Информационные характеристики каналов связи реферат

Обновлено: 05.07.2024

Все разнообразие используемых в технике и быту систем связи, в основном радиосвязи, можно свести к трем видам, отличающимся способами передачи сигнала от передатчика к приемнику. В первом случае используется ненаправленная радиосвязь от передатчика к приемнику, типичная для широкого вещания радио и телевидения. Такой способ радиосвязи имеет то преимущество, что позволяет охватить практически неограниченное число абонентов - потребителей информации. Недостатками такого способа являются неэкономное использование мощностей передатчика и мешающее влияния на другие аналогичные радиосистемы. В тех случаях, когда число абонентов ограничено и нет необходимости в широковещании, используется передача сигнала с помощью направленно излучающих антенн, а также при помощи специальных устройств, называемых линиями передачи сигнала.

Оглавление

ВВЕДЕНИЕ
1.КЛАССИФИКАЦИЯ И ХАРАКТЕРИСТИКИ КАНАЛА СВЯЗИ
1.1. Принципы работы основных видов линий передачи сигналов
2. МЕТОДЫ ОБРАБОТКИ И ПЕРЕДАЧИ СИГНАЛОВ В СПУТНИКОВЫХ СИСТЕМАХ.
2.1. Особенности использования спутниковых каналов.
2.2. Передача сигналов в аналоговой форме.
2.3. Передача сигналов в цифровой форме.
2.4. Передача ТВ-сигналов в цифровой форме.
2.5. Передача циркулярных сигналов .
2.6. Методы коммутации и передачи данных в ССС
2.6.1. Системы с коммутацией каналов с временным уплотнением
2.6.2. Коммутация пакетов.
2.7. Многостанционный доступ в ССС.
2.7.1. Описание основных методов многостанционного доступа.
2.7.1.1. Доступ с частотным разделением каналов (МДЧР).
2.7.1.2. Доступ с временным разделением (МДВР).
2.7.1.3. Доступ с кодовым разделением (МДКР).
2.7.2. Сравнительное сопоставление основных методов.
2.8. Земные станции (ЗС) спутниковых систем связи.
2.8.1. Антенны ЗС.
2.8.2. Построение типовой ЗС.
2.8.3. Малые ЗС.
2.9. Бортовые ретрансляторы ССС.
2.9.1. Антенны.
2.9.2. Ретрансляторы.
ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

Файлы: 1 файл

информатика каналы связи.docx

РЕФЕРАТ

На тему: Каналы связи

1.КЛАССИФИКАЦИЯ И ХАРАКТЕРИСТИКИ КАНАЛА СВЯЗИ

1.1. Принципы работы основных видов линий передачи сигналов

2. МЕТОДЫ ОБРАБОТКИ И ПЕРЕДАЧИ СИГНАЛОВ В СПУТНИКОВЫХ СИСТЕМАХ.

2.1. Особенности использования спутниковых каналов.

2.2. Передача сигналов в аналоговой форме.

2.3. Передача сигналов в цифровой форме.

2.4. Передача ТВ-сигналов в цифровой форме.

2.5. Передача циркулярных сигналов .

2.6. Методы коммутации и передачи данных в ССС

2.6.1. Системы с коммутацией каналов с временным уплотнением

2.6.2. Коммутация пакетов.

2.7. Многостанционный доступ в ССС.

2.7.1. Описание основных методов многостанционного доступа.

2.7.1.1. Доступ с частотным разделением каналов (МДЧР).

2.7.1.2. Доступ с временным разделением (МДВР).

2.7.1.3. Доступ с кодовым разделением (МДКР).

2.7.2. Сравнительное сопоставление основных методов.

2.8. Земные станции (ЗС) спутниковых систем связи.

2.8.2. Построение типовой ЗС.

2.9. Бортовые ретрансляторы ССС.

В нашей стране создается единая автоматизированная система связи. Для этого развиваются, совершенствуются и находят новые области применения различные технические средства связи.

Еще недавно междугородняя телефонная связь осуществлялась исключительно по воздушным линиям связи; при этом на надежность связи влияли грозы и возможность обледенения проводов. В настоящее время все шире применяются кабельные и радиорелейные линии, повышается уровень автоматизации связи.

Все разнообразие используемых в технике и быту систем связи, в основном радиосвязи, можно свести к трем видам, отличающимся способами передачи сигнала от передатчика к приемнику. В первом случае используется ненаправленная радиосвязь от передатчика к приемнику, типичная для широкого вещания радио и телевидения. Такой способ радиосвязи имеет то преимущество, что позволяет охватить практически неограниченное число абонентов - потребителей информации. Недостатками такого способа являются неэкономное использование мощностей передатчика и мешающее влияния на другие аналогичные радиосистемы. В тех случаях, когда число абонентов ограничено и нет необходимости в широковещании, используется передача сигнала с помощью направленно излучающих антенн, а также при помощи специальных устройств, называемых линиями передачи сигнала.

В широковещательной связи обычно используется однонаправленная передача сигнала от радиостанции к потребителю, при направленной же связи, как правило, применяется двусторонняя связь, то есть на каждом конце системы связи имеются и передатчик и приемник ( приемопередатчик - ПП). При направленной связи не нужны передатчики большой мощности, и их можно установить на обоих концах системы. При направленной магистральной связи на дальние расстояния через пространства и в линиях передачи используются ретрансляторы, которые ставятся вдоль трассы. Они усиливают сигнал, очищают его от помех и передают дальше. Рассмотрим принципы работы основных видов линий передачи сигналов, начиная от двухпроводной линии, которая начала применятся в начале нашего века и кое-где в сельских местностях используется до сих пор для передачи телеграфных и телефонных сигналов, и кончая современной волоконно-оптической линией, которая наряду с космической (спутниковой) связью, несомненно, составит связь будущего.

1. КЛАССИФИКАЦИЯ И ХАРАКТЕРИСТИКИ КАНАЛА СВЯЗИ

Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.

Рис. 1. Обобщенная схема канала связи

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

  1. По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала Tк, ширины спектра частот, пропускаемых каналом Fк и динамического диапазона Dк., который характеризует способность канала передавать различные уровни сигналов

Условие согласования сигнала с каналом:

2. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

  1. Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

  1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.
  2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий

1.1 ПРИНЦИПЫ РАБОТЫ ОСНОВНЫХ ВИДОВ

ЛИНИЙ ПЕРЕДАЧИ СИГНАЛОВ

Двухпроводная линия: провода подвешиваются на столбах, расстояние между которыми порядка метра. Применяется для передачи сигналов на волнах порядка сотен и более метров, что соответствует частотам в диапазоне практически от 0 до 1 МГц. Используется для трансляции местного радиовещания.

Электрический кабель. Эл. каб. делятся на низкочастотные и высокочастотные, одножильные и многожильные. Кабеля применяются для передачи сигналов на частотах до 1 ГГц, что соответствует длинам волн от 30 см и более. Примером может служить телевизионный кабель, соединяющий антенну с телевизионным приемником.

Метрический волновод представляет собой полую металлическую трубку круглого или прямоугольного сечения. Электр. волны могут распространятся по волноводу отражаясь от стенок. Металл. волноводы получили применение в качестве линий передачи сантиметровых и миллиметровых волн. Круглый волновод не получил применение для дальней связи, так как требуется выполнить прямолинейность трассы. Это оказалось очень дорогостоящим.

Диэлектрический волновод - это стержень из диэлектрического материала, в котором могут распространятся электромагнитные волны с малыми потерями. Они получили применения для передачи сигнала на миллиметровых волнах на сравнительно короткие расстояния (метры, десятки метров). Они оказались чрезвычайно перспективными для применения в диапазоне световых волн, точнее, в диапазоне инфракрасных волн с длиной волны порядка микрометра.

Радиорелейная линия. Чтобы обеспечить передачу сигнала за пределы прямой видимости, антенны с ретрансляторами помещали на высоко летящие объекты: самолеты и спутники, а также на специальные мачты высотой до 100 метров, устанавливаемые вдоль трассы на расстоянии 40-50 км друг от друга. Радиорелейные линии сейчас широко применяются. Их можно увидеть вдоль магистральных шоссе и железнодорожных линий.

Волоконно-оптическая линия. Основу вол.-опт. линии составляет волоконно-оптический кабель, главным элементов которого является волоконный световод -стеклянное волокно из высококачественного оптического стекла. Стекла оказались более прозрачными в инфракрасном диапазоне.

В настоящее время глубоко начались развиваться компьютерные сети. С помощью их можно осуществить практически любой способ передачи информации.

Сетевые устройства и средства коммуникаций

В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель оптоволоконные линии. При выборе типа кабеля учитывают следующие показатели:

• стоимость монтажа и обслуживания,

• скорость передачи информации,

• ограничения на величину расстояния передачи информации (без дополнительных усилителей-повторителей (репитеров)),

• безопасность передачи данных.

Главная проблема заключается в одновременном обеспечении этих показателей, например, наивысшая скорость передачи данных ограничена максимально возможным расстоянием передачи данных, при котором еще обеспечивается требуемый уровень защиты данных. Легкая наращиваемость и простота расширения кабельной системы влияют на ее стоимость.

Наиболее дешевым кабельным соединением является витое двухжильное проводное соединение часто называемое "витой парой" (twisted pair). Она позволяет передавать информацию со скоростью до 10 Мбит/с, легко наращивается, однако является помехонезащищенной. Длина кабеля не может превышать 1000 м при скорости передачи 1 Мбит/с. Преимуществами являются низкая цена и бес проблемная установка. Для повышения помехозащищенности информации часто используют экранированную витую пару, т.е. витую пару, помещенную в экранирующую оболочку, подобно экрану коаксиального кабеля. Это увеличивает стоимость витой пары и приближает ее цену к цене коаксиального кабеля.

Коаксиальный кабель имеет среднюю цену, хорошо помехозащитен и применяется для связи на большие расстояния (несколько километров). Скорость передачи информации от 1 до 10 Мбит/с, а в некоторых случаях может достигать 50 Мбит/с. Коаксиальный кабель используется для основной и широкополосной передачи информации.

Широкополосный коаксиальный кабель.

Широкополосный коаксиальный кабель невосприимчив к помехам, легко наращивается, но цена его высокая. Скорость передачи информации равна 500 Мбит/с. При передачи информации в базисной полосе частот на расстояние более 1,5 км требуется усилитель, или так называемый репитер (повторитель). Поэтому суммарное расстояние при передаче информации увеличивается до 10 км. Для вычислительных сетей с топологией шина или дерево коаксиальный кабель должен иметь на конце согласующий резистор (терминатор).

Информатика – молодая научная дисциплина, изучающая вопросы, связанные с поиском, сбором, хранением, преобразованием и использованием информации в самых различных сферах человеческой деятельности. Генетически информатика связана с вычислительной техникой, компьютерными системами и сетями, так как именно компьютеры позволяют порождать, хранить и автоматически перерабатывать информацию в таких количествах, что научный подход к информационным процессам становится одновременно необходимым и возможным.

Содержание

1. Введение. 3
2. Классификация и характеристики канала связи. 4
3. Пропускная способность дискретного канала связи. 6
4. Дискретный канал связи без помех. 7
5. Дискретный канал связи с помехами. 8
6. Пропускная способность бинарного, симметричного канала. 11
7. Пропускная способность непрерывного канала связи . 12
8. Заключение. 18
9. Список литературы. 19

Работа состоит из 1 файл

реферат по информатике.doc

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ (МГУПИ)

Тема: Классификация каналов связи. Информационные модели каналов связи.

Выполнил: студент 1-го курса очной формы обучения, специальность 230101

доц. каф. ИТ-4 ___________ Кукин М.А.

Содержание

  1. Введение. . . . 3
  2. Классификация и характеристики канала связи. . 4
  3. Пропускная способность дискретного канала связи. . 6
  4. Дискретный канал связи без помех. . . 7
  5. Дискретный канал связи с помехами. . . 8
  6. Пропускная способность бинарного, симметричного канала. 11
  7. Пропускная способность непрерывного канала связи . ..12
  8. Заключение. . . . 18
  9. Список литературы. . . . 19

Введение

Информатика – молодая научная дисциплина, изучающая вопросы, связанные с поиском, сбором, хранением, преобразованием и использованием информации в самых различных сферах человеческой деятельности. Генетически информатика связана с вычислительной техникой, компьютерными системами и сетями, так как именно компьютеры позволяют порождать, хранить и автоматически перерабатывать информацию в таких количествах, что научный подход к информационным процессам становится одновременно необходимым и возможным.

До настоящего времени толкование термина “информатика” (в том смысле как он используется в современной научной и методической литературе) еще не является установившимся и общепринятым. Обратимся к истории вопроса, восходящей ко времени появления электронных вычислительных машин.

Понятие информатики является таким же трудным для какого-либо общего определения, как, например, понятие математики. Это и наука, и область прикладных исследований, и область междисциплинарных исследований, и учебная дисциплина (в школе и в вузе).

Несмотря на то, что информатика как наука появилась относительно недавно, её происхождение следует связывать с работами Лейбница по построению первой вычислительной машины и разработке универсального (философского) исчисления

Классификация и характеристики канала связи

Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

  1. По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала Tк, ширины спектра частот, пропускаемых каналом Fк и динамического диапазона Dк., который характеризует способность канала передавать различные уровни сигналов

Условие согласования сигнала с каналом:

Vc £ Vk; Tc £ Tk; Fc £ Fk; Vc £ Vk; Dc £ Dk.

2. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

  1. Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0 ¸ 1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи. [1 стр. 45-47]

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

  1. Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.
  2. Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий. [1 стр. 50-51]

Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов.

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины. Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи. [5 стр. 102-105]

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X), (2)

I(YT, XT) = H(XT) – H(XT/YT) = H(YT) – H(YT/XT) = n [H(X) – H (X/Y), (3)

Для символов равной длительности = t , в случае неравновероятных символов неравной длительности

При этом скорость передачи информации

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

Максимально-возможное значение, т.е. максимум функционала, ищется на всем множестве функций распределения вероятности p(x).

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: [bit/s], [Kbit/s], [Mbit/s], [Gbit/s]. [8 стр. 56-58]

Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Для того чтобы передавать различную информацию, изначально должна быть создана среда ее распространения, которая представляет собой совокупность линий, или же каналов передачи данных со специализированным приемо-передающим оборудованием.

Линии, или же каналы связи, представляют собой связующее звено в любой современной системе передачи данных, и с точки зрения организации подразделяются на два основных типа – это линии и каналы. Линия связи представляет собой множество кабелей или же проводов, при помощи которых объединяются пункты связи между собой, а абоненты объединяются с ближайшими узлами. При этом каналы связи могут быть созданы самым разным образом в зависимости от особенностей определенного объекта и схемы.

Целью данного исследования является изучение каналов связи и принципа их работы

Для достижения поставленной цели нужно выполнить следующие задачи:

· Дать понятие канал связи

· Рассмотреть основные характеристики каналов связи

· Рассмотреть классификацию каналов связи

· Сделать сравнительный анализ

Сегодня, в эру информационных технологий, когда вокруг происходит передача большого количества данных от одного источника к другому, данный вопрос актуален как никогда.

Канал связи - это та среда, при помощи которой и передается информация.

Канал связи всегда состоит из трех компонентов:

1. Передающее устройство

2. Приемное устройство

3. Среда передачи информации

Сейчас, когда из-за карантина, всем мы вынуждены заниматься дистанционно, то это все происходит тоже благодаря каналам связи.

Но большинство из нас даже и не задумывалось о том, что представляют из себя каналы связи, как они работают, какие бывают, какие имеют характеристики.

Для начала, рассмотрим основные характеристики каналов связи.

Пропускная способность канала — максимальная скорость передачи информации по каналу связи в единицу времени. Пропускная способность канала равна количеству информации, которое может передаваться по нему в единицу времени. Обычно пропускная способность измеряется в битах в секунду (бит/с) и кратных единицах Кбит/с и Мбит/с. Однако иногда в качестве единицы используется байт в секунду (байт/с) и кратные ему единицы Кбайт/с и Мбайт/с.

Надежность канала связи заключается в том, как долго прослужит тот или иной канал связи. Какова его защищенность от внешних факторов, например, от погоды, какова его защищенность от вандализма и других разрушений.

Стоимость каналов связи напрямую зависит от его типа и используемых материалов.

Возможность развития каналов связи заключается в их возможности к расширению, усовершенствованию и увеличению.

Классифицировать каналы связи можно по множеству различных критериев. В данном исследовании остановимся на классификации по трем критериям:

· По способу кодирования информации (цифровые и аналоговые)

· По способу коммуникации (выделенные и коммутируемые)

· По способу передачи информации

По способу кодирования информации каналы связи делятся на цифровые и аналоговые.

Многие сети общего пользования традиционных операторов (фиксированная телефонная связь) являются в основном аналоговыми. Сети связи, создаваемые новыми операторами — цифровые, что обеспечивает внедрение современных служб и гарантирует перспективность этих сетей.

Тремя главными типами таких каналов передачи данных являются радиосвязь, связь в микроволновом диапазоне и инфракрасная связь.

Технологии радиосвязи (Radio Waves) пересылают данные на радиочастотах и практически не имеют ограничений по дальности. Она используется для соединения локальных сетей на больших географических расстояниях.

Связь в микроволновом диапазоне

Передача данных в микроволновом диапазоне (Microwaves) использует высокие частоты и применяется как на коротких расстояниях, так и в глобальных коммуникациях. Их главное ограничение заключается в том, что передатчик и приемник должны быть в зоне прямой видимости друг друга.

Инфракрасная связь

Инфракрасные технологии (infrared transmissions), функционирующие на очень высоких частотах, приближающихся к частотам видимого света, могут быть использованы для установления двусторонней или широковещательной передачи на близких расстояниях.

Сигнал радиостанции телецентра или мобильной связи может передаваться в цифровой и аналоговой форме. Например, звук и изображение, это аналоговые сигналы. Микрофон и камера воспринимают окружающую действительность и преобразуют в электромагнитные колебания. Частота колебаний на выходе зависит от частоты звука и света, а амплитуда передачи от громкости и яркости.

Изображение и звук, преобразованные в электромагнитные колебания, распространяются в пространство передаточной антенной. В приемнике идёт обратный процесс – электромагнитных колебаний в звук и видео.

Чем отличаются аналоговый сигнал от цифрового - примеры использования

Рисунок 1 – принцип работы аналогового и цифрового сигнала

Распространению электромагнитных колебаний в эфире препятствуют облака, грозы, рельеф местности, промышленные электронаводки, солнечный ветер и прочие помехи. Частота и амплитуда нередко искажаются, и сигнал от передатчика к приемнику приходит с изменениями.

Голос и изображение аналогового сигнала воспроизводятся с искажениями, вызванными помехами, а фоном воспроизводится шипение, хрипы и цветовое искажение. Чем хуже прием, тем отчетливее эти посторонние эффекты. Но если сигнал дошёл, его хоть как то видно и слышно.

Пример аналогового и цифрового сигнала

Наглядным примером отличия двух типов сигналов может служить сравнение старой проводной телефонной и современной сотовой связи.

Проводная телефония не всегда хорошо работает даже в пределах одного населённого пункта. Звонок на другой конец страны это испытание голосовых связок и слуха. Нужно докричаться и прислушаться к ответу. Шумы и помехи отфильтровываем ушами, недостающие и искаженные слова додумываем сами. Хоть и плохой звук, но есть.

Звук в сотовой связи отлично слышно даже с другого полушария. Оцифрованный сигнал передаётся и принимается без искажений. Но и он не без изъянов. Если случаются сбои, то звук не слышен вовсе. Выпадают буквы, слова и целые фразы. Хорошо, что это бывает редко.

Под коммутируемыми каналами понимают каналы, которые заводятся на местную или городскую АТС. До недавнего времени это были одни из самых распространенных каналов связи. Традиционно по ним работают через телефонные модемы. В наше время эти физические пары могут использоваться для передачи по Х – DSL технологиям.

На базе проложенных кабелей связи можно организовать выделенный канал. Это дорогое в техническом плане решение.

Вы можете изучить и скачать доклад-презентацию на тему Лекция 2. Информационные характеристики каналов связи. Презентация на заданную тему содержит 21 слайдов. Для просмотра воспользуйтесь проигрывателем, если материал оказался полезным для Вас - поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций в закладки!

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

Информационные характеристики каналов связи Структура канала связи Модель источника информации Пропускная способность канала связи Канал связи с помехами Объем канала

Теорема Шеннона I Дан канал связи без помех с пропускной способностью C и источник информации с энтропией за единицу времени H. Передача информации от данного источника по данному каналу без задержек возможна тогда и только тогда, когда H  C.

Теорема Шеннона II Дан канал связи с помехами с пропускной способностью R и источник информации с энтропией за единицу времени H. Передача информации от данного источника по данному каналу без задержек и искажений возможна тогда и только тогда, когда H  R.

Непрерывные каналы связи Каналы, используемые для передачи непрерывных сигналов, принято называть непрерывными. Реальные непрерывные каналы представляют собой сложные инерционные нелинейные объекты, характеристики которых случайным образом изменяются во времени. Для анализа таких каналов разработаны математические модели различных уровней сложности и степени адекватности реальным каналам. Наиболее широко получили распространение модели, являющиеся разновидностями гауссова канала.

Гауссов канал Под гауссовым каналом понимают математическую модель реального канала, построенную при следующих допущениях: Основные физические параметры канала являются известными детерминированными величинами; Полоса пропускания канала ограничена частотой Fк, герц; В канале действует аддитивный гауссовый белый шум – аддитивная флюктуационная помеха ограниченной мощности с равномерным частотным спектром и нормальным распределением амплитуд. Предполагается также, что по каналу передаются сигналы с постоянной средней мощностью, статистические связи между сигналами и шумом отсутствуют, ширина спектра сигнала и помехи ограничена полосой пропускания канала.

Полоса пропускания канала Ограничение на полосу пропускание канала показывает, что гармонические составляющие с частотами, значения которых превышают 2πFк, будут искажены при прохождении через этот канал.

Погрешность представления сигнала Реальные сигналы являются ограниченными во времени. Это означает, что они имеют бесконечный спектр частот. Поэтому вводится некоторая частота Fср = ωср/2π, такая, что

Помеха При прохождении через канал связи к сигналу x(t) добавляется (на него накладывается) помеха n(t), представляющая сумму гармонических составляющих, амплитуды которых распределены по нормальному закону с нулевым средним. При этом все гармонические составляющие помехи имеют одинаковую мощность и любые две выборки помехи некоррелированы между собой, как бы близко по времени они не располагались.

Дискретные отсчеты сигнала Непрерывные сигналы, имеющие спектр частот Fср могут быть переданы в виде дискретных отсчетов через интервалы времени Δt = 1 / (2Fср).

Читайте также: