак, мы разобрали основные формулы нахождения общего числа исходов и вероятностей. С их помощью можно решать различные задачи, не забывая при этом, в каком случае мы применяем тут или иную формулу.

Практическое применение

Страхование

hello_html_34846a52.jpg

Как мы знаем, страховые компании выплачивают деньги застрахованному лицу, если произошёл какой-либо несчастный случай. Сумма, которую должен заплатить человек страховой компании и застраховать тем самым что-либо или кого-либо, рассчитывается определённым образом. Основой, на которую опираются страховые компании, является статистика - отрасль знаний, в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических данных. Эти данные несут информацию о том, сколько за прошедшее время произошло несчастных случаев одного вида (например, аварий, ДТП и пр.), вероятность того, что они произойдут и некоторые другие сведения. Таким образом, для подсчёта стоимости страхового полиса и компенсации, выплачиваемой страховой компанией, требуются накопленные ранее знания о случившихся несчастных случаях, о теории вероятностей и т.д.

Также применение теории вероятностей, статистики, различных таблиц используется, как я уже сказал, в медицине, в механике и инженерном деле. Например, таблицы смертности в медицине, срок полезного функционирования детали или механизма в механике, инженерии. Как видим, математика может пригодиться в вышеприведённых сферах государства, промышленности и т.д.

Интересные факты

Парадокс Монти Холла

hello_html_m3f2cdca1.jpg

Вы попали в финал телевизионного конкурса, и перед вами – три закрытые двери. За одной из них – главный приз, автомобиль, за двумя другими – козы. Нужно выбрать одну из трёх дверей. Когда вы указали на одну из дверей, ведущий должен открыть одну из оставшихся дверей, за которой находится коза. Он даёт вам шанс изменить выбор. Вы можете воспользоваться этим, а можете оставить своё решение без изменения. Как нам поступить, чтобы увеличить шансы на выигрыш? Или же они не изменятся, и от нашего решения вероятность не зависит?

Сперва покажется, что вероятность одинакова и равна ½. Рассуждения таковы: так как перед нами 2 закрытых дверей, и за одной из них находится приз, значит, мы можем с одинаковой вероятностью как выиграть, так и проиграть (не будем принимать козу за выигрыш). Но такой ход мыслей неверен. Рассуждения с математической точки зрения следующие: перед нами 3 двери, на каждую приходится вероятность выигрыша по 1/3. Когда мы выбираем дверь, ведущий показывает, за какой дверью приза нет. Значит, если он открыл именно эту дверь, то, скорее всего, приз находится за той, которую он не открыл. На эту невыбранную закрытую дверь приходится вероятность 2/3. Чтобы лучше понять эту ситуацию интуитивно, изменим количество дверей. Пусть их будет не 3, а 1000. Мы выбрали одну из них, вероятность победы – 1/1000. Ведущий убрал 998 дверей. Скорее всего, приз окажется за той дверью, которую он не открыл. Сначала была вероятность выигрыша 1/1000, теперь, изменив выбор, можно увеличить её на 998/1000. Я думаю, это число показывает, что выгоднее изменить выбор, нежели оставить. Напомню, он открывает только ту дверь или те двери, которые выбраны не были, и за которыми находятся коза или несколько коз. Для подтверждения этих рассуждений можно провести подобный опыт со своим напарником: взять, к примеру, 3 коробка от спичек, 2 монеты по 50 копеек и 1 монету в 1 рубль (можно взять и другие, лишь бы 2 были одинаковы, а 1 – либо больше, либо меньше). Один человек играет роль ведущего, другой – участника. Далее правила ясны: ведущий наугад располагает монеты под коробками, участник не знает, где какая монета. Игрок выбирает любой из них. Ведущий убирает тот коробок, под которым меньшая по достоинству монета, и который не был выбран игроком. Далее участник меняет свой выбор. Если он выиграл, на листок записать букву В, если проиграл – букву П. Желательно проводить этот опыт большое число раз (вспомните закон больших чисел: чем больше количество проводимых экспериментов, тем ближе практическая вероятность будет к теоретической). Лично я со своим папой однажды провёл его 50 раз. Получилось так, что выиграл 31 раз, а проиграл – 19. Не стоит забывать, что монеты желательно располагать в случайном порядке под коробками после проведения очередного опыта.

Парадокс о днях рождения

hello_html_5b2752d.jpg

В классе учатся 23 человека. Какова вероятность того, что хотя бы 2 ученика этого класса родились в один и тот же день?

В очередной раз интуиция подсказывает, что вероятность крайне мала. Но на самом деле это не так. Давайте разберёмся.

Примем, что число дней в году равно 365. Рассмотрим общую ситуацию для N человек, N не больше 365.

Возьмём первого человека, он мог родиться в любой из 365 дней, равно как и второй, третий и т.д. до N . Следовательно, число всех возможных вариантов дней рождений равно 365^ N . Из этих случаев найдём такие, в которых нет совпадающих дат рождения. В таких случаях первый человек мог родиться в любой из 365 дней, второй – в любой из 364, третий – в любой из 363 и т.д. до N человека, отмечающего день рождения в любой из 365 – N + 1 дней. Получается, что число случаев с несовпадающими датами рождения равно 365 * 364 * 363 * … * (365 – N + 1) = 365! / (365 – N )!

Напомню, что для нахождения вероятности нужно число благоприятных исходов разделить на число всех возможных исходов. Поэтому, вероятность того, что все ученики будут отмечать дни рождения в разные дни, равна

. Но нас интересует вероятность рождения как минимум 2 учеников в одинаковые дни. Так как найденная нами вероятность противоположна той, которую мы собираемся найти, то нам нужно из 1 вычесть это выражение, подставить вместо N число 23 и произвести расчёты.

При N = 23 вероятность равна 0,507, т.е. 50,7 %. Именно при этом значении вероятность больше 1/2. При N = 30 она становится больше 70 %, а при N = 45 она примерно равна 94 %. Не так уж всё и очевидно на первый взгляд!

Теория вероятностей – довольно интересный, хотя в некоторых случаях и непростой для понимания, раздел математики. Он связан со многими важными для общества отраслями: медициной, страхованием, статистикой и др. Для понимания теории вероятностей нужно владеть азами некоторых других разделов математики, таких как комбинаторика, теория множеств.

1.Вентцель Е.С. Теория вероятностей. М.: Наука, 1969.

2.Гмурман В. Е. Теория вероятностей и математическая статистика. Учеб. Пособие для вузов. – Изд. 7-е, стер. – М.: Высш. шк., 2001.

Вопрос 1. Элементы теории вероятностей.

Теория вероятностей – раздел математики, изучающий количественные закономерности случайных явлений, т.е. таких явлений, которые при неоднократном воспроизведении при одинаковых условиях могут протекать по-разному. Неодинаковые результаты получаются при неизменности основных условий. Они всегда связаны с наличием каких-то второстепенных факторов, которые меняются и вносят различия в результаты.

Объекты теории вероятностей

Случайное событие – всякий факт, который может произойти или не произойти в результате случайного явления.

Случайная величина – количественное проявление случайного явления, принимает различные значения.

Случайное явление может протекать по-разному Случайное событие может произойти, а может не произойти Случайная величина может принимать разные числовые значения
стрельба по мишени - попадание в мишень - выбито более 7 очков количество попаданий при трех выстрелах
бросание монеты выпадение орла больше раз, чем решки количество выпадений орла
случайное вытаскивание черных и белых шаров а) все вытащенные шары – белые б) из пяти вытащенных 2 – белые количество белых шаров после 5 попыток вытаскивания

Классификация событий

Все наблюдаемые при определенных условиях события можно разделить на следующие виды:

1) Достоверное – обязательно произойдет при определенных условиях. Например, выпадение какого-то очка при бросании кубика;

2) Невозможное – никогда не произойдет при определенных условиях. Например, выпадение 8 очков при однократном бросании одного кубика.

3) Случайное – может произойти или не произойти. Именно такие события изучает теория вероятности. Обозначается буквами латинского алфавита: А, В, С и т.п.

5) Совместные – когда два события А и В протекают одновременно. Например, при бросании 2-х кубиков выпадение четных очков. Аналогия с пересекающимися множествами.

6) Независимые – наступление события А не влияет на наступление события В. Например, стрельба 2-х человек по мишени: промах одного не влияет (не зависит) на результат другого.

7) Зависимые – наступление или не наступление события А влияет на возможность наступления события В. Например, А – вытаскивание из колоды бубновой карты, В – вытаскивание затем бубнового туза.

8) Элементарное (простое) – событие, содержащее только один исход, не разложимое на другие события. Например,

испытание – стрельба по мишени

случайное событие – выбить не менее 7 очков – содержит 4 исхода, значит это не элементарное событие

случайное событие – выбить 10 очков – элементарное.

Совокупность всех исходов испытания называют пространством элементарных событий (исходов).

9) Противоположное событие – все остальные случаи, кроме рассматриваемого события.

Теория вероятностей – это раздел математики, который изучает закономерности в массовых случайных событиях.

Событие – это факт, который может произойти или не произойти в результате проведения опыта или испытания.

Выделяют три вида событий:

Достоверное событие – это событие, которое обязательно произойдёт в результате данного опыта.( например: при бросании кубика выпадет 1≤целое число≤6).

Невозможное событие – это событие, которое никогда не произойдет в условиях данного опыта. .( например: при бросании кубика выпадет число≥7, например 10).

Случайное событие – это событие, которое может произойти или не произойти в результате данного опыта. ( например: бросили кубик один раз – выпадение числа 3 – случайное событие).

События обозначаются первыми заглавными буквами латинского алфавита: А, В, С, D,.

События называются массовыми, если они происходят одновременно в достаточно большом числе испытаний или многократно повторяются .( например: много людей бросают кубики или один человек бросает кубик много раз).

Классификация случайных событий.

Равновозможные события – это события такие, что ни одно из них не является более возможным, чем другие ( например: кубику всё равно на какую грань упасть).

Совместные события – это события, которые могут произойти одновременно в результате данного опыта. ( например: бросаем 2 кубика - выпадение числа 1 и выпадение числа 3 – совместные события).

Несовместные события – это равновозможные события такие, что появление одного из них исключает появление остальных.( например: бросаем 1 кубик – выпадение цифры 3 исключает выпадение остальных цифр).


Несколько случайных событий: образуют полную группу событий, если каждое из них может произойти в результате данного опыта. ( например: выпадение чисел 1,2,3,4,5,6 –полная группа событий для бросания одного кубика).

Противоположные события – это равновозможные несовместные события, образующие полную группу событий. Появление события исключает появление события . ( например: орёл или решка, попадание в мишень или промах).

Несмотря на то, что события случайные, при большом числе опытов они подчиняются закономерностям, которые изучает теория вероятностей.

Вероятность случайного события.

Вероятность случайного события (обозначается Р(А)) –это число, которое говорит нам о степени возможности наступления события .

Существуют два определения вероятности: классическое и статистическое, каждое из них имеет свои достоинства и недостатки.

Классическое определение вероятности.


Вероятность события – это отношение числа исходов, благоприятствующих данному событию (m), к общему числу всех несовместных и равновозможных исходов данного опыта (n).



Если А – случайное событие, то


Если А – достоверное событие, то


Если А – невозможное событие, то


Пример: при бросании кубика возможно 6 исходов


Событие А: выпадет четное число. Число исходов, благоприятствующих событию А, m=3.

Достоинства: можно вычислить вероятность не производя испытания.

Недостатки: 1) не всегда известно число исходов опыта,

2) часто невозможно представить результат испытаний в виде равновозможных и несовместных событий.

Поэтому на практике часто пользуются статистическим определением вероятности.

Статистическое определение вероятности.


Пусть А – случайное событие, опыт проводился n раз, в результате опыта событие А произошло m раз, тогда m- частота наступления события А, а величина называется относительной частотой события А.

Для разных n , могут заметно отличаться, но если проводим длинную серию опытов, т.е. , то к некоторому пределу.


Статистической вероятностью события А называется предел, к которому стремится его относительная частота , при неограниченном увеличении числа испытаний.



Пример: среди 1000 новорожденных 517 мальчиков. Найти относительную частоту рождения мальчиков. , тем не менее, известно, что


Так как вероятность – это число следовательно, с этими числами можно производить арифметические действия.

Формула полной вероятности.


Иногда событие А может произойти только совместно с одним из нескольких других событий, их принято называть гипотезами и обозначать Тогда полная вероятность события А вычисляется по формуле:





Пример: Н

Н Н СобытиеА:попадёмв домик.







Формулы Байеса.


До проведения опыта мы имели вероятности гипотез


(В примере ).

После проведенияопыта:


Пусть событие А произошло (т.е. попали в домик), вероятности гипотез изменились. Для того, чтобы вычислить вероятности гипотез, при условии, что произошло событие А используют формулы Байеса:



Пример




Случайная величина.

Случайная величина – это переменная, которая принимает свои значения в зависимости от случайных обстоятельств.

.Дискретная случайнаявеличина (точечная) принимает отдельные числовые значения (число студентов в аудитории, кубик: 1,2,3,4,5,6)

Непрерывная случайная величина принимает любые значения из некоторого интервала( масса тела, рост студентов).

Случайные величины обозначают заглавными последними буквами латинского алфавита:X,Y,Z…,а их возможные значения прописными буквами:



Любое правило, которое устанавливает связь между возможными значениями случайной величины и вероятностями, с которыми она эти значения принимает, называется законом распределения случайной величины.

Закон распределения случайной величины можно задавать в виде:

3) Функции распределения.

Функция распределения.


1). F(x) неубывающая: F(x2)≥F(x1) если x2≥x1 2).F(-∞)=0; F(+∞)=1
1 F(x)

4). Функция плотности распределения f(x): (только для непрерывной случайной величины).



Найдём предел:


Обозначим: . это функция плотности распределения.

То есть функция распределения F(x) является первообразной для функции плотности распределения f(x).

Площадь под кривой

1). f(x) неотрицательная функция (f(x)≥0).

2). Вероятность попадания в элементарный интервал dx=(x+Δx)-x равна f(x)dx=dP.



3).Вероятность попадания случайной величины в интервал [a,b]:


←-∞ a b +∞→


4). Условие нормировки: площадь под кривой равна единице.

Формула полной вероятности.

Формулы Байеса.

Основы теории вероятностей.

Теория вероятностей – это раздел математики, который изучает закономерности в массовых случайных событиях.

Событие – это факт, который может произойти или не произойти в результате проведения опыта или испытания.

Выделяют три вида событий:

Достоверное событие – это событие, которое обязательно произойдёт в результате данного опыта.( например: при бросании кубика выпадет 1≤целое число≤6).

Невозможное событие – это событие, которое никогда не произойдет в условиях данного опыта. .( например: при бросании кубика выпадет число≥7, например 10).

Случайное событие – это событие, которое может произойти или не произойти в результате данного опыта. ( например: бросили кубик один раз – выпадение числа 3 – случайное событие).

События обозначаются первыми заглавными буквами латинского алфавита: А, В, С, D,.

События называются массовыми, если они происходят одновременно в достаточно большом числе испытаний или многократно повторяются .( например: много людей бросают кубики или один человек бросает кубик много раз).

Классификация случайных событий.

Равновозможные события – это события такие, что ни одно из них не является более возможным, чем другие ( например: кубику всё равно на какую грань упасть).

Совместные события – это события, которые могут произойти одновременно в результате данного опыта. ( например: бросаем 2 кубика - выпадение числа 1 и выпадение числа 3 – совместные события).

Несовместные события – это равновозможные события такие, что появление одного из них исключает появление остальных.( например: бросаем 1 кубик – выпадение цифры 3 исключает выпадение остальных цифр).


Несколько случайных событий: образуют полную группу событий, если каждое из них может произойти в результате данного опыта. ( например: выпадение чисел 1,2,3,4,5,6 –полная группа событий для бросания одного кубика).

Противоположные события – это равновозможные несовместные события, образующие полную группу событий. Появление события исключает появление события . ( например: орёл или решка, попадание в мишень или промах).

Несмотря на то, что события случайные, при большом числе опытов они подчиняются закономерностям, которые изучает теория вероятностей.

Например, стрелок стреляет по мишени, разделенной на четыре области. Выстрел – это испытание. Попадание в определенную область мишени – событие.

События называют несовместным, если появление одного из них исключает появление других событий в одном и том же испытании.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.

Пример. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу.

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

Пример. Появление того или иного числа очков на брошенной игральной кости – равновозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника и наличие очков не оказывает влияния на выпадение любой грани.

2.2 Определение вероятности

Вероятность – одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них – красные, 3 – синие и 1 – белый. Очевидно, возможность вынуть наудачу из урны цветной (т.е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

Поставим перед собой задачу дать количественную опенку возможности того, что взятый наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Элементарные исходы обозначим через w1, w2, w3 и т.д. В нашем примере возможны следующие 6 элементарных исходов: w1 – появился белый шар; w2, w3 – появился красный шар; w4, w5, w6 – появился синий шар. Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковы и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере благоприятствуют событию А (появлению цветного шара) следующие 5 исходов: w2, w3, w4, w5, w6.

Таким образом, событие А наблюдается, если в испытании наступает один, безразлично какой, из элементарных исходов, благоприятствующих А; в нашем примере А наблюдается, если наступит w2, или w3, w4, или w5, или w6. В этом смысле событие А подразделяется на несколько элементарных событий (w2, w3, w4, w5, w6); элементарное же событие не подразделяется на другие события. В этом состоит различие между событием А и элементарным событием (элементарным исходом).

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу называют вероятностью события А и обозначают через Р (А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р (А) = 5/6. Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой:

Р(А) = m\n, где m – число элементарных исходов, благоприятствующих А, n – число всех возможных элементарных исходов испытания.

Здесь предполагается, что элементарные исходы несовместны, равновозможны и образуют полную группу.

Из определения вероятности вытекают следующие ее свойства:

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m=n следовательно,

Свойство 2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае m = 0, следовательно,

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0 < m < n, значит, 0 < m\n < 1, следовательно,

Раздел: Математика
Количество знаков с пробелами: 24510
Количество таблиц: 0
Количество изображений: 0

Читайте также: