Измерение скорости передачи данных сетей wi fi реферат

Обновлено: 02.07.2024

Файлы: 1 файл

Реферат по ИТ.docx

Куксова Беспроводные технологии передачи данных

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

Федеральное государственное бюджетное образовательное

Учреждение высшего профессионального образования

Кафедра вычислительных систем и программирования

Реферат по дисциплине ИТвМ
на тему:

Беспроводные технологии передачи данных

Выполнила: студентка группы № М1408 Абрамова Евгения Владимировна

Руководитель: Мамаева Галина Александровна

2014 г.
Оглавление

Введение

XXI век – век высоких технологий. В современное время цифровые данные играют очень большую роль. Не менее важными являются и способы их передачи. Одним из таких способов является беспроводная передача данных.

Данный метод позволяет передавать информацию с одного объекта на другой, не используя при этом провода. В современности передавать информацию можно с помощью инфракрасного излучения, радиоволн, оптического или лазерного излучения.

Стоит сказать и о первых способах передачи информации, таких как клубы дыма от сигнальных костров и отражении света от ручного зеркала [Рисунок 1]. Ведь дым можно рассматривать как аналог дискретных знаков, которые применяются в современных системах передачи.

Значение средств передачи данных

Передача данных — это процесс обмена информацией, происходящий в двоичной форме между двумя и более точками. Данный процесс нередко называют цифровой связью, потому что сегодня часть информации стали передавать в цифровой форме, и она, в последствии, циркулирует между другими периферийными устройствами. Эти данные можно представить как в простейшей форме (с помощью цифр 1 и 0), так и в более сложной (клавиатурными символами). И в том и в другом случае символы и цифры представляют собой информацию.

Средства передачи данных относятся к числу самых быстро развивающихся в современное время. Вместе со специализированными полупроводниковыми приборами, обрабатывающими сигналы и сжимающие данные, разрабатываются и другие мультимедийные программы, передающие речь и другие данные. Помимо этого, существуют телефоны с памятью, обладающие миниатюрными видеокамерами на основе ПЗС (приборов с зарядовой связью), способные передавать графическую информацию. Получается, что системы передачи данных между терминальными приборами и компьютерами могут использоваться для передачи речевых данных и видео.

В сетях, обладающих коммутацией пакетов, постепенно происходит интеграция систем, передающих голос, видео и другие виды данных, однако эта проблема до сих пор остается открытой. Одной из основных нерешенных проблем на данный момент является повышение качества обслуживания (Quality of Service, QoS), которое могло бы обеспечить сквозную транспортировку данных с наименее минимальными задержками и постоянным потоком данных.

Чаще всего данные системы используются в бизнес сфере, но последнее время их всё чаще стали применять в частной жизни. Современное общество становится всё более зависимым от систем беспроводной передачи данных.

Беспроводные среды

Передать данные в беспроводных средах можно с помощью антенны. Для передачи данных антенна излучает электромагнитную энергию в среду распространения (как правило, в воздух). При приеме антенна получает электромагнитные волны из окружающей среды. Существует два типа систем беспроводной связи: однонаправленные и всенаправленные. В однонаправленных системах связи сигнал распространяется в одном направлении, передающая антенна излучает сфокусированный луч. При всенаправленной передаче сигнал распространяется во всех направлениях.

Спутниковые каналы

Спутник связи – это микроволновая ретрансляционная станция.1 Его используют для связи двух и более наземных приемников, которые называются земными/наземными станциями. Спутник получает сигнал в одной полосе частот (так называемая восходящая линия), усиливает его, повторяет и передает сигнал на другой частоте (нисходящая линия).

На рисунке 2 изображены две спутниковые системы связи [Рисунок 2. Системы спутниковой связи]. В первой, спутник используется для двухточечной связи между наземными антеннами. Во второй - для передачи данных от одной наземной антенны к нескольким наземным приемникам.

Спутник связи — революционная технология, сравнимая по важности с оптическим волокном. Ниже представлены наиболее важные области применения спутниковой связи:

    • передача телевизионных сигналов;
    • междугородная и международная связь;
    • частные коммерческие сети.

    Сравнение оптоволоконных и спутниковых коммуникационных систем

    До начала 90-х годов основными средами передачи информации были витая пара, коаксиальный кабель и микроволны, распространяющиеся у поверхности Земли. За исключением витой пары эти устаревшие технологии, вероятно, будут практически полностью вытеснены со сцены оптическим волокном и спутниковыми микроволнами, имеющими преимущество как по соотношению цена/качество, так и по техническим характеристикам. Витая пара будет по-прежнему использоваться для передачи информации внутри зданий и для абонентских шлейфов благодаря ее низкой стоимости и большому числу существующих коммуникаций. Что касается систем городской и междугородной/международной связи, спутниковые микроволны и оптическое волокно уже сейчас приходят на смену микроволнам, распространяющимся у поверхности Земли, коаксиальным кабелям и витой паре.

    В телекоммуникационной индустрии распространение оптоволоконных сетей происходит стремительными темпами. Благодаря этому значительно увеличилась пропускная способность сетей в США, Японии, Западной Европе. Имеются три важных следствия внедрения оптоволоконных сетей.

      • Падение цен на средства передачи данных, голоса и видео.
      • Ряд услуг, например электронная почта и системы телеконференций, стали доступнее.
      • Роль спутниковых средств связи снижается вследствие конкуренции с оптическим волокном.

      Таким образом, пока оптическое волокно и спутник являются двумя основными средствами связи, у руководителя, выбирающего систему связи, возникает вопрос: окупятся ли вложения в спутниковый канал, если он вскоре будет заменен оптическим волокном. Ответ на вопрос заключается в том, что в некоторых областях применения спутник имеет преимущество над оптоволоконными и любыми другими средствами связи. В этих областях спутник остается разумным выбором.

      Краткий обзор самых популярных технологий беспроводной передачи данных

      В самом начале своего использования Wireless LAN рекомендовали устанавливать там, где развернуть кабельную систему было невозможно или экономически невыгодно. Сейчас WiFi используется во многих организациях, так как скорость работы данной сети при определенных условиях может превышать 100 Мбит/сек. Пользователи могут перемещаться на территории действия сети WiFi между её точками доступа.

      Мобильные устройства, имеющие Wi-Fi приёмно-передающие устройства, могут подключаться к локальной сети и получать доступ в Интернет через точки доступа.

      Bluetooth - производственная спецификация беспроводных персональных сетей (англ. Wireless personal area network, WPAN).

      Система Bluetooth разработана группой Bluetooth Special Interest Group, основанной в 1998 году. В неё входили известные компании, такие как Ericsson, IBM, Intel, Toshiba и Nokia. В 1994 году компания Ericsson Mobile Communication начала работать над созданием этой технологии. Изначально данная технология была адаптирована под потребности системы FLYWAY в функциональном интерфейсе между путешественниками и системой.

      Сейчас радиус дальности действия Bluetooth достигает до 100 метров.

      Главная задача данной технологии — обеспечить компонентами системы автоматизации и дистанционного управления различного назначения. Существует несколько вариантов применения устройств, основанных на данной технологии:

        • Беспроводные системы обеспечения безопасности;
        • Управление на расстоянии кондиционерами, системой освещения;
        • Удаленное управление аудио и видеоустройствами;
        • Беспроводная клавиатура и мышь для ПК,
        • Пульты для управления игровыми приставками;
        • Беспроводные детекторы задымления.

        Таблица 1 Сравнение Bluetooth технологии и ZigBee

        Построение сетей связи с динамической структурой

        Построение сетей со статической структурой

        Беспроводная передача звуковых сигналов (речи)

        Много конечных устройств

        Передача неподвижных изображений и графики

        Длительный период обращения главной станции с конечным устройствам

        Передача файлов небольшой величины

        Программная перестройка радиочастоты (FHSS)

        Прямое расширение спектра (DSSS)

        Скорость передачи:1 МБод, пиковая скорость 720 кбит/с

        Скорость передачи:62,5 кБод, пиковая скорость 128 кбит/с

        По аналогии с мобильным телефоном (регулярная подзарядка)

        2 года (как пара батареек типа ААА)

        Максимальная производительность сети

        WiMAX (англ. Worldwide Interoperability for Microwave Access) — телекоммуникационная технология, которая была разработана для предоставления большому количеству устройств универсальной беспроводной связи на больших расстояниях.

        WiMAX был разработан для решения следующих задач:

          • Соединение точек доступа Wi-Fi между собой и с другими сегментами Интернета.
          • Обеспечение широкополосного беспроводного доступа как альтернативы выделенным линиям и DSL.
          • Предоставление высокоскоростных сервисов передачи данных и телекоммуникационных услуг.

          Заключение

          Обобщив всю вышеизложенную информацию, можно прийти к выводу о том, что в современном мире беспроводные технологии передачи данных играют очень важную. Они помогают и в профессиональной области, и в частной жизни. С их помощью мы можем передавать информацию между разными компьютерами, находящимися на огромных расстояниях. Всё это позволяет облегчить жизнь современного человека и приобщить его к современным технологиям.

          Впервые рабочая группа IEEE 802.11 была анонсирована в 1990 году и вот уже 25 лет идёт непрекращающаяся работа над беспроводными стандартами. Основным трендом является постоянное увеличение скоростей передачи данных. В данной статье я попробую проследить путь развития технологии и показать, за счёт чего обеспечивалось увеличение производительности и чего стоит ждать в ближайшем будущем. Предполагается, что читатель знаком с основными принципами беспроводной связи: видами модуляции, глубиной модуляции, шириной спектра и т.д. и знает основные принципы работы Wi-Fi сетей. На самом деле существует не так много способов увеличения пропускной системы связи и большинство из них было реализовано на разных этапах совершенствования стандартов группы 802.11.

          Рассмотрению будут подвергнуты стандарты, определяющие физический уровень, из взаимно совместимой линейки a/b/g/n/aс. Стандарты 802.11af (Wi-Fi на частотах эфирного телевиденья), 802.11ah (Wi-Fi в диапазоне 0.9 МГц, предназначенный для реализации концепции IoT) и 802.11ad (Wi-Fi для скоростной связи периферийных устройств наподобие мониторов и внешних дисков) несовместимы друг с другом, имеют различные сферы применения и не подходят для анализа эволюции технологий передачи данных на большом интервале времени. Кроме того, вне рассмотрения останутся стандарты, определяющие стандарты безопасности (802.11i), QoS (802.11e), роуминга (802.11r) и т.д., так как они только косвенно влияют на скорость передачи данных. Здесь и далее речь идёт о канальной, так называемой брутто-скорости, которая является заведомо большей, чем фактическая скорость передачи данных из-за большого количества служебных пакетов в радиообмене.

          Первым стандартом беспроводной связи был 802.11 (без буквы). Он предусматривал два типа среды передачи: радиочастота 2.4 ГГц и инфракрасный диапазон 850-950 нм. ИК-устройства не были широко распространены и в будущем развития не получили. В диапазоне 2.4 ГГц было предусмотрено два способа расширения спектра (расширение спектра является неотъемлемой процедурой в современных системах связи): расширение спектра методом скачкообразного изменения частоты (FHSS) и методом прямой последовательности (DSSS). В первом случае все сети используют одну и ту же полосу частот, но с различными алгоритмами перестроения. Во втором случае уже появляются частотные каналы от 2412 МГц до 2472 МГц с шагом 5 МГц, сохранившиеся по сей день. В качестве расширяющей последовательности используется последовательность Баркера длиной 11 чипов. При этом максимальная скорость передачи данных составляла от 1 до 2 Мбит/с. В то время даже с учётом того, что в самых идеальных условиях полезная скорость передачи данных по Wi-Fi не превышает 50% канальной, такие скорости выглядели весьма привлекательно в сравнении со скоростями модемного доступа к сети Интернет.

          Для передачи сигнала в 802.11 использовалась 2-х и 4-х позиционная манипуляция, что обеспечивало работу системы даже в неблагоприятных условиях сигнал/шум и не требовало сложных приёмо-передающих модулей.
          Например, для реализации информационной скорости 2 Мбит/с каждый передаваемый символ заменяется на последовательность из 11 символов.

          image

          Таким образом чиповая скорость составляет 22 Мбит/с. За один такт передачи передаются 2 бита (4 уровня сигнала). Таким образом скорость манипуляции составляет 11 бод и основной лепесток спектра при этом занимает 22 МГц, величину, которую применительно к 802.11, часто называют шириной канала (на самом деле спектр сигнала является бесконечным).

          image

          При этом согласно критерию Найквиста (число независимых импульсов в единицу времени ограничено удвоенной максимальной частотой пропускания канала) для передачи такого сигнала достаточно полосы 5.5 МГц. Теоретически устройства формата 802.11 должны удовлетворительно работать и на каналах, отстоящих друг от друга на 10 МГц (в отличии от более поздних реализаций стандарта, требующих вещания на частотах, отстоящих друг от друга не менее, чем на 20 МГц).

          Следующий шаг увеличения скорости до 54 Мбит/с был реализован в стандарте 802.11a (данный стандарт начал разрабатываться раньше, чем стандарт 802.11b, но финальная версия была выпущена позже). Увеличение скорости в основном было достигнуто за счёт увеличения глубины модуляции до 64 уровней на один символ (6 бит на 1 бод). Кроме того, была радикально пересмотрена радиочастотная часть: расширение спектра методом прямой последовательности было заменено на расширение спектра методом разделения последовательного сигнала на параллельные ортогональные поденсущие (OFDM). Использование параллельной передачи на 48 подканалах позволило снизить межсимвольную интерференцию за счёт увеличения длительности отдельных символов. Передача данных осуществлялась в диапазоне 5 ГГц. При этом ширина одного канала составляет 20 МГц.

          image

          В отличие от стандартов 802.11 и 802.11b, даже частичное перекрытие этой полосы может привести к ошибкам передачи. К счастью в диапазоне 5 ГГц расстояние между канали составляет эти самые 20 МГц.

          Стандарт 802.11g не стал прорывом в плане скорости передачи данных. Фактически этот стандарт стал компиляцией 802.11a и 802.11b в диапазоне 2,4 ГГц: в нём поддерживались скорости обоих стандартов.

          Серьёзное увеличение скорости произошло в стандарте 802.11n (в обоих диапазонах 2,4 и 5 ГГц): до 72 Мбит/с за счёт уменьшения защитных интервалов между передаваемыми символами. Кроме того, для увеличения пропускной способности можно было объединить два канала по 20 МГц и получить 150 Мбит/с. Однако это не лучший способ увеличения скорости: в диапазоне 2,4 МГц может поместиться всего один расширенный канал в 40МГц. Ещё одним способом повышения скорости стала технология MIMO: использование нескольких приёмопередатчиков, работающих на одной и той же частоте. Разделение каналов происходит за счёт пространственного разнесения антенн и математических операций над сигналом, принятым на разные антенны: он будет различаться в силу многолучевого распространения радиоволн. По иронии судьбы именно эффект многолучевого распространения ранее негативно влиял на передачу данных в сети, но инженеры смогли определить недуг в подвиг и заставить этот паразитный фактор работать на увеличение скорости. Стандарт 802.11n поддерживает MIMO 4x4:4 (четыре независимых канала) и обеспечивает скорость до 600 Мбит/с.

          image

          Однако данная технология требует высокого качества изготовления радио части устройств. Кроме того, данные скорости принципиально не реализуемы на мобильных терминалах (основной целевой группе стандарта Wi-Fi): наличие 4-х антенн на достаточном разнесении не может быть реализовано в малогабаритных устройствах как по соображениям отсутствия места, так и из-за отсутствия достаточного на 4 приёмопередатчика энергии.

          В большинстве случаев скорость 600 Мбит/с является не более, чем маркетинговой уловкой и нереализуема на практике, так как фактически её можно добиться только между стационарными точками доступа, установленными в пределах одной комнаты при хорошем соотношении сигнал/шум.

          Следующий шаг в скорости передачи был выполнен стандартом 802.11ac: максимальная скорость, предусмотренная стандартом, составляет до 6,93 Гбит/с, однако фактически такая скорость ещё не достигнута ни на одном оборудовании, представленном на рынке. Увеличение скорости достигнуто за счёт увеличения полосы пропускания до 80 и даже до 160 МГц. Такая полоса не может быть предоставлена в диапазоне 2,4 ГГц, поэтому стандарт 802.11ac функционирует только в диапазоне 5 ГГц. Ещё один фактор увеличения скорости – увеличение глубины модуляции до 256 уровней на один символ (8 бит на 1 бод) К сожалению, такая глубина модуляции может быть получена только вблизи точки из-за повышенных требований к соотношению сигнал/шум. Указанные улучшения позволили добиться увеличения скорости до 867 Мбит/с. Остальное увеличение получено за счёт ранее упомянутых потоков MIMO 8x8:8. 867х8=6,93 Гбит/с. Технология MIMO была усовершенствована: впервые в стандарте Wi-Fi информация в одной сети может передаваться двум абонентам одновременно с использованием различных пространственных потоков.

          В более наглядном виде результаты в таблице:

          image

          Ресурсы уменьшения избыточности уже исчерпаны: максимальная скорость помехоустойчивого кода 5/6 была достигнута в стандарте 802.11a и с тех пор не увеличивалась. Увеличение глубины модуляции теоретически возможно, но следующей ступенью является 1024QAM, которая является очень требовательной к соотношению сигнал/шум, что предельно снизит радиус действия точки доступа на высоких скоростях. При этом возрастут требования к исполнению аппаратной части приёмопередатчиков. Уменьшение межсимвольного защитного интервала также вряд ли будет направлением совершенствования скорости – его уменьшение грозит увеличением ошибок, вызванных межсимвольной интерференцией. Увеличение полосы канала сверх 160 МГц так же вряд ли возможно, так как возможности по организации непересекающихся сот будут сильно ограничены. Ещё менее реальным выглядит увеличение количества MIMO-каналов: даже 2 канала являются проблемой для мобильных устройств (из-за энергопотребления и габаритов).

          Из перечисленных методов увеличения скорости передачи большая часть в качестве расплаты за своё применение забирает полезную площадь покрытия: снижается пропускная способность волн (переход от 2,4 к 5 ГГц) и повышаются требования к соотношению сигнал шум (увеличение глубины модуляции, повышение скорости кода). Поэтому в своём развитии сети Wi-Fi постоянно стремятся к уменьшению площади, обслуживаемой одной точкой в пользу скорости передачи данных.

          В качестве доступных направлений совершенствования могут использоваться: динамическое распределение OFDM поднесущих между абонентами в широких каналах, совершенствование алгоритма доступа к среде, направленное на уменьшение служебного траффика и использование техник компенсации помех.

          Подводя итог вышесказанному попробую спрогнозировать тенденции развития сетей Wi-Fi: вряд ли в следующих стандартах удастся серьёзно увеличить скорость передачи данных (не думаю, что больше, чем в 2-3 раза), если не произойдёт качественного скачка в беспроводных технологиях: почти все возможности количественного роста исчерпаны. Обеспечить растущие потребности пользователей в передаче данных можно будет только за счёт увеличения плотности покрытия (снижения радиуса действия точек за счёт управления мощностью) и за счёт более рационального распределения существующей полосы между абонентами.

          Вообще тенденция уменьшения зон обслуживания, похоже, является основным трендом в современных беспроводных коммуникациях. Некоторые специалисты считают, что стандарт LTE достиг пика своей пропускной способности и не сможет далее развиваться по фундаментальным причинам, связанным с ограниченностью частотного ресурса. Поэтому в западных мобильных сетях развиваются технологии оффлоада: при любом удобном случае телефон подключается к Wi-Fi от того же оператора. Это называют одним из основных способов спасения мобильного Интернета. Соответственно роль Wi-Fi сетей с развитием сетей 4G не только не падает, а возрастает. Что ставит перед технологией всё новые и новые скоростные вызовы.

          2 СОДЕРЖАНИЕ 1. Введение Основная часть История развития беспроводной сети Интернет Беспроводные сетевые технологии Технология Wi-Fi Будущее беспроводной сети Интернет Заключение Список литературы

          5 Хоть технология Wi-Fi и была изобретена в 1991 году, первый полноценный технологический стандарт IEEE широкой публике был представлен только в 1997 году. Однако данная версия Wi-Fi оказалась не востребована, так как она отличалась низкой пропускной способностью (до 2 Мбит/с, что было крайне недостаточно для локальной сети), плохой связью, малой дальностью действия. К тому же стоимость оборудования достигала несколько тысяч долларов, поэтому ее использование было просто экономически невыгодным. Осень 1999 года считается переломным этапом в развитии технологий беспроводной сети Интернет. В этот период на рынок поступили две новые спецификации a и b. Максимальная пропускная способность версии a составляла 54 Мбит/с, а b - 11 Мбит/с. Первоначально в широком доступе появилось Wi-Fi оборудование, которое было совместимо с b. Оно быстро завоевало мировой рынок и смогло составить значительную конкуренцию классическим методам построения локальной сети, в частности, Ethernet. При этом стоимость оборудования резко снизилась по сравнению с предыдущим поколением. В нем были полностью преодолены проблемы, характерные для ранних моделей. Первые устройства, поддерживающие стандарт a, поступили в продажу только в 2001 году. В связи с тем, что рынок был уже заполнен оборудованием b, новый стандарт в первое время оказался невостребованным. Летом 2003 года были закончены работы по созданию следующего стандарта g, который объединил в себе преимущества двух предыдущих версий. Максимальная скорость передачи данных составила 54 Мбит/с. 11 сентября 2009 года был утвержден новый стандарт IEEE n. При условии использования данного стандарта с другими устройствами n скорость передачи данных может составлять 216 Мбит/с. Согласно заявлениям разработчиков, теоретически n позволяет организовать передачу данных на скорости до 600 Мбит/с. 5

          6 В период с 2011 по 2013 года осуществлялись разработки стандарта IEEE ac, официальное принятие которого запланировано на начало 2014 года. Ожидается, что внедрение нового стандарта позволит достичь скорости передачи данных в несколько Гбит/с. Уже сейчас крупнейшие мировые производители оборудования активно рекламируют устройства, который поддерживают стандарт IEEE ac. Успешное внедрение IEEE ac позволит существенно расширить возможности пользователей Интернета и сделает возможным передачу данных значительного объема в считанные минуты. В настоящее время широко используется преимущественно три стандарта группы IEEE (представлены в таблице 1) Стандарт g a n Частотный диапазон, ГГц 2,4-2,483 5,15-5,25 2,4 или 5,0 Метод передачи DSSS,OFDM DSSS,OFDM MIMO Скорость, Мбит/с Совместимость b/n n a/b/g Метод модуляции BPSK, QPSK BPSK, QPSK OFDM BPSK, 64- QAM OFDM Дальность связи в помещении, м Дальность связи вне помещения, м Таблица 1. - Основные характеристики стандартов группы IEEE

          8 Кратким, но ёмким способом классификации может служить одновременное отображение двух наиболее существенных характеристик беспроводных технологий на двух осях: максимальная скорость передачи информации и максимальное расстояние (Рисунок 1). Рисунок 1. - Классификация по дальности действия WPAN Беспроводная персональная технология, которая обеспечивает связь между устройствами на расстоянии до 100 метров. Для подключения устройства должны находиться в зоне прямой видимости. Представитель такой технологии Bluetooth. Он применяется для обмена данными между ПК, мобильными телефонами, фотоаппаратами, джойстиками и т. д. Преимущества: - отсутствие помех; Рисунок 2. - WPAN 8

          9 - небольшая цена; - возможность интеграции во многие устройствах; - создание профиля с подключением до восьми аппаратов. Недостатки: - сравнительно небольшая дальность передачи данных. WLAN Под этим термином подразумевается беспроводная локальная сеть, которую мы знаем под названием Wi-Fi. Система создана в 1991 году в Голландии. Первоначально назначение технологии обслуживание кассовых систем и обеспечения скорости до 2 Мбит/с. Как правило, беспроводные сети Wi Fi содержат более одной точки доступа и несколько подключенных устройств. Точка доступа отправляет SSID-идентификатор раз в 100 мс. Плюсы: - возможность подключения без кабеля; - легкость настройки; - высокая степень защиты (для IEEE i); - достойная скорость (до 300 Мбит/с); - доступная цена. Минусы: - частоты и ограничения в разных странах отличаются; - высокое потребление энергии; - низкая степень защиты (для WEP и WPA); - ограниченный радиус действия (до 90 метров на улице); - риск наложения сигналов и появления помех; - возможные проблемы с совместимостью. Несмотря на ряд недостатков беспроводной сети, она пользуется наибольшим спросом при подключении к сети Интернет. WMAN 9

          10 Такая беспроводная сеть это телекоммуникационная технология, которая работает в пределах определенного населенного пункта или площади. Представитель WiMAX. Система появилась в 2011 году и применяется для объединения нескольких точек Wi-Fi, обеспечения беспроводного соединения, а также создания точек доступа без привязки к географической позиции. Некоторые системы способны работать на расстоянии до км. WiMAX обеспечивает высокоскоростное подключение к Интернету. Рисунок 3. - WMAN Преимущества: - повышенная дальность действия; - высокая скорость связи; - возможность обеспечения разных видов доступа. Недостатки: - высокая цена; - сложность установки. WWAN Рассматривая виды беспроводных сетей, необходимо выделить и WWAN. Технология объединяет разные города и государства с помощью антенны и спутниковой связи. Они бывают разных типов GPRS, CSD, LTE, HSPA, 2G и 3G. Услуги предоставляются на платной основе. Благодаря такому 10

          11 виду связи, человек может с телефона или ноутбука подключиться к Интернету, находясь в стационарном состоянии и в движении. Преимущества: - доступность; - отсутствие привязки к местности (главное условие наличие покрытия); - независимость от скорости и погоды; - универсальность оборудования. Недостатки: - ограничение по скорости передачи данных (в зависимости от вида беспроводной сети); - высокая абонентская плата; - низкий уровень защиты от взлома. Сегодня активно продвигаются новые поколения Интернета 3G, 4G и даже 5G. Они могут похвастаться высокой скоростью Интернета и отсутствием лимитов по скачиванию (в зависимости от тарифа). 11

          13 Любой беспроводной Wi-Fi адаптер должен соответствовать нескольким требованиям: - необходима совместимость со стандартами; - работа в диапазоне частот 2,4 ГГц - 2,435 ГГц (или 5 ГГц); - поддерживать протоколы WEP и желательно WPA; - поддерживать два типа соединения "точка-точка", и "компьютер сервер"; - поддерживать функцию роуминга. Существует три основных разновидности Wi-Fi адаптеров, различаемых по типу подключения: - Подключаемые к USB порту компьютера. Такие адаптеры компактны, их легко настраивать, а USB интерфейс обеспечивает функцию "горячего подключения"; - Подключаемые через PCMCIA слот (CardBus) компьютера. Такие устройства располагаются внутри компьютера (ноутбука) и поддерживают любые стандарты, позволяющие передавать информацию со скоростью до 108 Мбит/с; - Устройства, интегрированные непосредственно в материнскую плату компьютера. Самый перспективный вариант. Такие адаптеры устанавливаются на ноутбуки серии Intel Centrino. И, в настоящее время используются на подавляющем большинстве мобильных компьютеров. 13

          14 БУДУЩЕЕ БЕСПРОВОДНОЙ СЕТИ ИНТЕРНЕТ Рано или поздно наступит время, когда высокоскоростной выход в Интернет из любой точки планеты станет таким же банальностью, как сегодня сотовая связь в городах-мегаполисах. Прежде чем это произойдёт, должна значительно измениться не только технологическая база, но и восприятие Сети потребителем. Из экзотики и даже просто сложной вещи Сеть должна стать чем-то обыденным, что используют также просто, как водопровод, электричество и телефон. И хотя предоставление сети Интернет было, есть и останется бизнесом, способов извлечения прибыли можно придумать значительно больше, нежели банальное взимание абонентской платы. Всё это позволяет нам надеяться на то, что скоро даже вопрос "есть ли здесь интернет" перестанет быть актуальным. Как известно, более трети территории Израиля занимает пустыня Негев, во многих областях которой нет ни дорог, ни другой инфраструктуры. Тем не менее учащиеся школы в деревне Рахат уже могут пользоваться сетью Интернет, и конечно, использовать её для обучения. Понятно, что посреди пустыни сеть Интернет можно реализовать только одним способом - беспроводным. "Проанализировав все факторы, мы пришли к выводу, что физически реализовать коммуникационную инфраструктуру в этом регионе практически невозможно, поэтому беспроводное решение оказалось самым естественным выходом из этой ситуации", - говорит Ави Патир, представитель компании Bezeq Israel Telecommunications Corp. Всего лишь за несколько дней специалисты установили систему WiMAX компании Alvarion, обеспечивающую доступ в сеть Интернет на дальних расстояниях. Ави Патир утверждает, что жители пустыни Негев теперь имеют в своем распоряжении столь же быстрый и высококачественный доступ в Интернет, как жители крупных городов, например, Тель-Авива. В ближайшем будущем эта модель будет реализована в остальных населенных пунктах, расположенных в пустыне Негев. 14

          15 ЗАКЛЮЧЕНИЕ В результате проделанной работы я познакомился с историей развития беспроводной сети Интернет и изучил виды беспроводных сетевых технологий. Используя различные источники информации, я выяснил особенности функционирования беспроводных устройств в сети Интернет. Изучение беспроводных технологий является актуальной задачей в настоящее время. В современном мире уже практически нереально представить себе компьютер без встроенного приемопередатчика Wi-Fi, ведь данная технология позволяет быстро развернуть компьютерную сеть в любых условиях. Wi-Fi стал неотъемлемым атрибутом бизнес-центров, вокзалов, гостиниц, ресторанов, где каждый желающий может свободно получить доступ в глобальную сеть. Очевидно, что данная технология будет и дальше активно развиваться, при этом, качество связи, дальность и скорость передачи данных будет неуклонно возрастать. 15

          16 СПИСОК ЛИТЕРАТУРЫ 1. Заика А.А. Локальные сети и интернет. М. : Интернет-Университет Информационных Технологий (ИНТУИТ), c. 2. Михайлов М.Т. Технологии беспроводной связи. - М.: Дрофа, с. 3. Пролетарский А.В. Беспроводные сети Wi-Fi. М. : Интернет-Университет Информационных Технологий (ИНТУИТ), c. 4. Росс Джон Wi-Fi. Беспроводная сеть. М. : NT Press, с. 16

          Беспроводные технологии — подкласс информационных технологий, служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение, радиоволны, оптическое или лазерное излучение.

          Содержание

          Введение
          Глава 1. Wi-Fi
          1.1. WI-Fi
          1.2. Происхождение названия
          1.3. Приемущества Wi-Fi
          1.4. Недостатки Wi-Fi
          Глава 2. WiMAX
          2.1. WiMAX
          2.2. Основные понятия
          2.3. Mac/ Канальный уровень
          2.4. Архитектура
          Заключение
          Список использованных источников

          Введение

          Беспроводные технологии — подкласс информационных технологий, служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение, радиоволны, оптическое или лазерное излучение.

          В настоящее время существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi и WiMAX. Каждая технология обладает определёнными характеристиками, которые определяют её область применения.

          Глава 1. Wi-Fi

          1.1 Wi-Fi

          Любое оборудование, соответствующее стандарту IEEE 802.11, может быть протестировано в Wi-Fi Alliance и получить соответствующий сертификат и право нанесения логотипа Wi-Fi.

          Wi-Fi был создан в 1991 году NCR Corporation/AT&T (впоследствии — Lucent Technologies и Agere Systems) в Ньивегейн, Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с. Создатель Wi-Fi — Вик Хейз (Vic Hayes) находился в команде, участвовавшей в разработке таких стандартов, как IEEE 802.11b, IEEE 802.11a и IEEE 802.11g. В 2003 году Вик ушёл из Agere Systems. Agere Systems не смогла конкурировать на равных в тяжёлых рыночных условиях, несмотря на то, что её продукция занимала нишу дешёвых Wi-Fi решений. 802.11abg all-in-one чипсет от Agere (кодовое имя: WARP) плохо продавался, и Agere Systems решила уйти с рынка Wi-Fi в конце 2004 года.

          Стандарт IEEE 802.11n был утверждён 11 сентября 2009 года. Его применение позволяет повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с.

          27 июля 2011 года Институт инженеров электротехники и электроники (IEEE) выпустил официальную версию стандарта IEEE 802.22. Системы и устройства, поддерживающие этот стандарт, позволят передавать данные на скорости до 22 Мб/с в радиусе 100 км от ближайшего передатчика.

          1.2 Происхождение названия

          Нужна помощь в написании реферата?

          Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

          Однако, стандарт не описывает всех аспектов построения беспроводных локальных сетей Wi-Fi. Поэтому каждый производитель оборудования решает эту задачу по-своему, применяя те подходы, которые он считает наилучшими с той или иной точки зрения. Поэтому возникает необходимость классификации способов построения беспроводных локальных сетей.

          По способу объединения точек доступа в единую систему можно выделить:

          По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

          1.3 Преимущества Wi-Fi

          • Позволяет развернуть сеть без прокладки кабеля, что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.
          • Позволяет иметь доступ к сети мобильным устройствам.
          • Wi-Fi устройства широко распространены на рынке. Гарантируется совместимость оборудования благодаря обязательной сертификации оборудования с логотипом Wi-Fi.
          • Мобильность. Вы больше не привязаны к одному месту и можете пользоваться Интернетом в комфортной для вас обстановке.
          • В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.
          • Излучение от Wi-Fi устройств в момент передачи данных на порядок (в 10 раз) меньше, чем у сотового телефона.

          1.4 Недостатки Wi-Fi

          Глава 2. WiMAX

          2.1 WiMAX

          WiMAX (англ. Worldwide Interoperability for Microwave Access) — телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован).

          WiMAX подходит для решения следующих задач:

          • Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.
          • Обеспечения беспроводного широкополосного доступа как альтернативы выделенным линиям и DSL.
          • Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.
          • Создания точек доступа, не привязанных к географическому положению.
          • Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе SCADA.

          2.2 Основные понятия

          В общем виде WiMAX сети состоят из следующих основных частей: базовых и абонентских станций, а также оборудования, связывающего базовые станции между собой, с поставщиком сервисов и с Интернетом.

          Для соединения базовой станции с абонентской используется высокочастотный диапазон радиоволн от 1,5 до 11 ГГц. В идеальных условиях скорость обмена данными может достигать 70 Мбит/с, при этом не требуется обеспечения прямой видимости между базовой станцией и приёмником.

          Нужна помощь в написании реферата?

          Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

          Между базовыми станциями устанавливаются соединения (прямой видимости), использующие диапазон частот от 10 до 66 ГГц, скорость обмена данными может достигать 140 Мбит/c. При этом, по крайней мере одна базовая станция подключается к сети провайдера с использованием классических проводных соединений. Однако, чем большее число БС подключено к сетям провайдера, тем выше скорость передачи данных и надёжность сети в целом.

          Структура сетей семейства стандартов IEEE 802.16 схожа с традиционными GSM сетями (базовые станции действуют на расстояниях до десятков километров, для их установки не обязательно строить вышки — допускается установка на крышах домов при соблюдении условия прямой видимости между станциями)[3].

          2.3 MAC / канальный уровень

          Что же касается сетей 802.16, в них MAC использует алгоритм планирования. Любой пользовательской станции стоит лишь подключиться к точке доступа, для неё будет создан выделенный слот на точке доступа, недоступный другим пользователям.

          2.4 Архитектура

          WiMAX Forum разработал архитектуру, которая определяет множество аспектов работы WiMAX сетей: взаимодействия с другими сетями, распределение сетевых адресов, аутентификация и многое другое. Приведённая иллюстрация даёт некоторое представление об архитектуре сетей WiMAX.

          WiMAX Форум WiMAX Архитектура

          • SS/MS: (the Subscriber Station/Mobile Station)
          • ASN: (the Access Service Network)[4]
          • BS: (Base station), базовая станция, часть ASN
          • ASN-GW: (the ASN Gateway), шлюз, часть ASN
          • CSN: (the Connectivity Service Network)
          • HA: (Home Agent, часть CSN)
          • NAP:(a Network Access Provider)
          • NSP: (a Network Service Provider)

          ASN (Access Service Network) — сеть доступа.

          Нужна помощь в написании реферата?

          Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

          BS (Base Station) — базовая станция. Основной задачей является установление, поддержание и разъединение радио соединений. Кроме того, выполняет обработку сигнализации, а также распределение ресурсов среди абонентов.

          CSN (Connectivity Service Network) — сеть обеспечения услуг.

          HA (Home Agent) — элемент сети, отвечающий за возможность роуминга. Кроме того, обеспечивает обмен данными между сетями различных операторов.

          Следует заметить, что архитектура сетей WiMax не привязана к какой-либо определённой конфигурации, обладает высокой гибкостью и масштабируемостью.

          Заключение

          Для обеспечения беспроводного соединения каждый компьютер должен иметь сетевую карту беспроводного доступа, а в случае более современных машин — встроенное устройство беспроводного доступа, что предпочтительнее. Сетевые карты для портативных ПК вставляются в специальные разъемы и имеют антенны. Некоторые PDA имеют встроенные устройства беспроводного доступа, другие — специальные разъемы для подключения таких устройств. Стационарные ПК могут оборудоваться небольшими, размером с мышку, приемопередатчиками, соединяемыми с USB-портом, или внутренними картами. Для стационарных ПК часто требуется PCMCIA карта (сменная карта размером с кредитную карточку для портативных компьютеров, обеспечивающая дополнительные функции, в том числе беспроводное соединение).

          Список использованной литературы

          Нужна помощь в написании реферата?

          Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

          Читайте также: