Измерение тока и напряжения реферат

Обновлено: 02.07.2024

Простейшим способом измерения постоянного тока является непосредственное прямое включение амперметра. При этом необходимо соблюдать три условия:

  • предел измерения амперметра должен быть больше или равен максимальному рабочему току цепи;
  • испытательное напряжение амперметра должно быть больше напряжения сети Ua > Uс,
  • сопротивление амперметра должно быть больше сопротивления приемника RA > Rnp.


Для расширения пределов измерения постоянного тока применяют измерительные шунты, которые характеризуются номинальным первичным током Iш, падением напряжения Um, создаваемым между их измерительными зажимами при этом токе, и классом точности. Стандартные токоизмерительные шунты рассчитаны на падение напряжения 45 и 75 мВ.

Чем меньше номинальный ток шунта, тем больше его внутреннее сопротивление. При подключении нескольких приборов параллельно шунту может возникнуть погрешность, превышающая допустимую для его класса точности. Поэтому при токах шунта в несколько десятков ампер к нему подключают один измерительный прибор.

Напряжение в цепях постоянного тока может измеряться приборами различных систем. При использовании вольтметров PV магнитоэлектрической системы следует соблюдать полярность включения (рис. 1, а).
Для расширения пределов измерения вольтметров применяют добавочные резисторы (рис. 1, б). В этом случае предел измерения:

Рис 1. Схемы включения вольтметров в цепи постоянного тока:
а — непосредственное включение, б — с добавочным резистором
где UPVx — расширенный предел вольтметра; R Д — сопротивление добавочного резистора; K — коэффициент, показывающий, во сколько раз увеличивается предел измерения напряжения прибора при использовании добавочного резистора.
Выпускаются различные шунты и добавочные резисторы для расширения пределов измерения приборов постоянного тока.
Переменные напряжение и ток можно измерять приборами любой системы, за исключением магнитоэлектрической. При измерении больших токов в низковольтных установках, а также напряжений и токов в высоковольтных установках применяют приборы электромагнитной системы, включаемые через специальные трансформаторы тока и напряжения. В практике наладочных работ используют различные измерительные трансформаторы, при этом следует помнить, что они вносят в результат измерений дополнительную погрешность. Чтобы погрешность не превышала допустимой, определенной классом точности применяемого измерительного трансформатора, его вторичную обмотку необходимо включать на номинальное сопротивление. Номинальным сопротивлением вторичной обмотки цепи трансформатора тока является то наибольшее, а трансформатора напряжения — то наименьшее сопротивление, на которое можно включить эту обмотку, не превысив погрешность выше допустимой.
Схемы включения вольтметров с добавочными резисторами в цепях постоянного тока и однофазных сетях переменного тока одинаковы (рис. 1,6). Схемы включения амперметров и вольтметров при использовании измерительных трансформаторов показаны на рис. 2, а, б.

Рис 2 . Схемы включения измерительных приборов переменного тока:
а — с трансформатором тока, б — с трансформатором напряжения.
В цепи однофазного переменного тока мощность измеряют непосредственно с помощью электродинамического ваттметра или косвенно методом амперметра и вольтметра. Схема включения приборов показана на рис. 3.

Схема включения приборов для измерения мощности

Зная напряжение U, приложенное к нагрузке, силу тока I, проходящего по ней, и угол ϕ сдвига между током и напряжением, можно определить активную, реактивную и полную мощность:
Р = UI cos ϕ ; Q = UI sin ϕ ; S = UI.
Угол ϕ или cos ϕ определяют с помощью фазометра. При отсутствии фазометра полную мощность находят по показаниям вольтметра и амперметра: S = UI. С помощью ваттметра измеряют активную мощность, отсюда: cos ϕ = Р/S; ϕ = arccosP/S; Q = UI sin ϕ .
При включении вольтметра в измеряемую цепь учитывают полярность его выводов (начала токовой обмотки и обмотки напряжения).


Рис. 3 . Схема включения приборов для измерения мощности:
Rн — резистор нагрузки, Rд — добавочный резистор к обмотке напряжения ваттметра.

При равномерной нагрузке мощность в трехфазной сети можно измерить одним ваттметром. Схемы измерения для трехфазной четырехпроводной и трехпроводной сетей показаны на рис. 4, а, б. Когда нулевая точка сети недоступна, создается искусственная нулевая точка, при этом сопротивления должны быть равны: Rдa = Rдд = Rдс. Мощность определяют суммированием показаний всех трех ваттметров.


Рис. 4. Схемы включения ваттметров для измерения активной мощности
трехфазного тока: а — непосредственное, б — с добавочным резистором.


Рис. 5 . Схемы включения двух ваттметров для измерения мощности трехфазного
тока.

Для измерения мощности цепи трехфазного тока чаще всего используют два ваттметра как при симметричной, так и несимметричной загрузке фаз. Три равноценных варианта включения ваттметров при измерении активной мощности показаны на рис. 15.

Активную мощность определяют как сумму показаний двух ваттметров. Реактивную мощность в трехфазной цепи при равномерной загрузке всех трех фаз можно измерить с помощью одного ваттметра (рис. 6, а). Для получения полной реактивной мощности показания одного ваттметра умножают на 3. При равномерной и неравномерной нагрузке реактивную мощность в трех- и четырехпроводной сети определяют с помощью трех ваттметров (рис. 6,6).


Рис. 7 . Измерение мощности трехфазного двигателя с помощью ваттметровых измерительных клещей.
В сетях переменного тока учет вырабатываемой и потребляемой электроэнергии осуществляется с помощью счетчиков индукционной системы, которые изготовляют в одно- и трехфазном исполнении. Последние бывают двух модификаций — для трех- и четырехпроводной сети. Для учета расхода активной и реактивной энергии выпускаются специальные счетчики. Для измерения в трехфазных сетях активной энергии служат счетчики САЗ, СА4, СА4У, реактивной энергии — СРЗ, СР4, СР4У (цифра 3 в обозначении типа счетчика указывает, что он предназначен для трехпроводной сети, 4 — для четырехпроводной). Счетчики СА4У и СР4У выпускаются только для включения с измерительными трансформаторами тока и напряжения, счетчики остальных типов — для прямого включения и с трансформаторами.

Для учета энергии в цепях однофазного тока используют счетчики СО.

Счетчики активной энергии изготовляют классов точности 1,0; 2,0; 2,5, счетчики реактивной энергии—2,0; 2,5; 4,0. Класс точности счетчиков и измерительных трансформаторов, предназначенных для цепей коммерческого и технического учета, должен соответствовать требованиям ПУЭ.
Схемы внутренних соединений трехфазных счетчиков приведены на рис. 8,а — д. Индексами Г и Н обозначены выводы обмоток счетчиков, подключаемые соответственно к питающей стороне схемы и нагрузке.

Рис. 8. Схемы внутренних соединений трехфазных счетчиков: а - активной энергии типа САЗ и САЗУ, б — реактивной энергии типа СРЗ и СРЗУ, в - активной энергии типа СА4 и СА4У, г — реактивной энергии типа СР4 и СР4У с дополнительной последовательной обмоткой, д - реактивной энергии типа СР4 И676 и СР4У-И676, 1 – 10 – номера зажимов.

Схемы включения трехпроводных счетчиков активной энергии типа САЗ и САЗУ и счетчиков реактивной энергии тина СРЗ и СРЗУ приведены на рис. 9, а — в, а схемы включения четырехпроводных счетчиков активной энергии СА4 и СА4У и реактивной энергии СР4 и СР4У — на рис. 10, а — г.


Рис. 9. Схемы включения счетчика активной энергии типа САЗ и САЗУ и счётчика реактивной энергии типа СРЗ, СРЗУ: а — непосредственное включение, б — с трансформаторами тока, в - с трансформаторами тока и напряжения.

Рис. 10. Схемы включения счетчика активной энергии типа СА4 и СА4У и счетчика реактивной энергии типа СР4, СР4У, СР4-И676 и СР4У-И676: а — непосредственное включение, б — с трансформаторами тока, в — с трансформаторами тока и напряжения в трехпроводной цепи, г — с трансформаторами тока и напряжения и четырехпроводной цепи (в реактивных счетчиках зажимы 10 отсутствуют).

Иногда при наладочных работах счетчики используют для измерения мощности. Рассмотрим пример определения мощности, потребляемой двигателем, с помощью трехфазного счетчика. Отсчитываем число оборотов диска за промежуток времени t (обычно достаточно 20—40 с, отсчитанных по секундомеру); нагрузка двигателя за этот промежуток не должна меняться. Если на табличке счетчика, например типа САЗУ, указано 1 кВт . ч = n оборотов диска, то мощность, кВт:

где Kтт и Kтн — соответственно коэффициенты трансформации трансформаторов тока и напряжения.

Измерением называют нахождение значения физической величины опытным путем, с помощью специальных технических средств – измерительных приборов.

Таким образом, измерение – это информационный процесс получения опытным путем численного отношения между данной физической величиной и некоторым ее значением, принятым за единицу сравнения.

Результат измерения – именованной число, найденное путем измерения физической величины. Одна из основных задач измерения – оценка степени приближения или разности между истинным и действительным значениями измеряемой физической величины – погрешности измерения.

Основными параметрами электрических цепей являются: сила тока, напряжение, сопротивление, мощность тока. Для измерения этих параметров используют электроизмерительные приборы.

Измерение параметров электрических цепей осуществляется двумя способами: первый – прямой метод измерения, второй – косвенный метод измерения.

Прямой метод измерения подразумевает получения результата непосредственно из опыта. Косвенным измерением называют измерение, при котором искомая величина находится на основании известной зависимости между этой величиной и величиной, полученной в результате прямого измерения.

Электроизмерительные приборы – класс устройств, применяемых для измерения различных электрических величин. В группу электроизмерительных приборов входят также кроме собственно измерительных приборов и другие средства измерений – меры, преобразователи, комплексные установки.

Электроизмерительные приборы классифицируются следующем образом: по измеряемой и воспроизводимой физической величине (амперметр, вольтметр, омметр, частометр и др.); по назначению (измерительные приборы, меры, измерительные преобразователи, измерительные установки и системы, вспомогательные устройства); по способу предоставления результатов измерений (показывающие и регистрирующие); по методу измерений (приборы непосредственно оценки и приборы сравнения); по способу применения и по конструкции (щитовые, переносные и стационарные); по принципу действия (электромеханические – магнитоэлектрические, электромагнитные, электродинамические, электростатические, ферродинамические, индукционные, магнитодинамические; электронные; термоэлектрические; электрохимические).

В данном реферате я постараюсь рассказать об устройстве, принципе действия, дать описание и краткую характеристику электроизмерительным приборам электромеханического класса.

Измерение силы тока

Амперметр – прибор для измерения силы тока в амперах (рис.1). Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи (рис.2) , силу тока в котором измеряют; для увеличения предела измерений — с шунтом или через трансформатор.



Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол, пропорциональной величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Принцип действия магнитоэлектрического прибора основан на создании крутящего момента, благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки. С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки пропорционален силе тока.

Электродинамические амперметры состоят из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействия между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки. В электрическом контуре амперметр соединяется последовательно с нагрузкой, а при высоком напряжении или больших токах — через трансформатор.

Технические данные некоторых типов отечественных амперметров, миллиамперметров, микроамперметров, магнитоэлектрической, электромагнитной, электродинамической, а также тепловой систем приведены в таблице 1.

Таблица 1. Амперметры, миллиамперметры, микроамперметры

Система прибора Тип прибора Класс точности Пределы измерения
Магнитоэлектрическая М109 0,5 1; 2; 5; 10 А
М109/1 0,5 1,5-3 А
М45М 1,0 75мВ
75-0-75мВ
М1-9 0,5 10-1000 мкА
М109 0,5 2; 10; 50 мА
200 мА
М45М 1,0 1,5-150 мА
Электромагнитная Э514/3 0,5 5-10 А
Э514/2 0,5 2,5-5 А
Э514/1 0,5 1-2 А
Э316 1,0 1-2 А
3316 1,0 2,5-5 А
Э513/4 1,0 0,25-0,5-1 А
Э513/3 0,5 50-100-200 мА
Э513/2 0,5 25-50-100 мА
Э513/1 0,5 10-20-40 мА
Э316 1,0 10-20 мА
Электродинамическая Д510/1 0,5 0,1-0,2-0,5-1-2-5 А
Тепловая Е15 1,0 30;50;100;300 мА

Измерение напряжения

Вольтметр - измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях (рис. 3). Подключается параллельно нагрузке или источнику электрической энергии (рис.4).




По принципу действия вольтметры разделяются на: электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические; электронные — аналоговые и цифровые. По назначению: постоянного тока; переменного тока; импульсные; фазочувствительные; селективные; универсальные. По конструкции и способу применения: щитовые; переносные; стационарные. Технические данные некоторых отечественных вольтметров, милливольтметров магнитоэлектрической, электродинамической, электромагнитной, а также тепловой систем представлены в таблице 2.

Таблица 2. Вольтметры и милливольтметры

Система прибора Тип прибора Класс точности Пределы измерения
Электродинамическая Д121 0,5 150-250 В
Д567 0,5 15-600 В
Магнитоэлектрическая М109 0,5 3-600 В
М250 0,5 3; 50; 200; 400 В
М45М 1,0 75 мВ;
75-0-75 мВ
75-15-750-1500 мВ
М109 0,5 10-3000 мВ
Электростатическая С50/1 1,0 30 В
С50/5 1,0 600 В
С50/8 1,0 3 кВ
С96 1,5 7,5-15-30 кВ
Электромагнитная Э515/3 0,5 75-600 В
Э515/2 0,5 7,5-60 В
Э512/1 0,5 1,5-15 В
С электронным преобразователем Ф534 0,5 0,3-300 В
Тепловая Е16 1,5 0,75-50 В

Комбинированные приборы магнитоэлектрической системы

Для измерения в цепях постоянного тока используются комбинированные приборы магнитоэлектрической системы ампер-вольметры. Технические данные о некоторых типах приборов приведены в таблице 3.

Таблица 3. Комбинированные приборы магнитоэлектрической системы .

75-0-75 мВ; 100-0-100 В;

0,005-0-0,005 А; 10-0-10 А

Технические данные о комбинированных приборах – ампервольметрах и ампервольтваттметрах для измерения напряжения и тока, а также мощности в цепях переменного тока.

Комбинированные переносные приборы для измерения в цепях постоянного и переменного токов обеспечивают измерение постоянных и переменных токов и сопротивлений, а некоторые – также емкость элементов в весьма широком диапазоне, отличаются компактностью, имеют автономное питание, что обеспечивает их широкое применение. Класс точности этого типа приборов на постоянном токе 2,5; на переменном – 4,0.

Универсальные электронные измерительные приборы

Универсальные измерительные приборы (универсальные вольтметры) находят широкое применение для измерения электрических величин. Эти приборы позволяют, как правило, измерять в исключительно широких пределах переменные и постоянные напряжения и токи, сопротивления, в некоторых случаях частоту сигналов. В литературе их часто называют универсальными вольтметрами, в силу того, что любая измеряемая приборами величина так или иначе преобразуется в напряжение, усиливается широкополосным усилителем. Приборы имеют стрелочную шкалу (прибор электромеханического типа), либо дисплей с жидкокристаллическим индикатором, в некоторых приборах имеются встроенные программы, обеспечивается математическая обработка результатов.

Сведения о некоторых типах современных отечественных универсальных приборов приведены в таблице 4.

Измерение тока и напряжения являются основными при исследовании различных устройств и при контроле их работы. Однако, в радиотехнике преобладающее значение имеет измерение напряжения, а к измерению токов прибегают в довольно редких случаях. Это обусловлено тем, что для описания работы различных радиотехнических устройств используют преимущественно напряжение , а не токи, и экспериментально приходиться измерять эти напряжения. Измерение напряжений в электронных схемах отличаются от подобных измерений в электрических цепях, что объясняется специфическими особенностями электрических сигналов, используемых в электронике и радиотехнике:

  • исключительно широкой областью частот – от постоянных до СВЧ (2Ггц);
  • большой диапазон измеряемых значений напряжений – от долей микровольта до десятков киловольт;
  • малой мощностью источника напряжений.

Измеряют напряжение в электронных и радиотехнических устройствах преимущественно электронными вольтметрами.

Классифицировать электронные вольтметры можно по различным признакам:

  • по видам, т.е. по назначению – постоянного тока, переменного тока, импульсного тока, фазочувствительные, селективные, универсальные;
  • по типу отсчетного устройства – аналоговые и цифровые;
  • по методу измерения – прямого сравнения с мерой и нулевые (компенсационные);
  • по измеряемому параметру напряжения – пиковые (амплитудные, среднеквадратического и средневыпрямленного значения;
  • по частотному диапазону – НЧ, ВЧ, СВЧ и широкодиапазонные;
  • по схеме входа – с открытым и закрытым входом.

При рассмотрении электронных вольтметров, прежде всего, будем делить всю совокупность этих приборов на две большие группы: аналоговые и цифровые. Цифровые вольтметры широко распространены в технике измерения напряжений постоянного и переменного тока. это объясняется многими их достоинствами: высокой точностью, широким диапазоном измерений при высокой чувствительности, отсчетом в цифровой форме, автоматическими выборами пределов и полярности, относительной простотой осуществления документальной регистрации показаний, возможностью получения результатов наблюдений в форме удобной для ввода в ЭВМ, возможностью выхода на интерфейсную шину и включения в состав измерительно-вычислительного комплекса.

Основные недостатки цифровых вольтметров: сложность схемы, более высокая стоимость и меньшая надежность, чем у аналоговых, большие габариты. Однако, достижения в области микроэлектроники способствуют устранению или уменьшению этих недостатков.

При измерении напряжения постоянного тока определяют его значение. Целью измерения напряжения переменного тока является, как правило, нахождение значения какого-либо его параметра. Напряжение переменного тока характеризуют четырьмя основными параметрами: пиковым, средним, средневыпрямленных и среднеквадратическим значениями.

Пиковое значение Um (амплитудное – для синусоидальных сигналов) – наибольшее мгновенное значение напряжение за время измерения (или за период, при разнополярных, несимметричных кривых напряжения различают положительное и отрицательное пиковые значения).

Среднее значение за время измерения (или за период) это – постоянная составляющая напряжения:

Средневыпрямленное значение –это среднее значение модуля напряжения :

Среднеквадратическое значение напряжения :

Каждому закону изменения напряжения соответствует определенные количественные соотношения между Um , Uсрв и U. Эти соотношения оценивают коэффициентами амплитуды Ка = и формы Кф= . Так для гармонического сигнала Ка=1.41; Кф=1.11 . Следовательно :

Измерение тока и напряжения осуществляется в цепях постоянного, переменного тока широкого диапазона частот и в импульсных цепях.

В цепях постоянного тока наиболее высокая точность измерений, в цепях переменного тока она понижается с повышением частоты; здесь, кроме оценки среднеквадратического, средневыпрямленного и максимального значений, требуется наблюдение формы исследуемого сигнала и знание мгновенных значений тока и напряжения.

Измерители тока и напряжения независимо от их назначения должны при включении не нарушать режима работы цепи измеряемого объекта; обеспечивать малую погрешность измерений, исключив при этом влияние внешних факторов на работу прибора, высокую чувствительность измерения, быструю готовность к работе и высокую надежность.

Выбор приборов, выполняющих измерение тока и напряжения, определяется совокупностью многих факторов, важнейшие из которых: род измеряемого тока; диапазон частот измеряемой величины и амплитудный диапазон; форма кривой измеряемого напряжения (тока); мощность цепи, в которой осуществляется измерение; мощность потребления прибора; возможная погрешность измерения.

Измерение напряжения выполняют методами непосредственной оценки и сравнения.

Если необходимая точность измерения, допустимая мощность потребления и другие требования могут быть обеспечены амперметрами и вольтметрами электромеханической группы, то следует предпочесть этот простой метод непосредственного отсчета. В маломощных цепях постоянного и переменного токов для измерения напряжения обычно пользуются электронными цифровыми и аналоговыми вольтметрами. Если необходимо измерить напряжение с более высокой точностью, следует использовать приборы, действие которых основано на методах сравнения.

Измерение тока возможно прямое (методом непосредственной оценки аналоговыми и цифровыми амперметрами) и косвенное. При этом напряжение измеряется на резисторе с известным сопротивлением. Для исследования формы и определения мгновенных значений напряжения и тока применяют осциллографы.

Измерение напряжения в цепях постоянного тока.

При использовании метода непосредственной оценки вольтметр подключают параллельно тому участку цепи, на котором необходимо измерить напряжение. При измерении напряжения на нагрузке R в цепи с источником энергии, ЭДС которого Е и внутреннее сопротивление R0, вольтметр включают параллельно нагрузке (рис. 14.1).


Рис. 14.1 Схема включения вольтметра

Если внутреннее сопротивление вольтметра Rу, то относительная погрешность измерения напряжения

δu = (Ux – U) / U = - (R / RV) / (1 + R / RV + R / R0)

где U — действительное значение напряжения на нагрузке R до включения вольтметра; Ux — измеренное значение напряжения на нагрузке R.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Отношение сопротивлений R / RV обратно пропорционально отношению мощности потребления вольтметра Ру к мощности цепи Р, поэтому

δu = - (PV / P) / (1 + PV / P + R / R0)

Для уменьшения погрешности измерения напряжения мощность потребления вольтметра должна быть мала, а его внутреннее сопротивление велико (RV → ∞)

Напряжение в цепях постоянного тока можно измерить любым измерителем напряжения, работающим на постоянном токе (аналоговыми магнитоэлектрическим, электродинамическим, электромагнитным, электростатическим и цифровым электронными вольтметрами). Выбор измерителя напряжения обусловлен мощностью объекта измерения и необходимой точностью. Диапазон измеряемых напряжений лежит в пределах от микровольт до десятка киловольт. Если объект измерения обладает большой мощностью, используют электромеханические вольтметры, мощность, потребляемую измерительными приборами, не учитывают; если же объект измерения маломощный, то мощность, потребляемую измерительными приборами, нужно учитывать либо использовать электронные вольтметры.

Методы сравнения. Нулевой метод заключается в уравновешивании, достигаемом при подключении к прибору сравнения либо двух электрически не связанных между собой, но противоположных по знаку напряжений или ЭДС, либо двух раздельно регулируемых токов. Разница, полученная в результате такого воздействия, доводится до нуля. Нулевой метод реализуется в схемах компенсации напряжений или ЭДС (рис. 14.2, а) и токов (рис. 14.2, б).'


Рис. 14.2. Схемы компенсации напряжений (а) и токов (б)

Наибольшее распространение получила схема, показанная на рис. 14.2, а. В ней измеряемое напряжение Ux компенсируется равным, но противоположным по знаку известным напряжением UК. Падение напряжения UК создается током на регулируемом компенсирующем сопротивлении Rk. Изменение Rk происходит до тех пор, пока UК не окажется равным Ux. Момент компенсации определяют по отсутствию тока в цепи магнитоэлектрического гальванометра G; при этом мощность от объекта измерения не потребляется.

Устройства, служащие для выполнения измерений компенсационным методом, называют потенциометрами или компенсаторами. В практических схемах компенсаторов для обеспечения необходимой точности измерения ток в рабочей цепи определяют не амперметром непосредственной оценки, а компенсационным методом с помощью эталона ЭДС - нормального элемента. Нормальные элементы обеспечивают постоянную во времени ЭДС, равную 1,01865В при 20 °С, внутреннем сопротивлении 500—10000м, токе перегрузки 1 мкА.

Схемные решения и конструкции компенсаторов постоянного тока могут быть различны.

Высокоомные компенсаторы используют для поверки магнитоэлектрических, электродинамических вольтметров. Для расширения пределов измерения напряжения в компенсаторах применяют высокоомные резисторные делители напряжения, позволяющие уменьшать измеряемое напряжение в п раз (10, 100, 1000) до значения, близкого к верхнему пределу измерения компенсатора. При использовании делителя напряжения от объекта измерения потребляется некоторая мощность, т. е. теряется одно из основных преимуществ компенсационного метода.

При измерении ЭДС источников с большим внутренним сопротивлением или напряжений, действующих в высокоомных цепях, входное сопротивление магнитоэлектрических и электронных вольтметров может быть недостаточно большим, поэтому целесообразно использовать дифференциальный или компенсационный метод.

Дифференциальный метод основан на измерении разности между измеряемым и известным напряжениями при их неполной компенсации.

Дифференциальный метод обеспечивает высокую точность измерения напряжения.

Для измерения малых постоянных напряжений используют гальванометрические компенсаторы. Основные их элементы: измерительный механизм магнитоэлектрического зеркального гальванометра, образцовый резистор обратной связи, фоторезисторы и источники постоянного напряжения, магнитоэлектрический микроамперметр.

Гальванометрический компенсатор имеет высокую чувствительность при высоком входном сопротивлении.

При прямом измерении постоянного тока амперметр включается последовательно в разрыв исследуемой цепи.

Последовательное включение амперметра с внутренним сопротивлением RА в цепь с источником ЭДС Е и сопротивлением R (сопротивление нагрузки и источника) приводит к возрастанию общего сопротивления и уменьшению протекающего в цепи тока.

Относительная погрешность δI измерения тока

δI = (Ix – I) / I =[E/(R + RA) – E / R = -(RA / R )/(1 + RA / R)

где / — действительное значение тока в цепи до включения амперметра; 1Х — измеренное значение тока в цепи R.

Отношение сопротивлений можно заменить отношением мощностей РА и Р потребления соответственно амперметра и самой цепи:

δI = -(РА/Р)/(1 + РА/Р).

Погрешность измерения тем меньше, чем меньше мощность потребления амперметра РA по сравнению с мощностью потребления цепи Р, в которой осуществляется измерение. Поэтому амперметр, включаемый последовательно в цепь измерения, должен обладать малым сопротивлением, т. е. RA → 0. Диапазон значений постоянных токов, с измерением которых приходится встречаться в различных областях техники, чрезвычайно велик (от токов 10-17 А до десятков и сотен тысяч ампер). Поэтому методы и средства измерения их различны.

Измерение постоянного тока можно выполнить любым измерителем постоянного тока: аналоговым магнитоэлектрическим, электродинамическим, аналоговым и цифровым электронным амперметром. При необходимости измерения весьма малых токов, значительно меньших тока полного отклонения /и магнитоэлектрического измерителя, последний применяют совместно с усилителем постоянного тока. Усиления тока можно добиться при включении биполярных транзисторов по схеме с общим эмиттером, которая обеспечивает малое входное сопротивление усилителя.

Токи 10~9—10~6А можно измерить непосредственно с помощью высокочувствительных магнитоэлектрических зеркальных гальванометров и гальванометрических компенсаторов.

Кроме прямого измерения токов амперметрами возможно косвенное измерение токов с помощью резисторов с известным сопротивлением R0, включаемых в разрыв цепи, и высокочувствительных измерителей напряжения. Измеряемый ток = U0/R0, где Uо — падение напряжения на резисторе R0, измеренное вольтметром либо компенсатором постоянного тока.

Для получения минимальных погрешностей измерения тока сопротивление резистора R0 должно быть много меньше сопротивления цепи, в которой измеряется ток. Косвенный способ реализован в электронных аналоговых и цифровых измерителях тока.

Измерение малых токов. Предельная чувствительность любого измерителя тока зависит от тока тепловых шумов, который тем меньше, чем больше внутреннее сопротивление измерителя. Для снижения этого тока до уровня 10~17—10~16 А в полосе частот от О до 0,01—0,1 Гц необходимо применять приборы с внутренним сопротивлением не менее 1011—1012Ом, поэтому магнитоэлектрические гальванометры, гальванометрические компенсаторы, усилители на биполярных транзисторах относят к сравнительно низкоомным измерительным устройствам и, следовательно, они не могут использоваться при измерении токов менее 10~10—10~9 А. Для измерения малых постоянных и медленно изменяющихся токов применяют пассивные преобразователи тока в напряжение в сочетании с чувствительным измерителем напряжения, имеющим очень высокое входное сопротивление (до 1016Ом) и малый уровень шумов. Максимально должны быть уменьшены также паразитные токи. К пассивным преобразователям относят преобразователи резистивные, емкостные, логарифмирующие.

Измерение переменного напряжения и тока на промышленной частоте. Измерение можно выполнить любыми вольтметрами и амперметрами, работающими на частоте 50 Гц. Когда объект измерения мощный, то измерения выполняют электромагнитными и электродинамическими вольтметрами и амперметрами .

Для измерения напряжения на промышленной частоте применяют компенсаторы переменного тока. Компенсаторы переменного тока менее точны по сравнению с компенсаторами постоянного тока, так как отсутствует эталон ЭДС переменного тока.

Измерение напряжения на повышенной и высокой частотах. С увеличением частоты точность измерения переменного тока электромагнитными и электродинамическими амперметрами падает. Приборы специального исполнения имеют расширенный диапазон частот (примерно до 8—10 кГц) и используются для измерения токов в мощных цепях.

В маломощных цепях повышенной и высокой частоты ток измеряют выпрямительными, термоэлектрическими, электронными цифровыми амперметрами, аналоговыми и цифровыми электронными вольтметрами на резисторе с известным сопротивлением. Амперметр должен обладать минимальными значениями входных величин — сопротивления, индуктивности и емкости. С увеличением частоты в цепи измерения тока влияние паразитных емкостей возрастает, поэтому для уменьшения погрешностей от токов утечки амперметр следует включать на участке с потенциалами, наиболее близкими к потенциалу земли.

В цепях высокой частоты токи преимущественно измеряют термоэлектрическим амперметром (термоамперметром), представляющим собой сочетание термопреобразователя и магнитоэлектрического измерительного механизма. Термопреобразователь состоит из одной или нескольких термопар и нагревателя. При протекании тока по нагревателю, выполненному из материала с большим удельным сопротивлением (нихрома, константана и др.), выделяется теплота, под действием которой нагревается горячий спай термопары, а на ее холодных концах возникает термо-ЭДС — ЕТ, зависящая от материала проводников термопары и пропорциональная разности температур горячего и холодного ее концов, т. е. пропорциональная температуре перегрева. Примерно .Ет = 30—40 мкВ на 1 °С перегрева. По способу нагрева горячего спая термопары термопреообразователи делят на контактные и бесконтактные. В контактных термопреобразователях горячий спай термопары приварен непосредственно к нагревателю. В бесконтактных термопреобразователях горячий спай термопары отделен от нагревателя изоляционным материалом (каплей стекла), что ухудшает условия теплопередачи, увеличивает тепловую инерцию, уменьшает чувствительность, но позволяет последовательно соединять несколько термопар, уменьшать влияние паразитных емкостей (между измеряемой и измерительной цепями). В некоторых бесконтактных преобразователях термопару протягивают внутри тонкой стеклянной трубочки, на которую намотан нагреватель.

Для увеличения чувствительности и более эффективного использования преобразователи соединяют в мостовую схему.

В зависимости от типа преобразователя эти приборы используют для измерения как постоянного, так и переменного токов в диапазоне частот 50 Гц— 200 МГц. Но основное назначение термоамперметров — измерение тока в цепях высокой частоты. На высоких частотах проявляются паразитные параметры термопреобразователя и поверхностный эффект в нагревателе. Поэтому каждый прибор рассчитывают на работу до определенной частоты измеряемого тока. Термоэлектрические амперметры выпускают для измерения токов от 100 мкА до десятков ампер.

Для измерения малых токов до 1 А применяют вакуумные термопреобразователи. Их помещают в специальные стеклянные баллоны, из которых выкачан воздух; при этом благодаря уменьшению потерь на излучение теплоты в окружающую среду чувствительность вакуумных преобразователей повышается. Вакуумные термопреобразователи бывают контактные и бесконтактные. Для измерения токов 1—50 А используют воздушные термопреобразователи.

К достоинствам термоамперметров относят то, что их показания не зависят от частоты и формы переменного тока, к недостаткам — малую перегрузочную способность (допускаются перегрузки не более чем на 50%), значительную мощность потребления (на 5 А примерно 1 Вт), ограниченный срок службы, невысокую точность (с изменением температуры изменяется сопротивление нагревателя, с увеличением частоты — паразитные параметры). Классы точности термоэлектрических амперметров — 1,5; 2,5; 4. В термоэлектрических амперметрах, предназначенных для больших токов, в результате выделения значительного количества теплоты подводящие колодки сильно разогреваются. Чтобы устранить влияние перегрева, применяют кроме основной еще и компенсационную термопару, горячий спай которой укреплен на одной из колодок, а термо-ЭДС направлена навстречу термо-ЭДС основной термопары. Расширение пределов измерения осуществляют с помощью трансформатора тока с ферритовым тороидальным сердечником. Термоамперметры бывают щитовые и переносные.

Для усиления постоянного тока термопары в термоамперметах применяют фотоусилители.

Процесс определения амплитудных и временных параметров импульсных сигналов с помощью осциллографа длителен и выполняется с большой погрешностью. Воспроизведение импульсов малой длительности и с фронтами порядка единиц наносекунд без искажений сопряжено с тщательным выбором осциллографа по диапазону частот, экранировкой соединительных проводов, согласованием с соединительным кабелем и др. Более высокую точность измерения амплитуды импульса при удобной и быстрой индикации обеспечивают аналоговые и цифровые импульсные вольтметры.

Читайте также: