Как из соматической клетки человека вырастить новые органы реферат

Обновлено: 02.07.2024

Одно из важных направлений современной медицины - создание искусственных органов. Искусственные органы - это созданные человеком органы - имплантаты, которые могут заменить настоящие органы тела.

В наши дни актуальна практика выращивания искусственных органов, мнения людей в этой области расходятся в конечном решении. Некоторые люди считают что такие технологии являются опасными и их необходимо дорабатывать перед тем как давать ими пользоваться всем людям, другие скажут что выращивание органов уже достаточно изучено и проработано, такие люди считаю что это новый шаг в развитии человека.

Из всех точек зрения по этой теме можно задать еще больше вопросов для самого себя. Я помогу дать ответ что такое искусственно выращенный орган, как его выращивают и стоит ли он внимания. Что же, приступим к изучению этого вопроса, разберем технологию роста, после кратко углубимся в историю, найдем все плюсы и минусы таких органов и завершим выводом по этому вопросу.

Выращивание искусственных органов.

Органы могут выращиваться искусственно как в теле человека, так и вне организма. В ряде случаев имеется возможность выращивать орган из клеток того человека, которому его собираются трансплантировать. Разработан ряд методов выращивания биологических органов, например, с помощью специальных приборов, работающих по принципу 3D принтера.

Для выращивания органа необходимы в первую стволовые клетки, это те клетки которые еще не определились какая у них роль в организме и зависимо от дозировки цитокина и структуры матрикса стволовая клетка может определить кем она является.

Матриксы играют роль почвы для будущего органа и являются его основой.

Сначала из матриксов делают основу похожую на будущий орган, на эту основу будто нанизывают стволовые клетки. В процессе используются полезные вещества которые играют роль удобрения в процессе. После вводятся капилляры с кровью, такой процесс называют васкуляризацией.

К рассматриваемому направлению можно отнести предложение о возможности выращивания, для замены поврежденного тела человека с сохранившимся мозгом, самостоятельно развивающегося организма, клона - “растения” (с отключенной способностью мыслить).

Сегодня умеют выращивать практически все что только необходимо: кожа, хрящи, кости, кожа, внутренние органы, кровеносные сосуды и самое главное нервная ткань мозга. Раньше считалось что нервную клетку нельзя восстановить, но как оказалось это не так, впервые открыл такое явление ученый Энтони Атала, признанный Врачом года-2011, глава лаборатории в Институте регенеративной медицины Вейк Сити (США). Именно под его руководством 12 лет назад был создан первый искусственный орган – мочевой пузырь. Позже он вспоминал свои слова:

История развития выращивания искусственных органов

1925 год - это год, когда С. Брюхоненко и С. Чечулин (советские ученые) провели опыт со стационарным аппаратом, способным заменить сердце. Вывод из этого опыта состоял в следующем: голова собаки, отделённая от туловища, но подключенная к донорским лёгким и новому аппарату способна сохранять жизнеспособность в течение нескольких часов, оставаясь в сознании и даже употребляя пищу. 1925 год принято считать началом отсчета в истории разработок искусственных органов.

В 1936 году ученый С. Брюхоненко самостоятельно разрабатывает оксигенатор - аппарат заменяющий функцию легких. В этот момент появилась теоретическая возможность, что теперь можно поддерживать полную жизнеспособность отделенных голов животных до нескольких суток. Но на практике подтвердить эту теорию не удалось. Было выявлено много недостатков оборудования: разрушение эритроцитов, наполнение крови пузырьками, тромбы, высокий риск заражения. Из-за этого первое применение подобного оборудования затягивается на 17-20 лет.

Начало 1937 года - В. Демихов кустарно изготавливает первый образец имплантируемого сердца и испытывает его на собаке. Но низкие технические характеристики нового прибора позволяют непрерывно использовать его в течение лишь полутора часов, после чего собака погибает.

1943 год - Нидерландский ученый В. Кольфф разрабатывает первый аппарат гемодиализа, то есть, первую искусственную почку. Через год он уже применяет аппарат во врачебной практике, в течение 11 часов поддерживая жизнь пациентки с крайней степенью почечной недостаточности.

1953 год - Дж. Гиббон, ученый из Соединенных штатов, при операции на человеческом сердце впервые успешно применяет искусственные стационарные сердце и лёгкие. Начиная с этого времени, стационарные аппараты искусственного кровообращения становятся неотъемлемой частью кардиохирургии.

Плюсы искусственных органов

1 Искусственные органы можно будет заменять больные или поврежденные органы, тем самым, обеспечивая хворого пациента возможность вести здоровую и нормальную жизнь.

2 Искусственные органы может удовлетворить огромный спрос на здоровые донорские органы. Существует огромный список пациентов, которые нуждаются в срочной здоровые органы, но не можете найти подходящий донор.

3 Главная проблема в виде отторжения органа может быть решена за счет искусственных органов. В качестве искусственных органов создаются путем взятия стволовых клеток одного и того же лица и того же органа, то возможность отказа существенно снижается.

4 С помощью регенеративной медицины и искусственных органов терапии, ожоговых даже можете иметь новую кожу.

5 Время, необходимое, чтобы создать или вырастить искусственный орган является меньшей, чем период ожидания на поиск подходящего донорского органа которого совпадает с телом получателя прекрасно.

Минусы искусственных органов

1 Серьезной проблемой является возможное наличие болезни в основе ткани, которая используется для создания органа. Иногда, даже иностранным ткани тела используется для регенерации или восстановления органов. В таких случаях существует вероятность того, что ткани уже инфицированы другими заболеваниями.

2 Общая стоимость выращивания и пересадки искусственного органа, является запредельной, и, следовательно, ограничивает область его применения для широкой публики.

3 Есть высокие шансы на отказ органов, и организм даже может занять некоторое время, чтобы адаптироваться к новому органу. Как организм реагирует на новый орган может варьироваться от человека к человеку. Если есть проблемы с функционирование органов, вам может потребоваться перейти на пересадку.

4 Есть некоторые этические проблемы, связанные с искусственным органам. Есть вероятность, что люди могут злоупотреблять возможностью искусственного органа. В случае с курением, человек не может серьезно относиться к последствиям, и перейти на искусственное орган терапию вместо того, чтобы избегать никотина.

Из всего сказанного выше я убедился что искусственные органы сложный объект для дачи одного верного решения. Каждый будет относиться по своему к этой теме, но я считаю что такая прекрасная возможность как самостоятельное выращивание органа для пересадки другому человеку это настоящий прорыв в развитии, новые возможности и варианты решения разных проблем. Каждый решит сам для себя, нужны ли они ему эти органы, но я уверен, что если они вдруг понадобятся человеку, он явно будет рад тому что сможет получить его в краткие сроки. Нет необходимости ждать донора, наука позволяет вам вырастить себе свой орган и это чудесная возможность. Но у всех чудес есть свои нюансы, так и тут, остаются некоторые пробелы в процессе выращивания, остаются риски, цена выращивания такого органа крайне велика для обычного человека. Все эти проблемы будут решены не скоро, но наука держится на людях, чем больше будет умных людей, тем быстрее будут находиться решения новым и старым проблемам сегодняшнего дня.
И так медицина не стоит на месте, она развивается и в скором будущем созданные искусственные органы смогут полностью заменить больные органы человека. Следовательно продолжительность жизни станет выше. Люди смогут гораздо легче переносить некоторые болезни, такие как рак. Поэтому я смело заявляю, это не конец, не середина, а только начало в истории развития медицины человеком.

Демихов В.П. (1960), Пересадка жизненно важных органов в эксперименте. — М.: Медгиз

В данном обзоре рассматриваются возможности использования в медицине метода репрограммирования взрослых стволовых клеток человека в плюрипотентные (пребывающие в состоянии неполной дифференцировки). Именно плюрипотентные стволовые клетки (ПСК) обладают способностью при дальнейшем их развитии преобразовываться в структурные компоненты любых органов и систем. Данные клетки не могут развиться в полноценный организм (эмбрион), что сразу же исключает этический барьер как тормозящий фактор в такого рода исследованиях. Метод индукции репрограммирования стволовых клеток (ИРСК) содержит в себе огромный потенциал для дальнейшего развития терапевтического клонирования как перспективного медицинского направления.


2. Masako Tada, Yousuke Takahama, Kuniya Abe, Norio Nakatsuji, Takashi Tada. (2001). Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology. 11, 1553-1558;

4. Кузьмина Е.Ю. Получение индуцированных плюрипотентных стволовых клеток для геннотерапевтической модели мыши: выпускная квалификационная работа бакалавра. Санкт-Петербург, 2016. 51 с.

Введение. Современная медицина активно разрабатывает и внедряет в практику разнообразные биотехнологии, которые открывают возможности для более полной и точной диагностики и лечения патологических состояний, ранее недоступных для коррекции. Идея регенеративной терапии различных заболеваний с использованием стволовых клеток - одно из магистральных направлений медицинской науки. К перспективным технологиям в контексте данного направления относится терапевтическое клонирование.

Терапевтическое клонирование заключается в получении пациент-специфичных линий эмбриональных стволовых клеток (ЭСК), обладающих колоссальными возможностями в поддержании и восстановлении здоровья человека. С биологической точки зрения, терапевтическое клонирование – это то же репродуктивное клонирование, но с ограниченным (до 14 дней) сроком роста эмбриона. По прошествии обозначенного временного промежутка процесс размножения клеток приостанавливается. Название метода предопределено тем, что образующиеся в течение двух недель эмбриональные клетки способны в дальнейшем преобразоваться в дифференцированные клетки различных органов: сердца, печени, поджелудочной железы, почек и т.д. Этот факт благоприятствует использованию данного метода в медицине для терапии многих заболеваний [5].

Выделяя стволовые клетки из эмбриона, срок жизни которого не более 3 - 4 дней, их дальнейший алгоритм развития в лабораторных условиях можно спроектировать в любом направлении. В теории, стволовые клетки способны дать начало любой структуре тела человека, способной заместить патологически изменный фрагмент или даже орган. В том случае, если они получены из тканей, взятых у человека, которому выращивают трансплантат (аутотрансплантация), также решается проблема гистосовместимости при пересадке.

Технология искусственного получения эмбриональных стволовых клеток с помощью клонирования активно разрабатывается в комплексе с биохимическими направлениями по созданию специальных питательных сред для культивирования живых тканей.

При ПЯСК осуществляется перенос ядра, извлеченного из соматической клетки пациента, в цитоплазму энуклеированного ооцита, находящегося в метафазе второго деления мейоза. Как результат, развивающийся эмбрион будет генетической копией донора ядра. По достижении стадии бластоцисты, из ее клеточной массы выделяют клонированные ЭСК и производят исследования свойств полученных клеточных культур [1, с. 207].

Проведение экспериментов с использованием яйцеклеток человека затрудняют различные проблемы этического и биомедицинского характера. Это законодательные нюансы, связанные с получением разрешений регулирующих органов, про­блема оценки качества образовавшихся в организме клеток, риск возникновения мутаций при генно-инженерных манипуляциях и т.д.

Разработка методик формирования линий стволовых клеток человека, несущих генетический материал пациента (полученных методом ПЯСК), откроет широкие перспективы для дальнейших исследований в области клеточной терапии.

Индукция репрограммирования стволовых клеток (ИРСК) человека в плюрипотентные стволовые клетки происходит при внедрении в клетки исходной культуры генов плюрипотентности, способных вернуть взрослые клетки в эмбриональное состояние.

Лаборатория японского учёного С. Яманаки работала над поиском факторов, поддерживающих в ЭСК программу плюрипотентности. Было найдено несколько десятков генов, активность которых в ЭСК была намного выше, чем в дифференцированных клетках. К моменту исследования уже был открыт и тот факт, что слияние ЭСК и специализированной клетки может дать две плюрипотентные клетки [2].

Вооруженная этим знанием, группа учёных внедрила в клетку фибробласта вектор с 24 генами, заставившими часть клеток дать колонии, подобные стволовым клеткам, и принялась по одному удалять гены из этого набора. В результате был установлен список из четырех генов: c-Myc, Oct4, Sox2 и Klf4 (Nanog и Lin28). Стоит отметить, что схема репрограммирования основана на внедрении в культуру соматических клеток человека ретровирусов, несущих такой генный набор. Полученные клетки, названные индуцированными плюрипотентными стволовыми клетками (ИПСК), возникли в результате вышеупомянутой процедуры, имеющей крайне низкий выход, однако применяемые технологии селекции позволяют обнаружить даже одну перепрограммированную клетку на сотни тысяч. Далее последовала серия работ этой и других лабораторий, в которых исследователи оптимизировали состав перепрограммирующих факторов и способ введения вектора в клетку, чтобы повысить эффективность перепрограммирования и снизить вероятность образования опухолевых клеток в результате вызываемой метаморфозы [3].

Гены Sox2 и Oct4 кодируют ключевые белки, необходимые для пролиферации (деления) и поддержания плюрипотентности стволовых клеток. Продукты генов c-Myc и Klf4 способствуют активации Sox2 и Oct4. Ген c-Myc является протоонкогеном: при его гиперэкспрессии может происходить злокачественная трансформация нормальных клеток. Продукт гена Nanog требуется для индукции плюрипотентности соматических клеток. В последних исследованиях была показана целесообразность замены c-Myc и Klf4 на Lin28 и Nanog. Дальнейшую селекцию культур ИПС клеток проводят по соответствию морфологических (компактность колоний, высокое ядерно-цитоплазматическое соотношение и т.д.), иммуногистохимических и генетических характеристик с ЭСК человека [4, с. 9].

Получение стволовых клеток методами ИРСК и ПЯСК не является равноценными и по технологии, и по возможным осложнениям. Применение в клеточной терапии методик, основанных на использовании ретровирусной трансфекции и внесения в клетки протоонкогенов, может представлять опасность. Несмотря на то, что сторонники метода ИРСК уверяют, что указанные проблемы легко преодолимы, сторонники ПЯСК убеждены в необходимости ускорения исследований в наиболее спорных направлениях (использование яйцеклеток человека в ПЯСК и т.д.) для скорейшего внедрения методики переноса ядра, как наиболее перспективной и безопасной. Наряду с этим, пока недостаточно проработаны гарантии безопасности биологического материала при генно-инженерных манипуляциях. Для успешного развития и внедрения в медицинскую практику данных технологий требуется не только детальная разработка вариантов самой методики, но и определение чётких показаний и противопоказаний для ее применения. Кроме того, необходимо наличие совершенных критериев оценки и методов коррекции отдаленных результатов, обучение высококвалифицированных специалистов, совершенствование материальной базы клиник и законодательной базы.

Тем не менее, несмотря на имеющиеся сложности, терапевтическое клонирование отмечается боль­шинством специалистов как одно из наиболее перспек­тивных направлений в заместительной клеточной терапии и, в целом, в мировой научной практике. Важнейшей потребностью сейчас является получение законодательного разрешения на проведение исследований, способствующих стремительному развитию данного направления, и преодоление уже выявленных недостатков и сложностей биомедицинского характера.

Новые органы для своих тканей.

Всеволод Арсеньевич Ткачук, академик, ректор факультета фундаментальной медицины МГУ:

Всеволод Ткачук, академик, ректор факультета фундаментальной медицины МГУ

— Регенеративная медицина сегодня — в большей степени исследовательская область. В науке за это время произошел очень серьезный прорыв, который в ближайшие годы приведет нас к практическим результатам. Некоторые из них мы видим уже сейчас.
— Что именно произошло?

Владимир Павлович Чехонин, академик, вице-президент РАН:

Владимир Чехонин, академик, вице-президент РАН

— Это очень важно на сегодня — отработать механизмы трансляции фундаментальных исследований в практическом здравоохранении. Все существующие сейчас стратегии содержат как компонент именно регенеративную медицину. Я имею в виду стратегию развития медицинской науки, которая уже принята, и стратегию научно-технологического развития страны, которая на текущий момент разрабатывается. В обеих стратегиях есть очень серьезный блок, который, с одной стороны, обеспечивает развитие регенеративной медицины, с другой — дает импульс тому, чтобы эти фундаментальные разработки нашли применение в практическом здравоохранении, что крайне важно. Этот тренд сегодня весьма актуален во всем мире. Необходимо, чтобы российская фундаментальная наука понимала, для чего она работает, и практическое здравоохранение получало весь необходимый комплекс фундаментальной подпитки от науки.
— Вам как специалисту, который занимается нейронауками, что кажется наиболее интересным в контексте прошедшего конгресса?
— Крайне актуально применение клеточных технологий для терапии целого ряда сложнейших заболеваний нервной системы. Есть множество патологических процессов, в которых нарушается структура нервной ткани. И мы очень ждем серьезных достижений и предложений от специалистов в области регенеративной медицины — например, при травмах спинного мозга. Это чрезвычайно важное направление, которому во всем мире уделяется очень серьезное внимание.

Павел Игоревич Макаревич, кандидат медицинских наук, заведующий лабораторией генно-клеточной терапии Института регенеративной медицины МГУ:

Павел Макаревич, кандидат медицинских наук, заведующий лабораторией генно-клеточной терапии Института регенеративной медицины МГУ

— Наша цель — локализация и оптимизация производства на территории Российской Федерации. Мы можем лицензировать продукт, который был разработан за рубежом, чтобы его как можно быстрее получил российский потребитель. Но все производство, конечно, только на российской территории. Регистрацию наша продукция будет проходить согласно российским регуляторным нормам.
— Насколько это новое явление для России— строительство таких технопарков?
— Первый камень нашего технопарка был заложен в 2009 г., а уже в 2011 г. начали работать первые лаборатории. Сейчас технопарка такого объема у нас в стране больше нет.
— А есть ли у вас задачи по внедрению этих технологий с учетом социальных потребностей людей, которые не могут себе позволить все это приобрести?
— Безусловно, мы на это рассчитываем. но здесь мы должны работать в сотрудничестве с государственными структурами. И. я полагаю, так оно и будет.

Запустить регенерацию

Первая в мире успешная трансплантация органа произошла в 1954 году — хирург Джо Маррей имплантировал почку пациенту. Благодаря этому впоследствии было спасено много людей. Но по-прежнему этих органов не хватает, и, кроме того, происходит реакция отторжения трансплантата. Поэтому мы наблюдаем огромный дефицит органов: за последние 10 лет удвоилось количество пациентов, которым нужна трансплантация, при этом само количество процедур повысилось менее чем на 1%.

Ежегодно в мире делают в среднем 100 800 пересадок органов. Чаще всего пересаживают почки (69 400 операций), печень (20 200), сердце (5 400), легкие (2 400) и поджелудочную железу (2 400). Донорство может быть родственным и посмертным, когда нужный орган берут у трупа. При этом в России, например, средний срок ожидания донорской почки — 1,5-2 года. В НИИ имени Склифосовского ежегодно выполняется около 200 операций, в то время как в листе ожидания стоит примерно 500 человек.

Природа так создала клетки, что они всегда знают, что им делать. У них есть способность регенерировать, каждая клетка имеет такой потенциал. Клетки кожи обновляются каждые две недели, клетки кишечника — в течение двух недель, а клетки мозга — каждые десять лет. Проблема заключается в том, что мы не регенерируем ткани, когда происходит болезнь, шрам или повреждение. В этот момент регенерация останавливается, и здесь может помочь регенеративная медицина. Мы берем у пациента очень маленькие мышечные ткани, затем обрабатываем эти клетки и помещаем их в зону, где находится поврежденная мышца. Это также можно применять для пациентов с ожогами: в этом случае мы берем маленький образец кожи пациента, затем обрабатываем клетки и просто с помощью спрея наносим их на поврежденные области. При этом если пациент с травмой, необходимо сначала его подлечить, избавиться от инфекции и выждать время, чтобы сам он был готов к лечению.

Вырастить новый орган

Вместо клеток можно использовать так называемую подложку — своего рода каркас здания. Ее материалы очень похожи на материалы швов. Они растворяются за несколько месяцев, безопасны для человека и клеток. Мы берем маленький образец ткани у пациента, затем обрабатываем эти клетки за пределами тела, культивируем их, используем подложку для того, чтобы они приобрели трубчатую форму, и имплантируем это пациенту. На весь процесс нужно примерно 30 дней. То же самое касается и кровяных сосудов. Мы кладем эти клетки на материал, потом тренируем этот орган. Когда сжатия станут такими, какие нам необходимы, сосуды имплантируют людям. Самый сложный орган — это цельный орган с кровообращением, как сердце, почка и печень, потому что здесь различные типы тканей, а также все они имеют очень много сосудов.


Легче всего выращивать простые ткани. В клинической практике уже используется метод регенерации кожи с помощью специальных гидрогелей или клеток самого пациента.

Гордана Вуньяк-Новакович в Колумбийском университете вырастила фрагмент кости черепа, засеяв каркас стволовыми клетками.

В Университете Джона Хопкинса врачи удалили у пациентки ухо и часть черепа, пораженные опухолью. Взяв хрящевую ткань из грудной клетки, сосуды и кожу, они вырастили ей на руке новое ухо, а затем пересадили искусственный орган на место.

Успешные опыты по выращиванию и трансплантации кровеносных сосудов прошли в университетах Готенбурга (Швеция) и Райса (США). Также есть примеры выращивания мышц, клеток крови, костного мозга и зубов.

Что касается выращивания сложных органов, эксперименты пока ведутся в основном на животных. Однако есть и примеры успешных пересадок искусственно выращенных органов людям. Энтони Атала уже несколько лет проводит операции по имплантации мочевого пузыря, выращенного из клеток пациента. В 2008 году итальянский хирург Паоло Маккиарини провел трансплантацию трахеи, выращенной на основе донорского каркаса. Правда, спустя несколько лет Маккиарини оказался в центре скандала — шестеро из его пациентов умерли, а свои достижения, согласно научным отчетам, он приукрасил. Опубликованные в мае 2015 года результаты независимой экспертизы, которую провёл главный хирург Уппсальского университета Бенгт Гердин, подтвердили, что Маккиарини сфальсифицировал результаты своих исследований и совершил научное мошенничество.

Компания Advanced Cell Technology в 2002 году вырастила миниатюрную почку коровы длиной 5 см с помощью технологий клонирования, взяв клетки из уха животного. Почку имплантировали рядом с основными органами, и она начала успешно вырабатывать мочу.

Также есть положительный опыт выращивания и трансплантации печени лабораторным крысам (Массачусетский университет) и легких свиньям (Университет Техаса).

Сосуды пересаженных органов очень маленькие. Мы 30 лет назад уже начали эту работу, но у нас не было технологии. Стали думать о том, чтобы взять органы людей, которые умерли, и использовать их еще раз. Изъяли из умершего пациента печень и как бы отмыли изнутри. Через две недели печень по-прежнему выглядела как печень, но там не было внутри клеток. Однако мы смогли сохранить сосудистое дерево, такой скелет печени. Затем взяли клетки пациента, вырастили их и поместили на этот скелет. Мы создаем ткань из тела пациента и таким образом лечим его. Поэтому нет иммунного ответа вообще. Это очень большой плюс регенеративной медицины.


Даже из очень плохого органа мы с помощью биопсии можем достать хорошие клетки. Но не можем делать этого при генетических заболеваниях, потому что дефект будет во всей ткани. Здесь другие технологии — мы берем клетки из этого пациента, дефекты исправляем, как бы оздоравливаем эти клетки, а затем работаем по той же стратегии. Пока, к сожалению, это экспериментально, но все равно есть надежда, что и генетические заболевания можно будет лечить.

Мы обязательно прослеживаем жизнь наших пациентов хотя бы в течение 5–8 лет после пересадки. Мы должны удостовериться, что все будет нормально, только потом можно будет говорить, что эта технология сработала и пересаженные органы нормально функционируют.

Печать органов и тестирование лекарств

Можно напечатать миниатюрное сердце, и через два часа оно уже будет сокращаться. Шесть лет назад мы начали использовать 3D-печать, потому что было необходимо масштабировать эти технологии — до этого мы все делали вручную. Но полученные с помощью печати органы не имели такую целостность, чтобы их имплантировать в тело. Тогда мы стали разрабатывать более специфичные принтеры, которые могли бы создавать ткань человека. И работали над этим 14 лет.

Первые эксперименты по биопечати проводились на обычных бытовых 3D-принтерах, которые модернизировали в рабочих условиях. В 2000 году Томас Боланд настроил аппараты Lexmark и HP так, чтобы на них можно было печатать фрагменты ДНК, а в 2003 году запатентовал технологию.

Сейчас печатью органов занимается несколько компаний. Биоинженеры компании Organovo разработали технологию, позволяющую печатать печеночную ткань. Также они напечатали почки, сохраняющие работоспособность в течение двух недель. Пока такие органы используются только для тестирования медицинских препаратов, но создатели не исключают, что скоро приступят к разработке оборудования для печати донорских органов.

Российские биоинженеры из 3D Bioprinting Solutions разработали 3D-принтер FABION и провели успешный эксперимент по печати щитовидной железы и пересадке ее подопытной мыши.

Принтеры Fripp Designs, разработанные в Шеффилдском университете, печатают глазные протезы. Эта же команда разрабатывает технологии 3D-печати носов, ушей и подбородков.

Часть оборудования выпускается для собственных нужд заказчиков и не предназначена для продажи (FABION, Organovo’s NovoGen MMX). Цены на коммерческие биопринтеры начинаются от $10 тыс. (BioBots) и €5 тыс. (CELLINK Inkredible) до $200 тыс. и выше (EnvisionTEC’s 3D Bioplotter, RegenHU’s 3DDiscovery).

Есть пять интересных критериев 3D-принтера для печати органов. Во-первых, у них очень маленькие насадки, они могут доходить до 2 мк — это 2% от диаметра волоса человека. Второе — этот принтер дает нам точность, мы можем выкладывать клетки там, где они на самом деле нужны. Третье — это биочернила, такая жидкость, которая проходит через насадку. А потом, когда это становится желатином, уже функционирует как нормальная ткань. Следующий критерий — это микроканалы, они дают питание центральной части клеток. По сути, это заместители крови. И, наконец, программное обеспечение, позволяющее иметь трехмерное изображение. Таким образом, мы понимаем, что происходит в теле, и создаем структуру, необходимую для заданного органа. Для этого берем цифровые данные от рентгена и используем их так, чтобы создавать структуру именно для этого дефекта у конкретного пациента.


Избежать побочных эффектов

Это связано с тем, что все по-разному реагируют на лекарства, все генетически отличаются, одно и тоже лекарство будут по-разному перерабатывать. У всех разный режим питания, разные условия жизни, разные трудности со здоровьем. Это действует как помеха для понимания того, что на самом деле лекарство делает с органами. А если мы уберем все эти помехи и посмотрим непосредственно, как лекарство действует на органы, сразу сможем выявить токсичность.

Стволовые клетки: создать то, чего нет

Когда нужно вырастить орган, которого у пациента никогда не было или он утрачен, можно использовать стволовые клетки. Обычно мы для того, чтобы вырастить почку, берем почечную клетку, чтобы вырастить уретру, мы берем клетки уретры. Но в случае со стволовыми клетками можем взять ту, которая может стать клеткой легкого, почки или кровеносного сосуда. Есть два основных типа стволовых клеток. Один из них — человеческие эмбриональные. Они очень мощные, растут и могут превращаться во что угодно, но также могут формировать опухоли, поэтому очень трудно использовать их. С другой стороны, если говорить об этих клетках у взрослого человека, это могут быть клетки жира или костного мозга, они не будут формировать опухоли, но не так хорошо растут.

Эта теория получила подтверждение в 60-х годах прошлого века. Американцы Джеймс Тилл и Эрнест Маккалох облучали мышей смертельной дозой радиации, а затем пересаживали им стволовую клетку крови здоровой особи. Оказалось, что таким образом можно восстановить кровь и спасти мышей от смерти. С 1964 года этот способ стали использовать при лечении рака крови: у пациентов сначала уничтожают собственные кровяные клетки, а затем трансплантируют здоровые стволовые клетки от донора. Эффективность такого метода достигает 70–80%.

В 1981 году Мартин Эванс и Мэттью Кауфман параллельно с Гейлом Мартином выделили эмбриональные стволовые клетки из мышиных зародышей. Эти клетки могли неограниченно долго существовать вне организма без изменения свойств, а при попадании в определенные условия, например, обратно в организм, превратиться в ткани.

Долгое время считалось, что если стволовая клетка превратилась в клетку ткани, сделать ее снова стволовой невозможно. Однако в 2006 году японец Синъя Яманака открыл способ превращать соматические клетки обратно в стволовые. За это в 2012 году он получил Нобелевскую премию.


Примерно 17 лет назад мы начали искать альтернативный источник стволовых клеток. Предположили, что есть еще один тип стволовых клеток, присутствующий в амниотической жидкости и в плаценте, которыми ребенок окружен в матке. И мы нашли эти очень мощные стволовые клетки. Они не будут формировать опухоли и могут превращаться в три основные категории ткани, которые формируют наш организм. Эти клетки можно быстро выращивать до достаточных количеств. Таким образом мы избегаем всех ограничений клеток костного мозга и других типов клеток. Сейчас они являются объектом ряда клинических исследований и пока что не используются очень широко.

Я не хочу, чтобы вы подумали, будто все проблемы уже разрешены, и можно просто взять и напечатать на принтере органы. Потребуются десятилетия для того, чтобы эти технологии могли развиваться. Это очень сложно, и нужно много времени, чтобы мы смогли разработать тот самый рецепт, который позволит технологиям работать оптимально. Кроме того, это дорогостоящие технологии, их будет трудно реплицировать, но точно можно сказать, что в них есть потенциал. И для нас в этом обещание регенеративной медицины — делать жизнь пациентов лучше.

Читайте также: