История создания электродвигателя реферат

Обновлено: 02.07.2024

создание экономичных конструктивных источников электричества – генераторов, электродвигателей, трансформаторов, фабрик электричества (электростанций), электрических линий передач (ЛЭП), подстанций, распределительных

прокладка проводников, кабелей, их защита;

изоляция токоведущих проводов, частей устройств;

методы расчета электросетей, их защита от коротких замыканий;

другие вопросы, которые решались и решаются учеными, инженерами, практиками, изобретателями.

Открытия и исследования Д. Араго, Г. Эрстеда, А. Ампера, Г. Ома, М. Фарадея и других изобретателей и ученых послужили толчком для изобретательской фантазии инженеров, которые стали называться электриками. Важнейшим этапом в развитии электроэнергетики явилось изобретение и применение электрических машин.

В технике основными устройствами, использующими явление электромагнитной индукции, являются генераторы электрического тока, электродвигатели и трансформаторы. Рассмотрим их основное современное устройство и назначение, чтобы затем проследить исторические вехи разработки этих устройств и указать их авторов.

Генератор. Состоит из статора и ротора. Массивный неподвижный статор представляет собой полый стальной цилиндр, на внутренние стенки которого уложено большое число витков метал-лического провода, покрытого изоляцией и ведущего электричество во внешнюю электрическую цепь к потребителю.

Ротор представляет собой цилиндр с пазами для проводов, являющийся большим подвижным электромагнитом, установленным внутри статора.

Под действием паровой турбины, гидротурбины, паровой машины или другого двигателя ротор начинает вращаться, а в проводах статора, благодаря электромагнитной индукции, возникает электрический ток.

Электродвигатель. В электродвигателях происходит другое явление: электрический ток, протекая через провода статора, заставляет ротор вращаться. С помощью механических приспособлений движение ротора можно передать ленте трансмиссии, станку, эскалатору

метро и другим механизмам.

Условия правильной эксплуатации электрического и электромеханического .

. электрооборудования Новые или реконструированные электроустановки должны быть приняты в эксплуатацию в порядке, изложенном в Правилах Технической Эксплуатации: - При организации эксплуатации конкретного вида переносных, передвижных электроприемников (электроинструмент, электрические . конструкции отдельных узлов всего устройства в целом, технические характеристики оборудования остаются неизменными. .

Трансформатор. Состоит из магнитного сердечника и двух или более катушек, которые имеют разное число витков. Если подвести переменный электрический ток к катушке с большим числом витков — ток большего напряжения, то со стороны катушки с меньшим числом витков можно снять больший ток, но меньшего напряжения.

Создание электрических генераторов, электродвигателей, трансформаторов требовало изучения свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Первыми в этом направлении были работы профессора Московского Университета Александра Григорьевича Столетова (1839-1896).

В 80-х гг. им была обнаружена петля гистерезиса и доменная структура у ферромагнитных материалов.

Братья Гопкинсоны разработали теорию электромагнитных цепей. В 1895 г. Пьер Кюри обнаружил существование у ферромагнетиков критической температуры, выше которой происходит исчезновение доменной структуры и потеря ферромагнетизма — точки Кюри.

Применение электричества для связи, освещения, двигательной силы потребовало создания электроизмерительных приборов, Системы единиц измерения.

К 80-м гг. появились гальванометры, амперметры, вольтметры, магазины сопротивления, а начало созданию электроизмерительных приборов положили М.В. Ломоносов, Г.В. Рихман, Б. Франклин еще в XVIII в.

В 1881 г. в Париже собрался первый Международный конгресс электриков. Было принято постановление о разработке единой системы единиц. В группу разработчиков входили: Г. Гельмгольц, Г. Кирхгоф, У. Томсон, Р. Клаузиус, А.Г. Столетов и др.

История создания двигателей уходит в глубокую древность. Сложными путями шел человек к открытию и познанию законов физики, созданию различных механизмов, машин.

Впервые двигатель назвал машиной римский зодчий Марк Полион (1 в. до н. э.).

Важнейшим этапом в развитии электроэнергетики явилось изобретение и применение электродвигателей. Принцип действия электродвигателей основан на физическом явлении: виток проводника, по которому протекает электрический ток, будучи помещенным между магнитами, движется поперек силовых линий магнитного поля. Электродвигатель, как правило, компактнее других двигателей, всегда готов к работе, может управляться на расстоянии.

История электродвигателя — сложная и длинная цепь открытий, находок, изобретений. Проследим этапы развития электродвигателей.

I этап . Начальный период развития электродвигателя (1821-1834гг.).

Он тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 г. М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита, или вращение магнита вокруг проводника. Опыт Фарадея показал принципиальную возможность построения электрического двигателя.

История изобретения электродвигателя постоянного тока

. электромоторы, работающие на переменном токе.[2,6] 2 Первый этап развития электрических двигателей постоянного тока Начальный период развития электродвигателя (1821 — 1834 гг.) характеризуется созданием физических приборов, демонстрирующих непрерывное преобразование электрической энергии в механическую. Первым .

Многие исследователи предлагали различные конструкции электродвигателей.

Первые электродвигатели напоминали по устройству паровые машины: двигатель Дж. Генри (1832 г.) и двигатель У. Пейджема (1864 г.) имели коромысла, кривошип, шатун, а также золотники (переключатели тока в солено-идах, заменявших собой цилиндр).

Дж. Генри предложил в 1832 г. модель двигателя с возвратнопоступательным движением: подвижный электромагнит поочередно притягивался к постоянным магнитам и отталкивался от них, замыкая и размыкая батареи гальванических элементов. Он совершал 75 качаний в минуту.

Было еще много попыток создания двигателей с качательным движением якоря. Однако более прогрессивными оказались попытки построить двигатель с вращательным движением якоря.

II этап . Второй этап развития электродвигателей (1834-1860 гг.) характеризуется конструкциями с вращательным движением явнополюсного якоря. Однако вращательный момент на валу у таких двигателей обычно был резко пульсирующим.

В 1834 г. Б.С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. В 1838 г. этот двигатель (0,5 кВт) был испытан на Неве для приведения в движение лодки с пассажирами (рис. 37), т. е. получил первое практическое применение.

Испытания различных конструкций электродвигателей привели Б.С. Якоби и других исследователей к следующим выводам:

— применение электродвигателей находится в прямой зависимости от удешевления электрической энергии, т.е. от создания генератора, более экономичного, чем гальванические элементы;

— электродвигатели должны иметь по возможности малые габариты и по возможности большую мощность и больший коэффициент полезного действия.

III этап. Третий этап в развитии электродвигателей (1860-1887 гг.) связан сразработкой конструкций с кольцевым неявнополюсным якорем и практическипостоянным вращающим моментом.

На этом этапе нужно отметить электродвигатель итальянца А. Пачинотти (1860 г.).

Его двигатель состоял из якоря кольцеобразной формы, вращающегося в магнитном поле электромагнитов.

Подвод тока осуществлялся роликами. Обмотка электромагнитов включалась последовательно с обмоткой якоря (т.е. электромашина имела последовательное возбуждение).

Габариты двигателя были невелики, он имел практически постоянный вращающий момент. В двигателе Пачинотти явнополюсный якорь был заменен неявнополюсным.

Барабанный якорь, в котором рабочим является проводник, составляющий виток, был изобретен лишь в 1872 г. В. Сименсом. Еще через 10 лет в железе якоря появились пазы для обмотки (1882 г.).

Барабанный якорь машины постоянного тока стал таким, каким мы его можем видеть в настоящее время.

Изготовление коллекторов для электродвигателей

. простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит - статором. Сложность заключается в том, чтобы добиться непрерывного вращения двигателя. А для этого надо сделать так, чтобы полюс подвижного .

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешевого источника электрической энергии — электромагнитного генератора постоянного тока.

В 1886 г. электродвигатель постоянного тока приобрел основные черты современной конструкции. В дальнейшем он все более и более совершенствовался.

По роду тока электродвигатели стали делиться на машины переменного и постоянного тока; по принципу действия машины переменного тока делятся на синхронные и асинхронные.

Асинхронные двигатели отличаются простотой конструкции, малой стоимостью, надежностью в работе. Они являются самым распространенным видом двигателей.

Электродвигатель постоянного тока:

1 — коллектор, 2 — щетки, 3 — якорь, 4 — главный полюс, 5 — катушка обмотки возбуждения, 6 — корпус, 7 — подшипниковый щит, 8 — вентилятор, 9 — обмотка якоря

Устройство и принцип работы двигателя постоянного тока. Двигатель постоянного тока (рис. 69) также состоит из двух основных частей: неподвижного корпуса (станины) и вращающегося якоря с коллектором. На станине укреплены главные полюсы с обмоткой возбуждения и дополнительные полюсы. Главные полюсы создают основной магнитный поток, замыкающийся через якорь. Дополнительные полюсы служат для уменьшения искрения на коллекторе, вызываемого электромагнитными процессами в якоре при коммутации.

Режим работы электродвигателей. Допустимые нагрузки электродвигателя определяются его нагревом, а следовательно, зависят от режима работы. Различают три режима работы: длительный, кратковременный и повторно-кратковременный.

В основе конструкции электродвигателя лежит эффект, который обнаружил Майкл Фарадей в 1821 году: что взаимодействие электрического тока и магнитного поля может вызывать непрерывное вращение. Один из первых двигателей, нашедших практическое применение, был двигатель Б. С. Якоби (1801 –1874), приводивший в движение катер с 12 пассажирами на борту. Но для широкого использования электродвигателя необходим был источник дешевой электроэнергии , на то время токового небыло.

Принцип работы электродвигателя очень прост: вращение вызывается силами магнитного притяжения и отталкивания, действующими между полюсами подвижного электромагнита (ротора) и соответствующими полюсами внешнего магнитного поля, создаваемого неподвижным электромагнитом ( или постоянным магнитом) — статором. Сложность заключается в том, чтобы добиться непрерывного вращения электродвигателя. А для этого надо сделать так, чтобы полюс подвижного электромагнита, притянувшись к противоположному полюсу статора, автоматически менялся на противоположный — тогда ротор не замрет на месте, а повернется дальше — по инерции и под действием возникшего в этот момент отталкивания.

Асинхронные двигатели с фазным ротором

. ремонт асинхронного двигателя с фазным ротором Асинхронные электрические двигатели двух типов: модели с фазным или с короткозамкнутым ротором. Основные элементы, обеспечивающие работу асинхронного электродвигателя: статор и . напряжение на контактных кольцах в момент пуска двигателя: Фазный ток ротора: где К j — коэффициент, учитывающий влияние тока намагничивания и сопротивление обмоток на .

Для автоматического переключения полюсов ротора служит коллектор. Коллектор представляет собой пару закрепленных на валу ротора пластин, к которым подключены обмотки ротора. Ток на эти пластины подается через токоснимающие контакты (щетки).

При повороте ротора на 180° пластины меняются местами — это автоматически меняет направление тока и, следовательно, полюсы подвижного электромагнита. Так как одноименные полюсы взаимно отталкиваются, катушка продолжает вращаться, а ее полюсы притягиваются к соответствующим полюсам на другой стороне магнита.

Вращающаяся часть электродвигателя называется ротором (или якорем), а неподвижная — статором. В простом электродвигателе постоянного тока блок катушки служит ротором, а постоянный магнит — статором.

В некоторых электродвигателях для создания магнитного поля вместо постоянного магнита служит электромагнит. Витки проволоки такого электромагнита называются обмоткой возбуждения

Прототип генератора электрического тока, основанный на принципе электромагнитной индукции, был сконструирован Фарадеем в 1831 г. Он состоял из медного диска, вращающегося вручную между полюсами постоянного магнита. При этом в диске индуцировалась электродвижущая сила (ЭДС); полюсами служили ось диска и неподвижная щетка, имеющая скользящий контакт с краем диска.

Примеры похожих учебных работ

Асинхронные двигатели с фазным ротором

. статора. 1.4 Расчёт фазного ротора Для нормальной работы асинхронного двигателя необходимо, чтобы фазная обмотка ротора имела . графику рис. 1.1. [3]); Рн =7,5 — мощность на валу двигателя, кВт (принимается по заданию); =86,25% — коэффициент полезного .

Асинхронный двигатель с фазным ротором

. Доливо-Добровольский назвал причину этого недостатка — сильно закороченный ротор. Им же была предложена конструкция двигателя с фазным ротором. На рис. приведен вид асинхронной машины с фазным ротором в разрезе: 1 — станина, 2 — обмотка статора, .

Расчет асинхронного двигателя с короткозамкнутым ротором

. Рисунок 1. Асинхронный двигатель с короткозамкнутым ротором. 2. Расчет асинхронного двигателя с короткозамкнутым . концом вала. Климатические условия работы: У3 - по букве . курсовом проекте мы спроектируем машину, ориентируясь на следующий двигатель: .

Асинхронный двигатель с короткозамкнутым ротором 4А 80В2У

. условий работы и являются двигателями общего назначения. Это трехфазные асинхронные двигатели с короткозамкнутым ротором, рассчитанные . Расчет ротора Наружный диаметр ротора, м: Зубцовое деление ротора, м: где = 20 пазов — число пазов на роторе .

Проектирование асинхронного двигателя с короткозамкнутым ротором

. электроизоляционных и магнитных материалов, совершенствования методов расчета, конструкций и систем охлаждения машин удалось снизить удельную массу асинхронных двигателей от начала их широкого производства. При проектировании новых .

Шаговый двигатель

. рийных устройствах ЭВМ и подобных системах. Конструктивно шаговые электродвигатели состоят из статора , на котором расположены . максимального синхронизирующего момента Mmax дает характеристику шагового двигателя как преобразователю энергии, число пар .

Первые эксперименты с электромагнитными устройствами

Электромеханика является относительно молодой, по историческим меркам, отраслью науки и техники.

1800, Вольта

Итальянский физик, химик и физиолог, Алессандро Вольта, первый в мире создал химический источник тока.

1820, Эрстед

Датский ученый, физик, Ханс Кристиан Эрстед, обнаружил на опыте отклоняющее действие тока на магнитную стрелку.

1821, Фарадей

Вращающийся проводник Фарадея

Британский физик-экспериментатор и химик, Майкл Фарадей, опубликовал трактат "О некоторых новых электромагнитных движениях и о теории магнетизма", где описал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. Эта конструкция впервые реализовала непрерывное преобразование электрической энергии в механическую. Принято считать ее первым электродвигателем в истории.

1822, Ампер

Французский физик, Андре Мари Ампер, открыл магнитный эффект соленоида (катушки с током), откуда следовала идея эквивалентности соленоида постоянному магниту. Среди прочего Ампер предложил использовать железный сердечник, помещенный внутрь соленоида, для усиления магнитного поля. В 1820 году им был открыт закон Ампера.

1822, Барлоу

Английский физик и математик, Питер Барлоу, изобрел колесо Барлоу, по сути, униполярный электродвигатель.

1825, Араго

Французский физик и астроном, Доминик Франсуа Жан Араго, опубликовал опыт показывающий, что вращающийся медный диск заставляет вращаться магнитную стрелку, подвешенную над ним.

1825, Стёрджен

Британский физик, электротехник и изобретатель, Уильям Стёрджен, в 1825 изготовил первый электромагнит, который представлял из себя согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки.


1827, Йедлик

Венгерский физик и электротехник, Аньош Иштван Йедлик, изобрел первую в мире динамо-машину (генератор постоянного тока), однако практически не объявлял о своем изобретении до конца 1850-х годов.

1831, Фарадей

Английский физик, Майкл Фарадей, открыл электромагнитную индукцию, то есть явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Формулировка закона электромагнитной индукции.

1831, Генри

Американский физик, Джозеф Генри, независимо от Фарадея обнаружил взаимоиндукцию, но Фарадей раньше опубликовал свои результаты.

1832, Пикси

Генератор постоянного тока Пикси

Француз, Ипполит Пикси, сконструировал первый генератор переменного тока. Устройство состояло из двух катушек индуктивности с железным сердечником напротив которых располагался вращающийся магнит подковообразной формы, который приводился в движение вращением рычага. Позже для получения постоянного пульсирующего тока к этому устройству был добавлен коммутатор.

Электродвигатель Стёрджена

1833, Стёрджен

Британский физик, Уильям Стёрджен, публично продемонстрировал электродвигатель на постоянном токе в Марте 1833 года в Аделаидской галерее практической науки в Лондоне. Данное изобретение считается первым электродвигателем, который можно было использовать.

1833, Ленц

В начале в электромеханике разграничивали магнито-электрические машины (электрические генераторы) и электро-магнитные машины (электрические двигатели). Российский физик (немецкого происхождения), Эмилий Христианович Ленц, опубликовал статью о законе взаимности магнито-электрических явлений, то есть о взаимозаменяемости электрического двигателя и генератора.

Первые реальные электрические двигатели

Май 1834, Якоби

Электродвигатель Якоби

Немецкий и русский физик, академик Императорской Санкт-Петербургской Академии Наук, Борис Семенович (Мориц Герман фон) Якоби, изобрел первый в мире электродвигатель с непосредственным вращением рабочего вала. Мощность двигателя составляла около 15 Вт, частота вращения ротора 80-120 оборотов в минуту. До этого изобретения существовали только устройства с возвратно-поступательным или качательным движением якоря.

Электродвигатели настолько плотно вошли в нашу жизнь, что мы даже не представляем себе жизни без них. А вы знаете, как создавался прототип современного электродвигателя? Нет, а интересно узнать? Тогда в этой статье я вам вкратце расскажу эту увлекательную историю.

Первые эксперименты с электромагнитными устройствами

Я хочу начать свой рассказ немного издалека и расскажу тезисно о самых первых исследовательских работах с электромагнитными устройствами.

И начну с экспериментов итальянского ученого А. Вольта, который сконструировал первейший в мире химический источник тока более 200 лет тому назад, а именно в 1800 году.

Спустя двадцать лет уже датский физик Эрстед открывает уникальное свойство: оказывается протекающий ток способен отклонять в плоскости магнитную стрелку.

Выполненная ученым установка позволяла создать безостановочное трансформирование электрической энергии в механическую. Общепринято именно эту конструкцию считать самым первым электродвигателем в современной человеческой истории.

1822 год француз Андре Мари Ампер открывает магнитный эффект соленоида и была сформулирована идея полной эквивалентности катушки с протекающим током и постоянного магнита. Так же для усиления магнитного эффекта было впервые предложено поместить в центр катушки металлический сердечник.

В этом же году П. Барлоу изобретает униполярный электродвигатель – колесо Барлоу.

1825 год. Ж. Араго демонстрирует общественности опыт, в ходе которого медный диск приводил в движение магнитную стрелку, которая подвешивалась над ним (диском).

В том же году У. Стерджен конструирует первый электромагнит.

В знаменательный 1831 год сразу два великих физика М. Фарадей и Д. Генри, независимо друг от друга открывают такое явление как электромагнитная индукция. Вот только Фарадей первым опубликовывает свои исследования этого явления.

1832 год. Француз И. Пикси создает первый генератор переменного тока следующей конструкции: напротив двух катушек с металлическим сердечником располагался свободно вращающийся магнит подковообразного вида. После добавления к данной конструкции коммутатора установка стала вырабатывать пульсирующий постоянный ток.

В 1833 году общественность увидела электродвигатель на постоянном токе и продемонстрировал эту конструкцию У. Стреджен. И его конструкция считается первой, применимой на практике.

Все тот же год, Э. Х. Ленц публикует свой труд, в котором доказывает взаимозаменяемость электрического двигателя и генератора (закон взаимности магнитоэлектрических явлений).

И вот только теперь мы добрались до первых реальных электрических двигателей

Май 1934 года

Борис Семенович Якоби разрабатывает первый в мире электродвигатель у которого вращается рабочий вал – все существующие двигатели до этого имели якорь с возвратно поступательным или качательным движением.

Созданный двигатель Якоби имел мощность в 15 Вт и имел частоту вращения вала в диапазоне от 80 до 120 оборотов за 60 секунд.

1939 год

Якоби впервые катает 14 пассажиров по Неве. При этом лодка приводилась в движение электромотором мощностью в 1 лошадиную силу и запитанным от 69 элементов Грове. Это эпохальное событие, которое считается первым реальным применением электродвигателя.

1856 год

Вернер фон Сименс (основатель одноименной фирмы) изобретает первый электрический генератор с двойным Т-образным якорем. Именно он первый придумал расположить обмотки в специальных пазах.

1871-1873 годы

Бельгиец Зеноб Теофил Грамм путем доработки устраняет главный минус электромашин с Т-образным ротором (сильная пульсация вырабатываемого тока и перегрев). Он предлагает использовать конструкцию генератора с самовозбуждением и кольцевым якорем.

1885 год

Г. Феррарис, а затем в 1887 году Н. Тесла независимо друг от друга (по крайней мере так считается) создают двухфазный асинхронный двигатель, вот только Феррарис отказывается от дальнейшего улучшения созданного прототипа, так как считает его малоэффективным. А Тесла патентует свое изобретение и как показала история ошибочно считает двухфазную систему перспективной в будущем.

1889 – 1891

Вот такой витиеватый и очень интересный путь привел к созданию современного мира энергетики. Если вам понравилась статья, тогда оцените ее и если вы хотите узнать о различных этапах по подробнее, то напишите об этом в комментариях. Спасибо за уделенное внимание!

В 21-ом веке электродвигатели имеют особое место в нашей жизни. Они находятся почти во всех технических агрегатах, которые мы видим каждый день, будь то пылесос, стиральная машина, система вентиляции. Это безусловно очень важное достижения прогресса, которое появилось в середине 19-го века, и было предвестником индустриальной эры.


Электродвигатель был создан в 1834 году Борисом Якоби, русским пионером электротехники, и после некоторых усовершенствований в 1838 году был установлен на лодке, которая могла с его помощью перемещаться по реке со скоростью около 4 км\ч. Но несмотря на это изобретение, электродвигатели не могли найти массового применения, до того момента, пока не был создан электрический генератор, поскольку осуществлять их питание от батареи было крайне неудобно. Первый двигатель переменного тока был сконструирован и создан Чарльзом Уитстоном в 1841 году. Началом применения переменного тока для электродвигателей принято считать 1889 год, когда инженер Доливо- Добровольский сконструировал первый трехфазный асинхронный двигатель. Первая линия трехфазного переменного тока была создана в 1891 году. Результаты использования этой линии доказали физическую возможность применения трехфазного тока, для передачи больших объемов электроэнергии с высокими показателями КПД. К началу 20-го века появились прототипы основных электромашин.

Именно с того времени началось быстрое развитие электрификации промышленных предприятий и транспорта. Одновременно с этим появляются первые турбогенераторы. Это дает толчок к увеличению мощности генераторов. Для сравнения в 1900 году пиковая мощность генератора составляла 5кВт, а в 1920 году эта величина составляла 60 тысяч кВт. Создание водного охлаждения позволило создать турбогенераторы мощностью около 550 тысяч кВт.

На данный момент электродвигатели имеют следующие характеристики. Максимальная мощность. Она как принято в физике измеряется в Ваттах. Этот параметр зависит от конструкции, материала изготовления, и технологии создания. Несколько двигателей имеющие одинаковую массу и размер могут иметь различную мощность исключительно из-за технологии производства. Как правило, именно этот параметр задает ценовую категорию для двигателя. Далее рассматривают номинальное напряжение и ток, а так же сопротивление обмотки, как вы знаете, эти параметры неизменно влияют друг на друга. При более низком сопротивлении, возрастает максимальное значение ампер. Третьей характеристикой являются номинальные обороты в минуту. Конструкция современного двигателя направлена на получение более высоких оборотов, или же наивысшего момента на валу. Следовательно, двигатель с большим диаметром имеет увеличенный высокий момент и уменьшенные обороты.


Большинство двигателей формируют два магнитных поля, переменное и неподвижное, при этом неподвижное производят постоянные магниты, в то время как переменное создается обмоткой. Неподвижное поле работает по базовым определениям механики, магнит имеет два полюса, северный и как положено южный, противоположные полюса имеют притяжение, одинаковые притягиваются и вследствие этого создается сила взаимодействия. Но для того, чтоб двигатель начал свое вращение требуется менять эти направления. Соответственно, в реальности вращение происходит из-за изменения этих параметров, полюс притягивается, полюс отталкивается. Таков основной принцип действия электродвигателя.

Читайте также: