История развития электроэнергетики россии реферат

Обновлено: 02.07.2024

Начало развития электроэнергетики России связано с разработкой и реализацией плана ГОЭЛРО (Государственная комиссия по электрификации России). В плане были заложены принципы централизации выработки электроэнергии и концентрации генерирующих мощностей на крупных районных электростанциях обеспечили высокую надежность работы и эффективность энергетического хозяйства страны.

В 1935 г. (конечный срок выполнения плана ГОЭЛРО) его количественные показатели по развитию основных отраслей промышленности и электроэнергетики были значительно перевыполнены. Вместо намеченного планом сооружения 30 электростанций было построено 40. По производству электроэнергии в 1935 г. СССР перегнал такие экономически развитые страны, как Англия, Франция, Италия, и занял третье место в мире после США и Германии.

К 1935 г. работало шесть энергосистем с годовой выработкой электроэнергии свыше 1 млрд. кВт·ч каждая, в том числе Московская – около 4 млрд. кВт·ч, Ленинградская, Донецкая и Днепровская – более чем по 2 млрд. кВт·ч. Первые энергосистемы были созданы на основе линий электропередачи напряжением 110 кВ, а в Днепровской энергосистеме – напряжением 154 кВ, которое было принято для выдачи мощности Днепровской ГЭС.

Со следующим этапом развития энергосистем, характеризующимся ростом передаваемой мощности и соединением электрических сетей смежных энергосистем, связано освоение электропередач класса 220 кВ. В 1940 г. для связи двух крупнейших энергосистем Юга страны была сооружена межсистемная линия 220 кВ Донбасс-Днепр.

В 1940-е гг. было организовано первое Объединенное диспетчерское управление (ОДУ). Оно было создано на Урале в 1942 г. для координации работы трех районных энергетических управлений: Свердловэнерго, Пермэнерго и Челябэнерго. Эти энергосистемы работали параллельно по линиям напряжением 220 кВ.

В начале 1950-х гг. развернулось строительство каскада гидроузлов на Волге. От них протянулись на тысячу и более километров к промышленным районам Центра и Урала линии электропередачи напряжением 500 кВ. Наряду с выдачей мощности двух крупнейших Волжских ГЭС это обеспечило возможность параллельной работы энергосистем Центра, Средней и Нижней Волги и Урала. Так был завершен первый этап создания Единой энергетической системы (ЕЭС) страны.

В 1970 г. к Единой энергосистеме европейской части страны была присоединена Объединенная энергосистема (ОЭС) Закавказья, а в 1972 г. – ОЭС Казахстана и отдельные районы Западной Сибири.

Важным этапом развития ЕЭС явилось присоединение к ней энергосистем Сибири путем ввода в работу в 1977 г. транзита 500 кВ Урал-Казахстан-Сибирь, что способствовало покрытию дефицита электроэнергии в Сибири в условиях маловодных лет, и, с другой стороны, использованию в ЕЭС свободных мощностей сибирских ГЭС.

С присоединением энергосистем Сибири к ЕЭС работа наиболее крупных электростанций и основных системообразующих линий электропередачи стала управляться из единого пункта – Центрального диспетчерского управления ЕЭС в Москве.

К 1990 г. электроэнергетика страны получила дальнейшее развитие. Мощности отдельных электростанций достигли около 5 млн. кВт. Наибольшую установленную мощность имели Сургутская ГРЭС – 4,8 млн. кВт, Курская, Балаковская и Ленинградская АЭС – 4,0 млн кВт, Саяно-Шушенская ГЭС – 6,4 млн кВт.

Электроэнергетика бывшего СССР в течение длительного периода времени развивалась как единый народнохозяйственный комплекс, а ЕЭС страны, являющаяся его частью, обеспечивала межреспубликанские перетоки мощности и электроэнергии. До 1991 г. ЕЭС функционировала как государственная общесоюзная централизованная структура. Образование на территории СССР независимых государств привело к коренному изменению структуры управления и развития электроэнергетики.

ЕЭС России охватывает всю обжитую территорию страны от западных границ до Дальнего Востока и является крупнейшим в мире централизованно управляемым энергообъединением. В составе ЕЭС России действует семь ОЭС – Северо-Запада, Центра, Средней Волги, Урала, Северного Кавказа, Сибири и Дальнего Востока. В настоящее время параллельно работает пять первых ОЭС. Энергосистема Калининградской области Янтарьэнерго отделена от России территорией государств Балтии. На территории России действуют изолированно работающие энергосистемы Якутии, Магадана, Сахалина, Камчатки, районов Норильска и Колымы. В целом энергоснабжение потребителей России обеспечивают 74 территориальные энергосистемы.

Вторая группа – территориальные генерирующие компании (ТГК), главный продукт электростанций которых – тепловая, а не электрическая энергия. Эти электростанции сгруппированы по территориальному принципу.

Третья группа – генерирующие компании оптового рынка (ОГК) – включают крупные электростанции страны. Эта группа компаний формирует цены на оптовом рынке, где электроэнергию приобретают крупнейшие потребители. Чтобы избежать монополии на производство электроэнергии в отдельных регионах в состав каждой ОГК включены электростанции, расположенные в разных районах страны.

Магистральные электрические сети (напряжением 220 кВ и выше) перешли под контроль Федеральной сетевой компании (ФСК), распределительные сети интегрированы в межрегиональные распределительные сетевые компании (МРСК). Функции и активы региональных диспетчерских управлений переданы общероссийскому системному оператору. В основном закончен процесс выделения сетевых компаний на базе реорганизованных АО-энерго, созданы все магистральные сетевые компании. АО-энерго сохраняются только в изолированно работающих энергосистемах страны (Сахалинэнерго, Камчатскэнерго и др.).

1.2. Основные понятия и определения

Электроснабжение – это обеспечение потребителей электрической энергией [5].

Потребитель электрической энергии – электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории [5]. В то же время, согласно [4] потребительэлектрической энергии – юридическое или физическое лицо, осуществляющее пользование электрической энергией (мощностью) на основании заключенного договора.

Приемник электрической энергии (электроприемник) – аппарат, агрегат и др., предназначенный для преобразования электрической энергии в другой вид энергии.

Электроустановка – совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другие виды энергии.

Система электроснабжения – совокупность электроустановок, предназначенных для обеспечения потребителей электрической энергией. Централизованное электроснабжение – электроснабжение потребителей электрической энергии от энергосистемы.

В системе электроснабжения предприятий можно выделить три вида электроустановок: по производству электроэнергии – электрические станции; по передаче, преобразованию и распределению электроэнергии –электрические сети и подстанции; по потреблению электроэнергии – приемники электроэнергии.

Электрической станцией называется предприятие, на котором вырабатывается электрическая энергия. На этих станциях различные виды энергии (энергия топлива, падающей воды, ветра, атомная и др.) с помощью электрических машин (генераторов), преобразуются в электрическую энергию. В зависимости от используемого вида первичной энергии все существующие электрические станции разделяются на тепловые, гидравлические, атомные, ветряные и др.

Электрическая сеть – совокупность электроустановок для передачи и распределения электрической энергии между пользователями электрической сети, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Согласно ПУЭ [5], различают нормальный и послеаварийный режимы потребителя электрической энергии.

Нормальный режим – режим, при котором обеспечиваются заданные значения параметров его работы.

Послеаварийный режим – режим, в котором находится потребитель электрической энергии в результате нарушения в системе его электроснабжения до установления нормального режима после локализации отказа.

Независимый источник питания – источник питания, на котором сохраняется напряжение в послеаварийном режиме в регламентированных пределах при исчезновении его на другом или других источниках питания. К числу независимых источников питания относятся две секции или системы шин одной или двух электростанций и подстанций при одновременном соблюдении следующих двух условий: 1) каждая из секций или систем шин в свою очередь имеет питание от независимого источника питания; 2) секции или системы шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций или систем шин.

В стандарте [4] вводится ряд дополнительных определений.

Сетевая организация – организация, владеющая на праве собственности или на ином установленном федеральными законами основании объектами электросетевого хозяйства, с использованием которых оказывающая услуги по передаче электрической энергии и осуществляющая в установленном порядке технологическое присоединение энергопринимающих устройств (энергетических установок) юридических и физических лиц к электрическим сетям, а также осуществляющая право заключения договоров об оказании услуг по передаче электрической энергии с использованием объектов электросетевого хозяйства, принадлежащих другим собственникам и иным законным владельцам и входящих в единую национальную (общероссийскую) электрическую сеть.

Точка передачи электрической энергии – точка электрической сети, находящаяся на линии раздела объектов электроэнергетики между владельцами по признаку собственности или владения на ином предусмотренном федеральными законами основании, определенная в процессе технологического присоединения.

Пользователь электрической сети – сторона, получающая электрическую энергию от электрической сети либо передающая электрическую энергию в электрическую сеть. К пользователям электрических сетей относят сетевые организации и иных владельцев электрических сетей, потребителей электрической энергии, а также генерирующие организации.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Развитие человеческого общества и его успехи на пути цивилизации и прогресса непосредственно связаны с повышением производительности труда и улучшением материальных условий жизни людей. Научно-технический и социальный прогресс сопровождается увеличением потребляемой электрической энергии.

Влияние электроэнергетики на культуру, духовное развитие человека образно охарактеризовал К. Г. Паустовский, сказав, что лишняя тонна угля – это лишняя книжка хороших стихов, это тепло, свет, это спрессованная в черном блестящем камне сила жизни, сила и богатство мыслей и ощущений нашей эпохи. В самом деле, обеспечение электроэнергией – это необходимая основа для того, чтобы человек мог творчески создавать новую технику, заниматься науками, искусством, литературой – всем тем, что обобщенно называется культурой.

Технический прогресс и развитие цивилизации с далеких исторических времен непосредственно связаны с количеством используемых энергоресурсов. Но если на первых этапах развития человек располагал только своей мускульной энергией и мускульной силой животных, то затем большую часть труда он стал возлагать на машины.

Освоение природных энергетических ресурсов стимулировало создание машин, выполнявших довольно сложные операции и позволявших переложить на них значительную часть вначале физического, а затем (в настоящее время) и нетворческого умственного труда. Совершенствование машин освобождало время для наиболее творческой работы, позволяло глубже проникать в законы природы, используя их для своего блага. Это, в свою очередь, способствовало созданию более совершенных орудий труда.

Бурный прогресс техники и тот уровень, которого она сейчас достигла, были бы невозможны без использования качественно новых видов энергии, в первую очередь электрической. Электрическая энергия широко применяется в жизни современного человека. Можно без преувеличения сказать, что без электрической энергии невозможна нормальная жизнь современного общества. Электрическая энергия широко используется в промышленности для приведения в действие различных механизмов, непосредственно в технологических процессах, на транспорте, в быту. Работа современных средств связи – телеграфа, телефона, радио, телевидения – основана на применении электрической энергии. Без нее невозможно было бы развитие кибернетики, вычислительной техники, космической техники и т. д. Именно электрическая энергия, как это и было предсказано еще на заре ее становления, явилась той движущей силой, которая привела к созданию крупного машинного производства, обеспечившего невиданное развитие производительных сил. Основные отличительные свойства электрической энергии состоят в том, что она может легко передаваться на большие расстояния и относительно просто с малыми потерями преобразовываться в другие виды энергии.

Суммарная мощность всех электростанций мира (2 млрд. кВт) уже соизмерима с мощностью многих явлений природы.

Начало развития электроэнергетики России связано с разработкой и реализацией плана ГОЭЛРО (Государственная комиссия по электрификации России). В плане были заложены принципы централизации выработки электроэнергии и концентрации генерирующих мощностей на крупных районных электростанциях обеспечили высокую надежность работы и эффективность энергетического хозяйства страны.

В 1935 г. (конечный срок выполнения плана ГОЭЛРО) его количественные показатели по развитию основных отраслей промышленности и электроэнергетики были значительно перевыполнены. Вместо намеченного планом сооружения 30 электростанций было построено 40. По производству электроэнергии в 1935 г. СССР перегнал такие экономически развитые страны, как Англия, Франция, Италия, и занял третье место в мире после США и Германии.

К 1935 г. работало шесть энергосистем с годовой выработкой электроэнергии свыше 1 млрд. кВт·ч каждая, в том числе Московская – около 4 млрд. кВт·ч, Ленинградская, Донецкая и Днепровская – более чем по 2 млрд. кВт·ч. Первые энергосистемы были созданы на основе линий электропередачи напряжением 110 кВ, а в Днепровской энергосистеме – напряжением 154 кВ, которое было принято для выдачи мощности Днепровской ГЭС.

Со следующим этапом развития энергосистем, характеризующимся ростом передаваемой мощности и соединением электрических сетей смежных энергосистем, связано освоение электропередач класса 220 кВ. В 1940 г. для связи двух крупнейших энергосистем Юга страны была сооружена межсистемная линия 220 кВ Донбасс-Днепр.

В 1940-е гг. было организовано первое Объединенное диспетчерское управление (ОДУ). Оно было создано на Урале в 1942 г. для координации работы трех районных энергетических управлений: Свердловэнерго, Пермэнерго и Челябэнерго. Эти энергосистемы работали параллельно по линиям напряжением 220 кВ.

В начале 1950-х гг. развернулось строительство каскада гидроузлов на Волге. От них протянулись на тысячу и более километров к промышленным районам Центра и Урала линии электропередачи напряжением 500 кВ. Наряду с выдачей мощности двух крупнейших Волжских ГЭС это обеспечило возможность параллельной работы энергосистем Центра, Средней и Нижней Волги и Урала. Так был завершен первый этап создания Единой энергетической системы (ЕЭС) страны.

В 1970 г. к Единой энергосистеме европейской части страны была присоединена Объединенная энергосистема (ОЭС) Закавказья, а в 1972 г. – ОЭС Казахстана и отдельные районы Западной Сибири.

Важным этапом развития ЕЭС явилось присоединение к ней энергосистем Сибири путем ввода в работу в 1977 г. транзита 500 кВ Урал-Казахстан-Сибирь, что способствовало покрытию дефицита электроэнергии в Сибири в условиях маловодных лет, и, с другой стороны, использованию в ЕЭС свободных мощностей сибирских ГЭС.

С присоединением энергосистем Сибири к ЕЭС работа наиболее крупных электростанций и основных системообразующих линий электропередачи стала управляться из единого пункта – Центрального диспетчерского управления ЕЭС в Москве.

К 1990 г. электроэнергетика страны получила дальнейшее развитие. Мощности отдельных электростанций достигли около 5 млн. кВт. Наибольшую установленную мощность имели Сургутская ГРЭС – 4,8 млн. кВт, Курская, Балаковская и Ленинградская АЭС – 4,0 млн кВт, Саяно-Шушенская ГЭС – 6,4 млн кВт.

Электроэнергетика бывшего СССР в течение длительного периода времени развивалась как единый народнохозяйственный комплекс, а ЕЭС страны, являющаяся его частью, обеспечивала межреспубликанские перетоки мощности и электроэнергии. До 1991 г. ЕЭС функционировала как государственная общесоюзная централизованная структура. Образование на территории СССР независимых государств привело к коренному изменению структуры управления и развития электроэнергетики.

ЕЭС России охватывает всю обжитую территорию страны от западных границ до Дальнего Востока и является крупнейшим в мире централизованно управляемым энергообъединением. В составе ЕЭС России действует семь ОЭС – Северо-Запада, Центра, Средней Волги, Урала, Северного Кавказа, Сибири и Дальнего Востока. В настоящее время параллельно работает пять первых ОЭС. Энергосистема Калининградской области Янтарьэнерго отделена от России территорией государств Балтии. На территории России действуют изолированно работающие энергосистемы Якутии, Магадана, Сахалина, Камчатки, районов Норильска и Колымы. В целом энергоснабжение потребителей России обеспечивают 74 территориальные энергосистемы.

Вторая группа – территориальные генерирующие компании (ТГК), главный продукт электростанций которых – тепловая, а не электрическая энергия. Эти электростанции сгруппированы по территориальному принципу.

Третья группа – генерирующие компании оптового рынка (ОГК) – включают крупные электростанции страны. Эта группа компаний формирует цены на оптовом рынке, где электроэнергию приобретают крупнейшие потребители. Чтобы избежать монополии на производство электроэнергии в отдельных регионах в состав каждой ОГК включены электростанции, расположенные в разных районах страны.

Магистральные электрические сети (напряжением 220 кВ и выше) перешли под контроль Федеральной сетевой компании (ФСК), распределительные сети интегрированы в межрегиональные распределительные сетевые компании (МРСК). Функции и активы региональных диспетчерских управлений переданы общероссийскому системному оператору. В основном закончен процесс выделения сетевых компаний на базе реорганизованных АО-энерго, созданы все магистральные сетевые компании. АО-энерго сохраняются только в изолированно работающих энергосистемах страны (Сахалинэнерго, Камчатскэнерго и др.).

1.2. Основные понятия и определения

Электроснабжение – это обеспечение потребителей электрической энергией [5].

Потребитель электрической энергии – электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории [5]. В то же время, согласно [4] потребительэлектрической энергии – юридическое или физическое лицо, осуществляющее пользование электрической энергией (мощностью) на основании заключенного договора.

Приемник электрической энергии (электроприемник) – аппарат, агрегат и др., предназначенный для преобразования электрической энергии в другой вид энергии.

Электроустановка – совокупность машин, аппаратов, линий и вспомогательного оборудования (вместе с сооружениями и помещениями, в которых они установлены), предназначенных для производства, преобразования, трансформации, передачи, распределения электрической энергии и преобразования ее в другие виды энергии.

Система электроснабжения – совокупность электроустановок, предназначенных для обеспечения потребителей электрической энергией. Централизованное электроснабжение – электроснабжение потребителей электрической энергии от энергосистемы.

В системе электроснабжения предприятий можно выделить три вида электроустановок: по производству электроэнергии – электрические станции; по передаче, преобразованию и распределению электроэнергии –электрические сети и подстанции; по потреблению электроэнергии – приемники электроэнергии.

Электрической станцией называется предприятие, на котором вырабатывается электрическая энергия. На этих станциях различные виды энергии (энергия топлива, падающей воды, ветра, атомная и др.) с помощью электрических машин (генераторов), преобразуются в электрическую энергию. В зависимости от используемого вида первичной энергии все существующие электрические станции разделяются на тепловые, гидравлические, атомные, ветряные и др.

Электрическая сеть – совокупность электроустановок для передачи и распределения электрической энергии между пользователями электрической сети, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Согласно ПУЭ [5], различают нормальный и послеаварийный режимы потребителя электрической энергии.

Нормальный режим – режим, при котором обеспечиваются заданные значения параметров его работы.

Послеаварийный режим – режим, в котором находится потребитель электрической энергии в результате нарушения в системе его электроснабжения до установления нормального режима после локализации отказа.

Независимый источник питания – источник питания, на котором сохраняется напряжение в послеаварийном режиме в регламентированных пределах при исчезновении его на другом или других источниках питания. К числу независимых источников питания относятся две секции или системы шин одной или двух электростанций и подстанций при одновременном соблюдении следующих двух условий: 1) каждая из секций или систем шин в свою очередь имеет питание от независимого источника питания; 2) секции или системы шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций или систем шин.

В стандарте [4] вводится ряд дополнительных определений.

Сетевая организация – организация, владеющая на праве собственности или на ином установленном федеральными законами основании объектами электросетевого хозяйства, с использованием которых оказывающая услуги по передаче электрической энергии и осуществляющая в установленном порядке технологическое присоединение энергопринимающих устройств (энергетических установок) юридических и физических лиц к электрическим сетям, а также осуществляющая право заключения договоров об оказании услуг по передаче электрической энергии с использованием объектов электросетевого хозяйства, принадлежащих другим собственникам и иным законным владельцам и входящих в единую национальную (общероссийскую) электрическую сеть.

Точка передачи электрической энергии – точка электрической сети, находящаяся на линии раздела объектов электроэнергетики между владельцами по признаку собственности или владения на ином предусмотренном федеральными законами основании, определенная в процессе технологического присоединения.

Пользователь электрической сети – сторона, получающая электрическую энергию от электрической сети либо передающая электрическую энергию в электрическую сеть. К пользователям электрических сетей относят сетевые организации и иных владельцев электрических сетей, потребителей электрической энергии, а также генерирующие организации.

Это был период "большого скачка" электроэнергетики нашей страны, который вывел СССР на ведущие роли в мире по производству электроэнергии, однако уже в то время были заложены и те негативные черты, которые к сегодняшнему дню вылились в деформированность отрасли, вызванную чрезмерной централизацией, гигантоманией и ориентированность на абсолютные цифры в ущерб экологичности энергии и интересам мелкого потребителя.

Файлы: 1 файл

развитие электроэнергетики.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЬЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МАРИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Р Е Ф Е Р А Т

На тему: Развитие электроэнергетики России 1917 - 1940 гг

Выполнил студент гр.: зЭЭ-11

Павлов К.В.

В современной отечественной публицистике доминируют две крайних точки зрения на процесс электрификации нашей страны. Сторонники первой, назовем ее традиционной, точки зрения полностью отрицают значимость достижений на этой ниве дореволюционной России. С целью подтверждения истинности такого взгляда на проблему, зачастую, занижаются данные об объеме производства электроэнергии, допускаются манипуляции критериями сравнения, датами, и размерностями величин. Однако, сложно доказать недоказуемое, электроэнергетика в дореволюционной России существовала, тем или иным образом потребителями электроэнергии являлись до 20% населения страны, по производству электроэнергии Россия занимала восьмое место в мире.

Вторая точка зрения состоит в том, что высокие предреволюционные темпы развития российской электроэнергетики произвольным образом экстраполируются на будущие периоды. Сторонники этой точки зрения оперируют умозрительными планами развития отрасли безотносительно оценки возможности их реализации в условиях дореволюционной системы хозяйствования. Не берутся в расчет выдающиеся способности новой администрации по концентрации усилий в ключевых отраслях экономики, а так же в определении этих ключевых отраслей.

Обе эти точки зрения видятся порочными по своей сути, так как нарушают принцип непрерывности истории, отрицают преемственность и последовательность в развитии электроэнергетики страны. Нам кажется, более взвешенным следующий взгляд на вещи: динамичному развитию электроэнергетики в России был нанесен удар началом Первой Мировой Войны, а затем оно было прервано последовательностью социально-политических катаклизмов, потрясших сами устои российской государственности. Этот период, продолжавшийся примерно до конца 1920 года, характеризуется деградацией отрасли несмотря на усилия энергетиков и ряда функционеров новой власти направленные на ее сохранение. Однако в последующие годы эти усилия стали приносить свои плоды. Следует отметить, что в целом восстановление электроэнергетики возглавляли те же кадры, которые осуществляли дореволюционную электрификацию России. Именно, благодаря их опыту и организаторским способностям, а также решительности представителей новых властей, в рамках принятого в декабре 1921 года плана ГОЭЛРО к 1925 году был достигнут предвоенный уровень производства электроэнергии. Реализации этого плана и истории развития электроэнергетики СССР до начала Великой Отечественной Войны и посвящена настоящая статья.

После прихода к власти в октябре 1917 года, большевикам пришлось сразу столкнуться с проблемой снабжения крупных городов и промышленных предприятий энергоносителями. Учитывая возникшие сложности с подвозом угля из донецкого бассейна, нефти и нефтепродуктов с бакинских и грозненских промыслов, новые власти рассматривали электрификацию Москвы иПетрогр ада, как способ компенсировать дефицит традиционных энергоносителей. В марте 1918 года с целью улучшения снабжения электроэнергией столиц было запланировано строительство пяти электростанций, однако, в силу ряда причин летом того же года удалось только возобновить строительство Волховской и приступить к строительству Каширской и Шату рской электростанций. Но реализация и этих, сильно урезанных относительно планов, начинаний, была поставлена под угрозу развернувшейся Гражданской Войной - рабочие мобилизовывались на военную службу, материальное обеспечение осуществлялось по остаточному принципу, в результате этого первенцы советской энергетики были введены в строй лишь в 1922 (Каширская) и в 1926 (Волховская) годах уже в рамках принятого в 1921 году плана ГОЭЛРО. На фоне такого казенного долгостроя наблюдалось любопытное явление - строительство местных электростанций и локальная электрификация силами местных жителей в сельской местности - наиболее известный (но не единичный) пример - Ярополецкая ГЭС на реке Ламе, дававшая электроэнергию нескольким близлежащим деревням вплоть до оккупации территории немцами в ходе Великой Отечественной Войны.

Особенность плана ГОЭЛРО состоит в том, что помимо арифметического наращивания мощностей по производству электроэнергии он предполагал комплексное развитие экономики страны на базе новой движущей силы - электричества, объединение его производителей сначала в ряд крупных локальных сетей, а затем, в перспективе, в глобальную энергетическую сеть, чье функционирование направлено на бесперебойное снабжение энергией предприятий тяжелой промышленности, транспорта и других отраслей народного хозяйства России. Для осуществления энергетических взаимосвязей предусматривалось широкое строительство высоковольтных линий электропередачи, недостаток которых являлся одним из узких мест дореволюционной электроэнергетики. Здесь, справедливости ради, следует отметить, что эта концепция - концепция единой энергетической системы ведет свое начало от соединения в 1915 году на параллельную работу двух электростанций, в Москве и Подмосковье, линией электропередачи на 70 Кв, длиной 76 км - к сожалению единственной высоковольтной ЛЭП империи. План ГОЭЛРО вообще является первым планом развития экономики крупной страны на основе новых технологий, которыми на тот период являлись электротехнические. Его базовые положения - опережающее развитие электрификации на основе концентрации мощностей и централизации электроснабжения сохранили свою значимость для энергетической отрасли страны до сегодняшнего дня, именно от них происходит "блеск и нищета" отечественной электрификации.

Но вернемся к плану ГОЭЛРО, принятому к исполнению в декабре 1921 года. Этот план предусматривал доведение к 1935 году суммарной мощности электростанций до 1750 мВт, а годовое производство электроэнергии до 8,8 млрд. кВт/ч. Для достижения этих результатов планировалось ввести в действие 30 крупных электростанций (включая уже строящиеся), в т.ч. 10 ГЭС. Первые из них были введены в строй уже в следующем 1922 году, это были уже упоминавшаяся Каширская ГРЭС и электростанция Красный Октябрь в Петрограде. В 1924 году введена в эксплуатацию Кизеловская ГРЭС, в 1925 - Нижегородская и Шатурская станции, работавшие на местном торфе. К тому же 1925 году относится начала использования в Москвенапряжения бытовой электросети в 220 В. В декабре 1926 года наконец введена в стройВолховская ГЭС. В этом же году в Москве создана первая диспетчерская энергетическая служба. В 1927 году начато строительство крупнейшей в Европе гидроэлектростанции – ДнепроГЭСа. Идея строительства ГЭС на Днепровских порогах витала в воздухе еще с начала века. Первый проект их затопления был создан еще в 1905 году инженерами Г.О. Графтио (упоминавшимся выше, как один из разработчиков позднейшего плана ГОЭЛРО) и С.П. Максимовым. Этот проект предусматривал строительство на участке от Днепропетровска до современного Запорожья трех ГЭС общей мощностью до 90 000 кВт. Тогда этот проект не был осуществлен, но уже 10 августа 1921 года, т.е. еще до утверждения 9-м Съездом Советов сроков реализации плана ГОЭЛРОбыло принято постановление СНК "об освобождении земель, подлежащих затоплению при строительстве гидроэлектростанции у города Александровска (Запорожье)". Земли под затопление освобождались в соответствии с проектом созданным И.Г. Александровым по заданию на проектирование выданное 5 марта 1921 года. Проект был высоко оценен, использовал опыт строительства и эксплуатации таких ГЭС, как "Куинстон" на Ниагаре и "Ла-Габель" на реке Св. Лаврентия. Однако в обстоятельствах 1922 года немедленно приступить к воплощению в жизнь этого проекта было невозможно. Отечественная промышленность не производила энергоагрегатов требуемой мощности, а экономическая изоляция Советской России еще не была полностью преодолена. Переговоры о приемлемых условиях поставки оборудования затягивались. Все же в 1927 году в основание будущей ГЭС легла закладная пластина. Надвигающийся экономический кризис помог решить проблему с поставкой оборудования - американцы предложили полный цикл строительства ГЭС, вплоть до сдачи ее заказчику, однако было принято паллиативное решение - строительство вели отечественные кадры, но под наблюдением американских консультантов. Первый блок был запущен 1 мая 1932 года, т.е. уже после того, как в 1931 году план ГОЭЛРО был выполнен по основным показателям. После вывода ДнепроГЭСа на полную проектную мощность он стал самой мощной ГЭС в Европе - 560000 КВт.

В 1933 году введена в строй линия электропередачи напряжением 220 кВт - Нижнесвирская ГЭС - Ленинград. Начато объединение в единую сеть электростанций Горького и Иван ово.

В конце 20-х – начале тридцатых годов электричество все шире входило в быт, проводились любопытные эксперименты по бытовому применению электроэнергии. Вот, например, что писала в вечернем выпуске от 23 января 1928 года "Красная газета":

"Откомхоз приступил к рассмотрению вопроса о применении электричества в домашнем быту. ..
Намечено установить в нескольких квартирах ряд электрических приборов. Для точного выявления выгодности применения электричества эти квартиры попеременно одну неделю будут отапливаться дровами, вторую - электроэнергией. Недельные данные покажут, дешевле ли электричество для отопления квартир, чем дрова, какой тариф должен быть установлен на отпуск электроэнергии для домашнего потребления".

Итак, план ГОЭЛРО был выполнен досрочно. К плановому сроку его реализации, 1935 году, установленная мощность электростанций составила 6 800 мВт, выработка электроэнергии в соответствующем году достигла 26,3 млрд. кВт/ч (для сравнения, в 1920 году этот показатель равнялся 0,5 млрд. кВт/ч). В 1936 году СССР вышел на третье место в мире, после Германии и США, по выработке электроэнергии. В соответствии с принципами, положенными в основу планаГОЭЛРО отечественная энергетика продолжала развиваться все ускоряющимися темпами, так в 1937 году производство электроэнергии достигло 36,173 млрд. кВт/ч при мощности всех станций в 8235 мВт, а в 1940 году соответствующие показатели составили уже 48,309 млрд. кВт/ч и 11193 мВт. Одновременно возрастала экономичность тепловых электростанций составлявших основу энергетики, так если в 1913 году для производства одного кВт/ч электроэнергии затрачивалось 1060г. условного топлива, то к 1940 году этот показатель снизился до 598г. электроэнергетика распространялась на Восток страны вместе с развитием восточных промышленных районов. В предвоенные и военные годы быстрыми темпами развивалась энергетика Урала, Сибири иСред ней Азии. Именно это позволило компенсировать разрушение в ходе Великой Отечественной Войны 60 только крупных электростанций общей мощностью 6 000 мВт, и выйти в 1945 году почти на уровень предвоенных показателей. В этом году было произведено 43,257 млрд. кВт/ч электроэнергии на электростанциях общей мощностью 11 124 мВт.

Подводя итог этому периоду электрификации России следует отметить, что это был период "большого скачка" электроэнергетики нашей страны, который вывел СССР на ведущие роли в мире по производству электроэнергии, однако уже в то время были заложены и те негативные черты, которые к сегодняшнему дню вылились в деформированность отрасли, вызванную чрезмерной централизацией, гигантоманией и ориентированность на абсолютные цифры в ущерб экологичности энергии и интересам мелкого потребителя.


100 вольт

Иностранное засилье

Анализ капиталовложений за период с 1895 по 1899 годы в электротехническую и электрическую промышленность вывил очевидный перекос в сторону немецких и бельгийских инвесторов. Объясняется это тем, что царское правительство обеспечивало более льготное налогообложение зарубежных электротехнических концернов, нежели национальных. Российские власти требовали от иностранцев осуществлять генерацию или производство энергетического оборудования под русскими марками, взамен оставляя право на вывоз капитала в любых объемах. В итоге в первые десять лет двадцатого века зарубежные компании увеличили инвестиции в свои электротехнические дочерние предприятия на 205%. Так, перед войной 1914 года немцы контролировали две трети энергетики Российской империи. Между тем тарифы на освещение были заоблачные: один час работы лампы стоил 5 копеек, а уличного фонаря — 17 копеек, и это при средней зарплате в промышленности — 27 рублей в месяц.

Упор на обособленность

Ленин и электроэнергетика

ГОЭЛРО

План ГОЭЛРО являл собой шестисот страничный том и состоял из шести глав:

электрификация и план государственного хозяйства

электрификация и топливоснабжение

электрификация и водная энергия

электрификация и сельское хозяйство

электрификация и транспорт

электрификация и промышленность

Война

В 1940 году производство электроэнергии в СССР достигло 48,3 млрд. кВтч, при этом суммарная мощность советской электроэнергетики составила 11,2 миллионов кВт. Однако начавшая война с фашисткой Германией и оккупация Украины, Белоруссии и центральной части России негативно сказалась на отечественной энергетике, что привело в 1942 году к резкому сокращению её суммарной генерации до 29,1 млрд кВтч. Осознавая значение этой отрасли, Государственный Комитет Обороны приравнял строительство новых мощностей к оборонзаказу.

Параллельно шло восстановление на освобожденных территориях электростанций, разрушенных немцами, в первую очередь наиболее важных - Днепровской, Свирской, Кегумской и Баксанской ГЭС, а также Дубровской, Сталиногорской, Штеровской, Зуевской, Криворожской и Шахтинской ТЭС. Важно и то, что крупнейшие советские города после ухода немцев сразу обеспечивались током за счет энергопоездов. Первую такую мобильную электростанцию изготовили в 1943 году на ТЭЦ-12 и отправили в Сталинград. Передвижная энергетика, начиная с 1943 года, работала в Ростове, Харькове, Киеве, Севастополе, Донбассе, Кривом Роге, Крыму, Минске, Риге, Таллине и в Вильнюсе. В результате советские энергетики в 1945 году смогли выйти практически на предвоенные показатели, осуществив генерацию 43,3 млрд. кВтч.

Послевоенный период

После Победы 1945 года энергетическая программа СССР развивалось в сторону дальнейшей централизации и по пути строительства крупнейших в мире тепловых и гидроэлектростанций. Такой подход позволил за 15 послевоенных лет увеличить выработку электроэнергии в 6 раз по сравнению 1940 годом — до 300 млрд. кВтч. Во многом именно поэтому в 1967 году удалось завершить создание единой энергетической системы европейской части страны, объединившей 600 электростанций общей мощностью 65 миллионов кВт. Опираясь на этот опыт, была поставлена задача построения кольцевых сетей азиатского и восточносибирского регионов, с дальнейшим выходом на единую энергосистему страны.

Гидроэнергетика

Время 60-80 годов прошлого века характеризуется переносом центра строительства электростанций в Сибирь и в Среднюю Азию, где сосредоточилось до 80% гидроэнергоресурсов. По сути дела, начался новый этап развития советской энергетики. Так, важнейшим шагом в этом направлении явилось возведение Братской ГЭС мощностью 4500 МВт на Ангаре (1961 г.) с бетонной гравитационной плотиной высотой 120 м. Именно этой станции суждено было стать основой Братско-Усть-Илимского территориально-производственного комплекса и Объединенной Энергосистемы Сибири. Вслед за ней была построена и Красноярская ГЭС на Енисее мощностью 6000 МВт.

Развивалась гидроэнергетика и на Дальнем Востоке, в частности в 1978 г. дала ток Зейская ГЭС на реке Зее мощностью 1330 МВт с массивно-контрфорсной плотиной высотой 123 м. В целом мощность советских гидроэлектростанций к 1990 году достигла 65 млн. кВт, а их выработка составила 233 млрд. кВтч.

Саяно-Шушенская ГЭС

Саяно-Шушенскую ГЭС начали строить в 1963 году и официально сдали в эксплуатацию в 2000 году, но станция окупилась еще в 1986 году благодаря монтажу на первых двух турбинах временных рабочих колес, способных генерировать ток при промежуточных напорах воды. К этому времени станция выработала уже 80 млрд. кВтч, вернув в госбюджет все средства, направленные на её строительство.

Мирный атом

Реформа РАО ЕС

Однако дезинтеграция, по мнению ряда эксперта, в целом отрицательно сказалась на электроэнергетике. В частности главный инженер РАО ЕС в 1994—1996 годах Виктор Кудрявый предсказал рост аварийности в связи с этой реформой, что, собственно, и наблюдается в настоящее время. Снизился и коэффициент использования установленной мощности ГРЭС. Не оправдались надежды на капиталовложения и стабилизацию тарифов.

Новые объекты

После 2000 года ряд советских проектов в электроэнергетики обрел второе дыхание. Прежде всего, это касалось гидроэнергетики. В 2003 году на реке Кунья в Московской области вышла на полную мощность Загорская ГАЭС мощностью 1200 МВт. В 2009 году на реке Бурее в Амурской области было завершено строительство Бурейской ГЭС, мощностью 2010 МВт. Кстати, первый камень в её основание был заложен еще в 1978 году. Из станций, возведение которых началось в постсоветский период, ток дали Аушигерская ГЭС (мощность 60 МВт), Кашхатау ГЭС(65 МВт), Юмагузинская ГЭС (45 МВт), Толмачевский каскад (45 МВт), Гельбахская ГЭС (44 МВт).

Альтернативная энергетика

В настоящее время в мировой электроэнергетике существенный интерес представляет генерация на основе альтернативных источников энергии. В нашей стране также ведутся работы в этом направлении. Так, летом 2013 года в селе Яйлю Турочакского района Республики Алтай началась эксплуатация автономной дизель-солнечной электростанции мощностью 100 кВт. В дневное время электроснабжение ведется за счет фотоэлектрических батарей, в ночное — от аккумулятора и дизельного электрогенератора. Этот проект интересен автономностью, опыт которого позволит надежно электрифицировать отдаленные поселения.

Одна из ведущих компаний по строительству энергетических объектов, кадровую основу которой составляют квалифицированные специалисты с богатейшим опытом работы в России и за рубежом. Осуществляет строительство и монтаж сложнейших, стратегически важных промышленных объектов в области энергетики и различных отраслей промышленности. Постоянно наращивая объемы деятельности, компания уже получила широкую известность в своей сфере и занимает достойные позиции в энергетическом строительстве.

Читайте также: