Имитационное моделирование транспортных систем реферат

Обновлено: 02.07.2024

2. Цель лекции – изучить основные принципы имитационного моделирования транспортных процессов

План лекции.
1. Имитационное моделирование и
условия его применения.
2. Понятие модельного времени.
3. Способы имитации.
4. Этапы имитационного моделирования.
2

3. 1. Имитационное моделирование и условия его применения.

Имитационное моделирование - это метод
исследования, при котором изучаемая
система
заменяется
моделью
с
достаточной
точностью
описывающей
реальную систему и с ней проводятся
эксперименты
с
целью
получения
информации об этой системе.
Экспериментирование с моделью называют
имитацией (имитация это постижение
сути
явления,
не
прибегая
к
экспериментам на реальном объекте).
3

Имитационная
модель
логикоматематическое описание объекта, которое
может
быть
использовано
для
экспериментирования на компьютере в целях
проектирования,
анализа
и
оценки
функционирования объекта.
Условие использования.
Существует класс объектов, для которых по
различным причинам, не разработаны
аналитические модели либо не разработаны
аналитические методы решения полученной
модели. В таких случаях математическая
модель заменяется имитатором или
имитационной моделью.
4

5. Достоинства имитационного моделирования

6. Недостатки имитационного моделирования

7. Три подхода имитационного моделирования

8. Виды имитационного моделирования

1. Агентное моделирование — метод имитационного
моделирования, исследующий поведение
децентрализованных агентов и то, как такое поведение
определяет поведение всей системы в целом.
Цель агентных моделей — получить представление об
этих глобальных правилах, общем поведении системы,
исходя из предположений об индивидуальном,
частном поведении её отдельных активных объектов и
взаимодействии этих объектов в системе.
Агент — некая сущность, обладающая активностью,
автономным поведением, может принимать решения в
соответствии с некоторым набором правил,
взаимодействовать с окружением, а также
самостоятельно изменяться.
8

9. Виды имитационного моделирования

10. Виды имитационного моделирования

3. Системная динамика — парадигма
моделирования, где для исследуемой системы
строятся графические диаграммы причинных
связей и глобальных влияний одних параметров
на другие во времени, а затем созданная на
основе этих диаграмм модель имитируется на
компьютере.
Данный вид моделирования более всех других
парадигм помогает понять суть происходящего
выявления причинно-следственных связей
между объектами и явлениями.
С помощью системной динамики строят модели
бизнес-процессов, развития города, модели
производства, динамики популяции, экологии
10

11. Подходы имитационного моделирования на шкале абстракции

12. 2. Понятие модельного времени.

Особенности функционирования компьютерных программ,
которые приходится учитывать при разработке
имитационных моделей (ИМ):
1. Сложная система S, как правило, состоит из многих
элементов, которые функционируют одновременно.
При этом параллельное выполнение нескольких
программ, имитирующих поведение отдельных
элементов, невозможно.
2. ИМ должны оперировать с конечным множеством
данных и, следовательно, имитировать поведение
системы S не во все моменты времени, а лишь в
некоторые, составляющие конечное множество
[0, T ],
где
- означает мощность множества
12

Особенности принципов.
Пусть система S состоит из N элементов: А(1), …, А(N),
поведение которых предполагается моделировать:
S=.
Для каждого элемента A(i) S (i 1. N )
(i )
Определим локальное модельное время (ЛМВ) t [0, T ]
Поведение элемента A(i) в течение интервала
моделирования определяется некоторой
последовательностью действий
(i )
g1(i ) , g 2(i ) . g M
, g (ji ) G, j 1. M i
где G – множество всевозможных действий для элементов
S.
На множестве G будем выделять подмножество действий
D G
D:
для выполнения которых в ИМ требуется некоторое
ненулевое модельное время.
14

Будем обозначать такие действия
d1(i ) . d m(i ) , (d (ji ) D G, j 1, mi , mi M i , i 1, N )
i
а интервалы МВ, затрачиваемые на выполнение этих
(i )
(i )
.
действий, соответственно: 1
mi .
(i )
Последовательность
j > ( j 1, mi )
является последовательностью случайных величин с
(i )
заданными законами распределения L< j >, i 1, N
(i )
A
äëÿ Aj S
Момент ЛМВ наступления события
j
t (j i ) t * (j i ) , j 1,2.
где j имитируется в соответствии с законом
(i )
распределения L < j >, t* - текущее значение МВ.
(i )
15

18. Рекомендация к применению

В большинстве практически важных случаев
(i )
A
> наступают через случайные
события
j
i
интервалы времени . Поэтому способ задания
шага до следующего события экономичнее (в
смысле затрат машинного времени) и точнее (в
смысле точности аппроксимации) фазовой
траектории способа фиксированного изменения МВ.
По примеру, фазовая траектория системы S,
построенная с помощью ИМ, по принципу ∆х:
x(0), x(t1(2) ), x(t1(1) ), x(t2(2) ), x(t2(1) ), x(t3(2) ).
18

19. 3. Способы имитации.

Под способом имитации системы S понимают способ
формирования фазовой траектории системы.
Последний определяется способом изменения
вектора состояния x(t ), t J системы S.
Возможны три способа изменения х(t):
(i )
A
1) в моменты наступления события j >;
(i )
2) в результате выполнения действий , на
выполнение которых требуются затраты модельного
(i )
>;
времени
j
3) в результате выполнения хронологической
последовательности событий и действий,
называемой процессом.
19


В зависимости от того, какой из трех
способов формирования фазовой
траектории используется, различают
способы имитации:
событийный;
основанный на просмотре активностей;
процессный;
транзактный;
агрегатный.
21

Событийный способ:
1) множество особых событий можно разбить на
небольшое число L типов событий
N
< A . A >< Aj >,( j 1, mi , i 1, N ), L mi ;
(1)
( L)
(i )
i 1
2) для каждого типа событий определена
последовательность действий, приводящая к
изменению состояния системы S;
3) определены условия перехода от одного события к
другому для всех типов событий;
4) интервалы времени между последовательными
наступлениями событий – случайные величины с
известными законами распределения вероятностей.
22

Способ, основанный на просмотре
активностей:
1) все действия для элемента А(i) системы S
различны и приводят к наступлению
различных событий;
2) каждое действие d(i)j характеризуется
набором условий его выполнения;
3) времена выполнений действий являются
случайными величинами с известными
законами распределения вероятностей.
23

Процессный
способ
сочетает
особенности
событийного и способа, основанного на просмотре
активностей.
Применяется, когда поведение элементов А(i) системы S
может быть описано фиксированными для некоторого
класса систем последовательностями событий и
действий, так называемыми процессами.
Транзактный способ имитации сформирован в
результате развития процессного способа для
моделирования систем массового обслуживания.
Агрегатный способ основывается на использовании
агрегативных моделей.
24

25. 4. Этапы имитационного моделирования.

Особенности этапов ИМ.
1. Формулировка проблемы и определение целей
имитационного исследования. Документированным
результатом на этом этапе является составленное
содержательное описание объекта моделирования.
2. Разработка концептуального описания. Результатом
деятельности системного аналитика является
концептуальная модель (или вербальное описание) и
выбор способа формализации для заданного объекта
моделирования.
3. Формализация имитационной модели. Составляется
формальное описание объекта моделирования.
4. Программирование имитационной модели (разработка
программы-имитатора). На этапе осуществляется
выбор средств автоматизации моделирования,
алгоритмизация, программирование и отладка
имитационной модели.
26

5. Испытание и исследование модели, проверка
модели. Проводится верификация модели, оценка
адекватности, исследование свойств имитационной
модели и другие процедуры комплексного
тестирования разработанной модели.
6. Планирование и проведение имитационного
эксперимента. На данном технологическом этапе
осуществляется стратегическое и тактическое
планирование имитационного эксперимента.
Результатом является составленный и
реализованный план эксперимента, заданные
условия имитационного прогона для выбранного
плана.
7. Анализ результатов моделирования. Проводится
интерпретация результатов моделирования и их
использование – собственно принятие решений.
27


ПРИМЕНЕНИЕ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ДЛЯ АНАЛИЗА РАБОТЫ ТРАНСПОРТНЫХ СИСТЕМ

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

В настоящее время нисколько не уменьшаются роль водного транспорта и объемы морских и речных перевозок. Но, к сожалению, водный транспорт не относится к самым дешевым видам перевозок и в современной сложившейся экономической ситуации остро встает вопрос о себестоимости перевозок и их рентабельности. При организации работы судов тесно переплетаются все стороны хозяйственного предприятия, судоходной компании, порта, судна и их подразделений. Очевидной становится проблема повышения рентабельности грузоперевозок за счет эффективной эксплуатации транспортной системы.

При проведении анализа работы транспортных систем (традиционных судов, составных баржебуксирных составов) актуальным становится не только расчет экономического эффекта работы, но и оценка влияния на него изменяющихся параметров эксплуатации (например, время погрузочно-разгрузочных работ, погодные условия и т.п.). Так опыт эксплуатации судов показал, что некоторые транспортные системы, имея хороший экономический эффект, оказались совершенно не приспособленными к изменению внешних факторов, в результате чего и погибли.

Для анализа транспортных систем морских и речных судов не подходят ни натурные эксперименты, которые очень дорогие и растянуты на длительное время, ни традиционное аналитическое моделирование, которое не способно описать сложную систему с помощью функциональных зависимостей и связать их с начальными условиями и изменяющимися параметрами (в сложных транспортных системах есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные) и может стать слишком грубым приближением к действительности. В данной ситуации наиболее подходящим является применение имитационного моделирования.

Имитационное моделирование (ИМ) - один из самых мощных инструментов анализа, исследования сложных систем, управление которыми связано с принятием решений в условиях неопределенности. По сравнению с другими методами такое моделирование позволяет рассматривать большое число альтернатив, улучшать качество управленческих решений и точнее прогнозировать их последствия. Идея ИМ проста и в то же время интуитивно привлекательна она дает возможность экспериментировать с системами в тех случаях, когда делать это на реальном объекте невозможно или не целесообразно.

ИМ рождается главным образом на теории вычислительных систем, математике, теории вероятностей и статистике. Но в то же время ИМ и экспериментирование во многом остаются интуитивными процессами.

Подобно всем мощным средствам, существенно зависящим от искусства их применения, ИМ способно дать либо очень хорошие, либо очень плохие результаты. Оно может либо пролить свет на решение проблемы, либо ввести в заблуждение.

Как и любое компьютерное моделирование, ИМ дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, из-за соображений безопасности или дороговизны, не целесообразны. В тоже время, благодаря своей близости по форме к физическому моделированию, это метод исследования доступен более широкому кругу пользователей.

В настоящее время, когда компьютерная промышленность, предлагает разнообразнейшие средства моделирования, любой квалифицированный инженер, технолог или менеджер должен уметь уже не просто моделировать сложные объекты, а моделировать их с помощью современных технологий, реализованных в форме графических сред или пакетов визуального моделирования.

Пакеты визуального моделирования позволяют пользователю вводить описание моделируемой системы в естественной для прикладной области и преимущественно графической форме (например, в буквальном смысле рисовать функциональную схему, размещать на ней блоки и соединять их связями), а также представлять результаты моделирования в наглядной форме, например, в виде диаграмм или анимационных картинок. Таким образом, в результате ИМ транспортной системы имеется возможность создавать такие программные продукты, в которых результаты экспериментов представлены в виде численных данных, а также в виде анимационной картинки, где можно проследить перемещения и местоположения элементов (судов, барж, буксиров) транспортной системы.

Еще одной важной особенностью современного пакета автоматизации моделирования является использование технологии объектно-ориентированного моделирования, что позволяет резко расширить границы применимости и повторного использования уже созданных и подтвердивших свою работоспособность моделей.

На основании вышеизложенного можно сделать ряд практических выводов. Во-первых, имитационное моделирование является эффективным инструментом исследования сложных транспортных систем. Во-вторых, для построения адекватной имитационной модели системы водного транспорта требуется сбор и статистическая обработка большого объема исходных данных. В-третьих, современные инструментальные средства позволяют с приемлемыми трудозатратами осуществлять программную реализацию имитационных моделей транспортных систем. В-четвертых, использование ИМ в процессе анализа работы транспортной системы позволит выбирать оптимальные параметры этой системы и, в конечном счете, позволит повысить экономичность перевозок. В пятых, программный комплекс, созданный в процессе ИМ транспортных систем судов, можно использовать как экспертную систему для оценки целесообразности постановки заданного судна на исследуемый маршрут.

Список используемых источников

1. Бусленко, В. Н. Автоматизация имитационного моделирования сложных систем / В. Н. Бусленко. - М. : Наука, 1977. - 240 с., ил

2. Бусленко, Н. П. Математическое моделирование производственных процессов на ЦЭВМ / Н. П. Бусленко. - М. : Наука, 1964

3. Бусленко, Н. П. Моделирование сложных систем / Н. П. Бусленко. - М. : Наука, 1968

4. Логачев, С. И. Транспортные суда будущего. Пути развития / С. И. Логачев. - Л. : Судостроение, 1976. - 176 с., ил

5. Максимей, И. В. Имитационное моделирование на ЭВМ / И. В. Максимей. - М. : Радио и связь, 1988. - 232 с., ил.

6. Шеннон, Р. Имитационное моделирование систем - искусство и наука / Р. Шеннон. - М.: Мир, 1978. - 481 с.

Моделирование движения является важным инструментом для моделирования операций динамических систем дорожного движения. В то время как микроскопические имитационные модели обеспечивают детальное представление о процессе движения, макроскопические и мезоскопические модели захватывают динамику движения крупных сетей, менее подробно, но без проблем применения и калибровки микроскопических моделей. В данном реферате я представляю мезо- и микро-модели. Микро-моделирование применяется в районах, представляющих особый интерес, в то время как имитации большой прилегающей сети менее подробно с помощью мезоскопической модели.

Моделирование движения стало очень популярным для моделирования операций динамических систем дорожного движения. Имитационные модели бывают макроскопическими, мезоскопический или микроскопические. Макроскопические модели (макро) -, как правило, модели трафика в непрерывном потоке. Мезоскопические (мезо) модели - модели отдельных транспортных средств. Микроскопические (микро) модели – модели, которые захватывают поведение транспортных средств и водителей в деталях, в том числе взаимодействие среди автомобилей, смене полосы движения, реагирования на инциденты и поведения при слиянии пунктов. Микроскопические модели подходят для оценки ИТС на оперативный уровень, так как представление многих динамических систем управления дорожным движением требует такого мелкозернистого моделирования процесса движения.

Тем не менее, применение микро моделирования происходит не без проблем. Подготовка исходных данных может занять очень много времени. Кроме того, микро-модели очень чувствительны к ошибкам или изменениям в данных по требованию ввода. И из-за сложной структуры участвующих моделей калибровка не является тривиальной.

С другой стороны, макро и мезо модели обычно имеют меньшие параметры для калибровки и менее чувствительны к ошибкам в сети кодирования или вариаций спроса. Однако из-за их более совокупного характера, такие модели ограничены в своих возможностях, чтобы захватить подробную поведение, необходимое для изучения транспортные сети с функциями управления динамическим движением.

Основы транспортного моделирования

Цель транспортного планирования – оптимизация использования ресурсов с целью организации эффективного функционирования транспортной системы.

Задачи транспортного планирования:

1.Прогноз – получение информации о будущих транспортных процессах.

2. Организационно-управленческая задача.

3. Оценка последствий. Оценка применимости проектных решений.

4. Координационная задача – реализация плановых мероприятий.

1. Этап анализа проблем: сначала ставятся перед собой цели и выявляются проблемы, затем анализируется существующее положение;

2. Этап анализа альтернатив: идет так называемый цикл – разрабатываются мероприятия и сценарии, рассчитываются последствия, оценивается полученный результат;

3. Этап принятия решения.

Модель – это упрощенное представление реальности и/или протекающих в ней процессов.

Моделирование является по существу построением рабочей аналогии. Оно представляет собой построение рабочей модели, отражающей подобие свойств или соотношений с рассматриваемой реальной задачей. Моделирование позволяет изучать сложные задачи движения транспорта не в реальных условиях, а в лаборатории. В более общем смысле моделирование можно определить как динамическое отображение некоторой части реального мира путем построения модели на компьютере и продвижении ее во времени.

Транспортная модель – наглядное отображение комплексных транспортных процессов, с возможностью их прогнозирования в зависимости от различных условий.

Этапы исследования системы с помощью модели:

· формулирование целей и задач;

· создание транспортной модели;

· анализ полученной модели;

· проверка полученных итогов и результатов;

· внедрение результатов моделирования.

Транспортная модель – это:

· моделирование существующих и прогнозируемых пассажиропотоков и интенсивностей;

· инструмент для оптимизации работы пассажирского транспорта, включая расчет рентабельности маршрутов;

· анализ транспортных пассажиропотоков;

· подготовка транспортных прогнозов.

Классификация транспортного моделирования:

1. Микроскопическое моделирование. При этом виде моделирования детально моделируется каждый участок движения отдельного перекрестка или двух, трех. Моделирование нескольких пересечений на уровне транспортного средства.

2. Мезоскопическое моделирование. Анализируются макропоказатели на микромодели. Моделируется район города. Моделирование сети на уровне транспортного средства.

3. Макроскопическое моделирование. Моделирование целого города, региона, страны. Моделирование сети на уровне транспортных потоков.

Микромоделирование


Имитационное моделирование (микромоделирование) – это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе.

Микромоделирование – моделирование транспортных и пешеходных потоков на уровне отдельных объектов, отдельных транспортных средств, пешеходов.


В данном виде моделирования все участники движения рассматриваются в виде отдельных частей.

С помощью имитационного моделирования можно решать различные задачи, а именно:

· оценивается транспортная ситуация конкретного проекта, оценка основывается на количественных показателях, которые характеризуют условия движения;

· оценивается пропускная способность для каждого варианта движения и выбирается оптимальная схема организации движения на перекрестке;

· анализируется пропускная способность и движение в зоне остановок общественного транспорта;

· прогнозируются транспортные заторы;

· моделируется и анализируется пешеходное движение;

· моделирование помогает применить какие-то новые введения на транспортном участке;

· можно понять, где в данной транспортной сети возникают различные заторы.

Этапы выполнения микромодели:

· построение улично-дорожной сети;

· введение транспортных потоков;

· регулирование дорожного движения;

· ввод пешеходных потоков;

· анализ полученной модели.

Для того чтобы создать модель интересующего нас участка улично-дорожной сети, необходимо собрать данные:

· данные о геометрии улично-дорожной сети;

· технические и геометрические особенности различных типов транспортных средств;

· состав транспортного потока, т.е. какое количество видов транспортных средств присутствует на данном участке;

· интенсивность движения транспортных средств;

· расположение светофорных объектов и их циклы;

· данные о движении общественного транспорта (маршруты, расположение остановок, расписание, вместимость подвижного состава и т.д.);

· данные о пешеходном движении (интенсивность, направление движения, параметры пешеходных зон и т.д.).

После сбора полученных данных, можно приступать к созданию имитационной модели по этапам, оговоренных ранее.

Построение улично-дорожной сети:

· определяем на основе, какой подложки мы будем создавать модель (чертеж, выполненный в AutoCAD, спутниковый снимок, онлайн-карты и т.д.);

· на полученную подоснову наносим улично-дорожную сеть, представленную отрезками и соединения между этими отрезками;

· для каждой дороги определяем количество и ширину полос движения;

· определяем разрешенные маневры (повороты, обгоны, перестроения).

Введение транспортного потока:

· определяем, какие типы и классы транспортных потоков мы будем использовать;

· определяем динамические характеристики транспортной сети;

· определяем состав данного потока (количество легкого, грузового транспорта и т.д.);

· определяем параметры манеры поведения водителя;

· вводим интенсивность движения на входящих отрезках;

· вводим данные по общественному транспорту (расписание, остановки, вместимость подвижного состава и т.д.);

· указываем маршруты движения транспортных средств.

Регулирование дорожного движения:

· определяем конфликтные зоны, вводим правила приоритета;

· вводим светофорное регулирование:

o определяем длительность цикла;

o указываем время для красного/зеленого сигналов;

o определяем фазовые переходы;

Ввод пешеходных потоков:

· определяем типы пешеходов и их динамических характеристик;

· настраиваем параметры модели поведения;

· вводим интенсивность движения пешеходных потоков;

· указываем маршруты движения.

Основные результаты и виды анализа:

o время задержки;

o пройденное расстояние;

o количество ТС в сети.

o время задержки ТС, людей;

o длина заторов;

o количество остановок.

o анализ отрезков в реальном времени.

o стандартное отклонение;

o время в пути для пассажиров.

o средняя продолжительность цикла;

o среднее время зеленого сигнала.

o время в пути и скорость;

Мезомоделирование


Мезомоделирование – моделирование пассажирских перемещений на уровне города и агломерации.

Данный вид моделирования транспортных потоков решает важные задачи, а именно:

· анализ транспортного и пассажирского потоков;

· оптимизация маршрутов городского пассажирского транспорта;

· разработка и внедрение транспортных развязок.

Отличия мезомоделирования от микромоделирования:

· небольшое время вычислений, необходимых для создания модели;

· использование упрощенной модели следования за впереди идущим транспортным средством;

· менее точное отображение поведения транспортного средства;

· более низкий уровень детализации, что допускает имитацию крупных сетей.

При мезомоделировании данные транспортного средства обновляются не как в микроскопической имитации в каждый временной шаг, а только в определенные моменты времени, в которые что-то меняется в сети и/или в поведении ТС. Эти так называемые события могут возникать в силу различных ситуаций (при переключении ССУ, выезду транспортного средства на перекресток (узел) и т.д.).

Мезомоделирование используется исключительно в рамках динамического распределения. Это означает, что имитация транспортных средств в сети выполняется мезоскопически, а поиск маршрутов и выбор маршрутов выполняются привычным способом с помощью алгоритмов динамического распределения.

Применение

На сегодняшний день транспортные модели широко применяются для помощи органам государственной власти и местного самоуправления для обоснования принятых решений в области транспортного и градостроительного планирования. Задачи, решаемые на транспортных моделях множество, например:

· прогноз транспортных и пассажирских потоков по улично-дорожной сети города, региона, области или страны в целом;

· детальный анализ изменения транспортных/пассажирских потоков при реализации решений по изменению транспортной или градостроительной инфраструктуры;

· формирование предложений по оптимальным режимам светофорного регулирования на объектах улично-дорожной сети;

· формирование предложений по очередности строительства объектов транспортной и градостроительной инфраструктуры;

· оптимизация работы общественного транспорта;

· экономическое обоснование принятых решений и многое другое.

Так же, в последнее время очень актуальным становится вопрос использования транспортных моделей, как основного ядра для интеллектуальных транспортных систем.

Моделирование транспортных систем необходимо для проведения инженерного анализа и последующего утверждения эффективнейшего (с точки зрения стоимости, безопасности движения, пропускной способности и прочих факторов) инженерного решения.

Планирование

Создавая подобные модели, можно планировать транспортные системы современных городов. Изменения в одной части такой системы приводят к появлению изменений в других ее частях. Насколько увеличится автомобильный поток, если сделать дорогу более широкой? Почему автомобильная пробка регулярно образуется на конкретном перекрестке? Какой потенциал создаст развитие системы городского общественного транспорта для изменения застройки в черте города? Что случиться, если внести изменения в режим работы определенного светофора? Ответить на все эти, а также многие другие вопросы позволяет моделирование транспортной системы.

Особенно актуальным моделирование является для крупных городов. Без грамотно проработанной транспортной модели, управлять городскими потоками практически, невозможно. Например, в определенном месте городской магистрали систематически возникают автомобильные пробки. Если модель транспортной системы отсутствует, высока вероятность принятия ошибочного решения, результатом которого станет перенос пробки на новое место или создание новых автомобильных пробок.

Такие модели широко используются сегодня для помощи органам местного самоуправления и государственной власти в принятии обоснованных, взвешенных решений в сфере градостроительного, а также транспортного планирования.

Используя моделирование транспортных потоков, можно решать следующие задачи:

  • Прогнозировать пассажирские и автомобильные потоки по уличным, а также дорожным сетям страны, области, региона либо определенного города.
  • Детально анализировать изменения пассажирских/автомобильных потоков при реализации различных решений, связанных с изменением градостроительной либо транспортной инфраструктуры.
  • Формировать оптимальные режимы светофорного регулирования на различных объектах дорожно-уличной сети.
  • Выстраивать очередность строительства объектов градостроительной и транспортной инфраструктуры.
  • Оптимизировать работу городского транспорта.

Этапы моделирования

Процесс создания подобной модели транспортной системы предусматривает выполнение следующих действий:

  • Подготовка, сбор и последующая обработка необходимых данных.
  • Создание модели транспортных систем определенной степени детализации. При создании модели на определенный прогнозируемый срок параллельно разрабатываются прогнозные величины ее социально-экономической составляющей.
  • Оценка работоспособности модели, разработка решений и рекомендаций, основанных на полученных расчетах.
  • Влияние различных факторов
  • Факторы влияющие на работу транспортных систем:
  • неравномерности движения пешеходов;
  • стохастическое поведение пешеходов;
  • присутствие различных категорий граждан (студенты, пенсионеры и пр.);
  • возникновение нештатных ситуаций.

Вышеперечисленные факторы, а также множество других факторов, оказывают непосредственное влияние на функционирование транспортной системы, поэтому рассчитать перспективные показатели работы проектируемого и существующего объекта стандартными способами невозможно. Проводить эксперименты с реальной функционирующими транспортными объектами обычно бывает невозможно, поскольку это является слишком опасным либо требует существенных финансовых вложений, а результат подобных экспериментов способен оказаться совершенно непредсказуемым. Решить данную проблему позволяет моделирование транспортной системы, позволяющее протестировать еще не построенные объекты и смоделировать вероятные сценарии их работы, проверив на устойчивость функционирования при различных внештатных ситуациях.

Трудности построения транспортной модели

Процесс построения подобной модели представляет собой сложную, комплексную задачу, которая выполняется на нескольких уровнях.

  • Микроскопический уровень. Это визуализация транспортной ситуации в определенном месте дорожной сети.
  • Мезоскопический уровень. Состоит в моделировании перемещений пассажиров на уровне агломерации и города.
  • Макроскопический уровень. Предусматривает моделирование перемещений пассажиров на уровне страны, региона либо области.

Пример построения транспортной модели

При построении модели сначала собираются необходимые исходные данные. После проведения экспертной оценки работоспособности подбираются оптимальные показатели мощности моделируемых элементов. При этом закладывается работоспособность созданной модели на перспективу, с увеличенными пассажиропотоками. После создания оптимизированной модели, производится оценка результатов моделирования. Результатом работ становится создание итоговой модели, обладающей оптимально подобранными параметрами.

Имитационный метод построения модели

Имитационный метод моделирования используется при моделировании различных транспортно-пересадочных узлов, железнодорожных станций, павильонов метрополитена и прочих объектов современной транспортной инфраструктуры. Имитационное микромоделирование позволяет создать максимальным образом приближенную к реальным условиям ситуацию, учесть любые особенности системы и минимизировать финансовые, а также производственные риски.

Имитационные модели позволяют выполнить тестирование еще не построенного объекта, смоделировать разные возможные сценарии его работы, провести ряд экспериментов, связанных с различными внештатными ситуациями, проверив при этом устойчивость работы данного объекта в подобных ситуациях. К примеру, при моделировании такого транспортно-пересадочного узла, как железнодорожная станция, учитывается режим работы вокзальных билетных касс, наличие льготных категорий пассажиров, а также связанные с этим временные особенности оформления проездных документов. Используя имитационное моделирование транспортных потоков, необходимо учитывать проектную нагрузку на отдельные элементы пассажирской инфраструктуры, принимая во внимание неравномерность пассажиропотока.

Если для определения пассажиропотока число пассажиров в час разделить на шестьдесят минут, реальная картина сильно исказиться и полученные данные не будут соответствовать действительности, а также тем условиям, в которых функционирует создаваемая инфраструктура. К примеру, на территории вокзала проектируется создание турникетной линейки, которая будет состоять из пятнадцати турникетов. Расчетный поток пассажиров на выход составляет пять тысяч человек в час. Если взять средний показатель в минуту, мы получим порядка восьмидесяти пассажиров. Одни пассажир проходит через турникет в среднем за три секунды. Если принимать во внимание такие исходные данные, то получиться, что все пассажиры успеют пройти, и очередей не возникнет. В реальности же ситуация несколько иная. Вышеупомянутые пять тысяч пассажиров прибывают на станцию в четырех электропоездах, которые приходят по расписанию. Если учесть этот факт, а также неравномерное распределение людей по отдельным вагонам, ситуация изменится кардинальным образом. Очереди после прибытия электропоезда на станцию в таком случае будут превышать сорок человек.

Читайте также: