Химические реакции в атмосфере реферат

Обновлено: 05.07.2024

В атмосфере протекает множество природных процессов, физических явлений, определяющих облик земли, влияющих на все стороны существования человечества. В атмосфере наблюдаются:

  • теплообмен;
  • испарение и выделение влаги;
  • массоперенос;
  • присутствие примесей;
  • оптические феномены;
  • акустические явления;
  • электрические разряды;
  • магнитные поля;
  • распространение электромагнитных колебаний;
  • протекание всевозможных химических реакций;
  • сгорание небесных тел;
  • другие процессы.

Кроме того атмосфера постоянно взаимодействует с Землей, на нее влияют рельеф поверхности, наличие крупных акваторий, хозяйственная деятельность человека, случайные флуктуации различных геофакторов.

Природные явления в атмосфере подчиняются фундаментальным законам физики и химии в классической интерпретации.

Определение и генезис атмосферы

Чтобы изучать объект, надо ему дать определение, и, хотя бы в общих чертах представлять, как он возник. Под атмосферой в науке понимают окружающий нашу планету воздушный слой, удерживаемый гравитацией Земли. Формирование атмосферы зависело от становления Земли, она возникла, примерно 4,5 млрд. лет, когда планета преобразовалась в твердое тело.

В результате активной вулканической деятельности происходил постоянный выброс из недр Земли азотсодержащих газов, оксида углерода, углеводородов, в основном метана, воды в парообразной фазе.

Под влиянием ультрафиолетовых частот солнечного излучения вода разлагалась на свои составные элементы, аммиак продуцировал азот и водород. Водород поднимался в верхние слои, более тяжелые кислород и азот накапливались около земли.

Газовая оболочка земли ─ итог миллиардов лет геологической эволюции нашей планеты и деятельности экосистем. Они в свою очередь сами зависят от атмосферы, находясь с ней в сложной взаимосвязи. Состав сегодняшней атмосферы сформировался на основе динамического равновесия геохимических факторов и жизнедеятельности организмов.

Свойства и состав атмосферы по мере удаления от Земли меняются по вертикали, постепенно приближаясь к межзвездному веществу. Значимые изменения начинаются на высоте 11−12 тыс. км., воздушный слой до этой условной отметки называют тропосфера, он оказывает самое непосредственное влияние на планету и жизнь ее обитателей. Общая масса атмосферы оценивается в 5,2─5,3.10 18 кг.

Состав газовой оболочки земли

Атмосфера является колоссальным химическим реактором для веществ, находящихся в ней. Из-за быстро меняющихся условий система находится в метастабильном состоянии. Тем не менее, основные компоненты, их концентрации остаются постоянными, по мнению, ученых в течение последних 50-ти млн. лет.

В первом приближении состав воздуха содержит:

Основные газыКонцентрация, %
Азот (N2)78,1
Кислород(O2)20,9
Аргон (Ar)0,9
Водяной пардо 0,1%

В микроскопических долях, измеряемых в PPB (particles per billion), количество данных частиц на миллион частиц воздуха в объеме присутствуют:

  • углекислый газ (CO2) – 383
  • неон (Ne) − 18,2
  • гелий (He) − 5,2
  • метан (CH4) − 1,7
  • криптон (Kr) − 1,1
  • водород (H2) − 0,6.

Содержание этих веществ разнится от времени года и региона. Молекулярная масса воздуха 29 g/mol. В атмосфере присутствуют бесчисленные следы еще тысяч химических соединений.

Превосходящий по содержанию другие элементы азот образовался в процессе окисления первоначальной смеси аммиака (NH4) и водорода кислородом. Содержание последнего начало возрастать, так как 3 млрд. лет назад активизировался фотосинтез вследствие появления большой массы растительного мира.

Инертные газы пополнили газовую оболочку Земли благодаря активности вулканов, и распаду радиоактивных элементов. Содержание благородных газов в атмосфере меньше, чем в космическом пространстве, видимо, они туда мигрируют. СО2 появился из недр извергающихся вулканов и, как продукт разложения биомассы.

Структура атмосферы по высоте

Атмосфера неоднородна по вертикали, поэтому ее физические параметры зависят от высоты, прежде всего, распределения температуры и массы.

Различают несколько наиболее важных областей, на которые делят атмосферу:

    . Примыкающий к Земле слой до 12 км толщиной (в тропической зоне до 18), где сконцентрировано порядка 80% массы, и находится весь водяной газ. В тропосфере зарождаются туманы, облака, возникают осадки, грозовые явления. Следует подчеркнуть, солнечные лучи легко преодолевают тропосферу, нагревая поверхность земли. Сам нижний слой газовой оболочки нагревается от Земли. Поэтому температура с увеличением высоты падает. . Характеризуется низкими температурами на высоте 20 км, примерно, минус 56°С. Интересно, что, начиная с 25-ти километровой отметки, температура в стратосфере растет, достигая на 50 км положительных значений. Сказывается поглощение квантов энергии ультрафиолетового спектра, нагревающей воздух. . Температура около 90 км достигает 90°С, главенствует турбулентное перемешивание. Среда достаточно однородна, тяжелые и легкие газы не разделены.

Выше мезосферы располагается термосфера, подразделяющаяся на ионосферу и экзосферу. Для ионосферы присущи высокая степень разреженности воздуха и чрезвычайно сильная ионизация. Носители зарядов ─ атомарный кислород, электроны, реактивный свободный радикал окись азота (NO). Отмечаются случайные скопления электронов, называемые электронными облаками. Именно в этой области возникают знаменитые полярные сияния. Температура в ионосфере поднимается до 1000°С на высоте 800 км.

Экзосфера, начинающаяся выше 1000км, плавно трансформируется в межпланетное пространство. Разреженность газа здесь столь высока, а скорость его частичек огромна, что они облетают землю по эллиптической траектории, словно микроскопические спутники. Некоторые частички обладают второй космической скоростью и покидают земную атмосферу, рассеиваясь во Вселенной.

Физические процессы в атмосфере

При всех обстоятельствах в атмосфере, как и везде, действуют фундаментальные законы нашей Вселенной ─ закон сохранения массы и энергии, а также две базовые константы — скорость света и постоянная Планка.

Через газовую оболочку вокруг земли происходит взаимодействие планеты и космоса, заключающееся в обмене материей и энергией. Свое влияние мироздание осуществляет через физические поля, во многом определяющие свойства, состав, структуру атмосферы.

  • Электромагнитные колебания.
  • Гравитационное воздействие.
  • Магнитные поля
  • Потоки элементарных частиц, которые на основе принципа корпускулярно-волнового дуализма можно рассматривать как сверхвысокочастотный диапазон электромагнитных волн.

Атмосфера и солнечные лучи

Солнце имеет критически важное значение для выживаемости человечества, поэтому важно изучать его влияние на атмосферу и какие при этом происходят процессы.

В атмосферу поступает электромагнитный спектр солнечного излучения, от радиоволн до жестких рентгеновских лучей. Начинает он свою деятельность выше 1500 км, вступая в схватку с атомами водорода. Солнечные лучи отнимают у него единственный электрон, превращая в одинокий положительно заряженный ион, он же элементарная частица протон. Поскольку атмосфера на таких уровнях разрежена атакующая солнечная радиация почти не теряет энергии.

Но, проникнув на высоту 300 км, она встречает стойких бойцов. Ей последовательно противостоят атомы кислорода, азот, окись азота, последний рубеж держит О2. На высоте около 120 км солнечная армия остается без свирепого ультрафиолета с длиной волны 100─1020 А (ангстрем). Он растратил энергию на ионизацию, и его поглотили.

Одновременно задерживаются рентгеновское излучение(30-100 А). Часть рентгеновских лучей поддерживает ионизацию ионосферы в промежутке 90─130 км. Другая часть формирует ценой жизни нижний уровень ионосферы на высотах в районе 60 км. Полностью победить нейтральные частицы не удается, помимо ионизации идет обратный процесс их рекомбинации из ионов и электронов.

Ниже 100 км молекулы кислорода, подвергаясь диссоциации, поглощают электромагнитные волны длиннее 1020 А до 1760. Ниже 80 км, распадаясь на атомы, кислород не пропускает волны до 1925 А.

Несколько иной механизм взаимодействия газовой оболочки и солнечных лучей возникает на высотах от 20 до 30 км (зависит от широты). Там возникают условия для образования слоя озона (О3) путем соединения атомарного и молекулярного кислорода. К счастью для биоценоза озон эффективно поглощает солнечные лучи с длиной волны до 3100 А. Они примыкают к видимой части спектра, относятся к мягкому ультрафиолету, но для жизни остаются смертельно опасны. Их энергия идет на распад молекул озона.

Озоновая проблема

Над некоторыми областями земной поверхности отмечено уменьшение толщины озонового слоя, самое большое над Антарктидой. Это серьезная опасность для биологических существ.

Озон погибает, не только противостоя, ультрафиолету, но и чисто химическим путем. Различают водородный, азотный и галогенный цикл реакций, приводящих к уничтожению озона. Интенсивное развитие химической промышленности, особенно использование фреонов, привело к большим выбросам галогенов, прежде всего, хлора, нарушившими устоявшееся равновесие. Галогенный цикл начал уничтожать озон, приводя к образованию озоновых дыр. Впрочем, существуют иные мнения, связывающие вопрос исчезновения озона с циклическим характером природных процессов.

Что видят глаза в атмосфере

Без воды нет биологической жизни, но без нее невозможно представить и атмосферу. В разных модификациях люди могут непосредственно наблюдать ее в атмосфере. Ниже всех располагается туман ─ микроскопические капельки влаги, а при низких температурах льда. Он стелется по земле. В небе мы каждый день видим облака, состоящие из воды. Их классифицируют следующим образом.

Название облаковВысота над землей, км
Слоистые, кучевые, дождевые0,4- 6
Высоко-кучевые, высоко-слоистыедо 7,5
Перистые15 — 18
Перламутровые24 — 30

Слоистые облака это, по сути, туман, воспаривший вверх. Они могут образовываться на высоте от 30 метров. Кучевые облака отличаются белоснежностью, формируются в холодной части циклона. Дождевые облака обладают большой плотностью, темным до черного цветом. Ждите дождя.

Высоко-кучевые образования напоминают соединенные пластины, по краям видно свечение. От них к нам прилетают, кружатся отдельные снежинки. Сквозь облака просматривается Солнце с венчиком.

Перистые облака ─ волокнообразные формирования, напоминающие меридиональную разметку на карте. Состоят из кристалликов люда, поэтому преломленные лучи света рождают оптические иллюзии ─ гало.

Перламутровые облака наблюдаются в полярных широтах. Пары воды собираются вокруг центров конденсации. Такие ядрышки появляются в атмосфере из-за активности вулканов, в частности, выбросов сернокислотного аэрозоля.

На высоте 60─120 км происходит сгорание из-за трения о воздух метеоритных тел ─ космических пришельцев. Образуется метеорный газ, его возбужденные атомы и ионы излучают свечение.

Высоко, до уровня 1000 км, атомарные и молекулярные кислород, азот, водород, гелий, щелочные металлы соударяются с частичками солнечного ветра (элементарные частицы). Возникает полярное сияние.

Акустика и атмосфера

Воздух под воздействием возбудителя колеблется, распространяя звук, передавая акустическую информации. Без атмосферы мы бы не могли наслаждаться пением птиц, восхищаться чарующими мелодиями. Мы бы не слышали друг друга.

Химические процессы в атмосфере

Химические превращения в воздухе обусловлены двумя факторами. В первом случае поглощение энергии электромагнитного спектра солнечного излучения (фотохимия) приводит к распаду и появлению новых химических связей. Изменения второго типа происходят из-за столкновений молекул. Эти закономерности изучает химическая кинетика.

Химические процессы, идущие в атмосфере, условно можно поделить на вызванные естественными причинами и антропогенной природы.

Химические превращения естественного происхождения

В большинстве своем химические реакции в атмосфере возбуждаются под влиянием квантов солнечного света. Если энергия фотона достаточна для разрушения валентных связей внутри молекулы, она распадается. Процесс называется фотодиссоциация. Такой энергией обладает высокочастотное (жесткое) излучение ультрафиолетовой части солнечного спектра.

Особенно активно разрушается кислород с выделением его атомарной формы. Для инициирования процесса нужна не очень высокая энергия 495 кДж/моль, поэтому молекулярный кислород поглощает значительную долю ультрафиолета. На высоте более 400 км практически нет молекулярного кислорода, только его атомарная форма. Иное дело азот. Обладая высокой энергией связи, его молекула чрезвычайно устойчива и в атмосфере концентрация атомов азота пренебрежимо мала.

Пары воды в основном находятся вблизи земной поверхности, куда ультрафиолетовое излучение достигает слабо, растратив себя на разрушение субстанций в верхних слоях. Но малое количество молекул воды на больших высотах также диссоциирует с образованием водорода и гидроксильной группы.

Поскольку в воздушной оболочке земли много кислорода в ней доминируют окислительно-восстановительные реакции. По механизму протекания это многостадийные процессы с формированием и участием промежуточных ионов, способных к химическим
реакциям.

Многие газы, находящиеся в атмосфере, хорошо растворяются вводе, поэтому атмосферная влага имеет большое значение. В химии образования капель и туч большую роль в качестве окислителя играет озон.

Помимо продуктов распада основных элементов, из которых состоит атмосфера (О2 и N2), в реакции вступают другие газы, поступающие в атмосферу по естественным причинам.

  • вулканические извержения;
  • жизнедеятельность биоценоза;
  • испарения болот;
  • земная кора;
  • мировой океан.

Наиболее заметную роль в химических превращениях в воздухе играют гидроксильная группа. Гидроксил получается при фотохимической реакции разложения озона (О3). За свою короткую жизнь (менее 1 секунды) он вступает в реакции с газами, куда входят Н, С, О, N, S, превращая их в соединения (СО2, Н2SO4, другие), более легко удаляемые из атмосферы.

Химические процессы, возникающие из-за деятельности человечества

Хозяйственная деятельность человека приводит к появлению в атмосфере повышенных концентраций веществ по сравнению с естественным равновесным состоянием.

Проблема загрязнения окружающей среды из-за вредных выбросов в атмосферу является одним из опаснейших вызовов человечеству, угрожающих его существованию. Отмечается три главных источника загрязнения воздуха.

  • Отходы промышленности.
  • Сжигание теплоносителей в котельных.
  • Выхлопные газы двигателей автомобильного транспорта.

Вследствие работы теплоэлектростанций в окружающую среду попадает сернистый газ, углекислый. Металлургические заводы загрязняют среду обитания окислами азота, хлором, сероводородом, аммиаком, соединениями фосфора, ртути, многими иными небезопасными субстанциями.

Это первичные загрязнители, они вступают реакции, образуя вторичные. С большой интенсивностью сернистый газ (SO2) переходит в серный ангидрид (SO3), который взаимодействуя с влагой, дает серную кислоту (H2SO4). Если серный ангидрид вступит в реакцию с аммиаком (NH4) в небе мы будем иметь кристаллики сульфата аммония. Выпадающая с осадками серная кислота образует кислотные дожди, сжигающие окрестную листву, вызывающие респираторные заболевания у людей.

При неполном сгорании органического топлива в пространство выбрасывается оксид углерода (СО), знаменитый угарный газ. Он вступает в реакции со многими веществами, образуя продукты, создающие парниковый эффект.

Алюминиевые, заводы, предприятия, производящие удобрения, стекольные фабрики выбрасывают фторсодержащие вещества в газовой фазе. Они сами по себе вредны для здоровья, дальнейшие превращения загрязняют окружающую среду токсическими веществами еще сильнее. Тоже самое с хлором, активно участвующим в образовании паров соляной кислоты. Получаются угрожающие здоровью населения мышьяковистые, фосфорные соединения, вещества содержащие сурьму, свинец, редкие металлы.

Аэрозольное загрязнение

Особый класс представляют взвешенные в воздухе частицы, называемые аэрозолями. Как правило, они получаются в результате взаимодействия частиц между собой и парами воды. В больших количествах их продуцируют теплоэлектростанции ТЭС, химический состав отличается большой вариативностью, можно найти соединения железа, редких металлов, кремния, селена, других элементов периодической таблицы.

Частички взвеси могут также носить органическое происхождение, в частности в пыли находятся ароматические углеводороды (бензол и другие). Кроме того в атмосфере присутствуют свободные радикалы, насыщенные и ненасыщенные углеводороды, чьи гомологические цепочки могут содержать до 13-ти атомов углерода.

Эта масса подвергается процессам окисления, полимеризации, формирует соединения с иными загрязнителями под воздействием солнечной энергии. Углеводороды образуют вещества с оксидами азота, серы, перекисями. Зрительно аэрозоли воспринимаются как смог, дымка, мгла.

Заключение

Возникновение биологической материи, тем более высокоорганизованных форм возможно при сочетании многих факторов. Одной из основополагающих субстанции является подходящая для жизнедеятельности окружающая газовая среда. Атмосфера подательница жизни, ее защитница и фактор эволюции.

В тоже время она хрупка, по незнанию, неразумию, можно легко нарушить ее сбалансированное состояние, тогда мы получим карающего без разбора мстителя. Одна из насущных задач человечества научиться жить в согласии со всем мирозданием и с важнейшей для нас ее частью атмосферой. Человек не навреди миру, в котором живешь.

Воздушная оболочка, окружающая земной шар называется атмосферой.
Историю образования атмосферы пока не удалось восстановить абсолютно достоверно. Тем не менее, выявлены некоторые вероятные изменения ее состава.

Содержание работы

1. Введение.
2. Химические процессы в атмосфере и изменения происходящие под их влиянием.
2.1. Химические загрязнение атмосферы.
2.2. Фотохимический туман (смог).
2.3. Парниковые газы.
2.4.Кислые атмосферные выпады на сушу.
2.5. Озоновая дыра в атмосфере
3. Вывод.
4. Список литературы.

Содержимое работы - 1 файл

Химические процессы.doc

Центрсоюз РФ
Мурманский кооперативный
техникум ОПС

Реферат на тему:

Химические процессы в атмосфере и изменения происходящие под их влиянием

Выполнила: Студентка группы Б-33
Богданова Анна Андреевна
Проверила: Боева И.В
Оценка: __________________

1. Введение.
2. Химические процессы в атмосфере и изменения происходящие под их влиянием.

2.1. Химические загрязнение атмосферы.

2.2. Фотохимический туман (смог).

2.3. Парниковые газы.

2.4.Кислые атмосферные выпады на сушу.

2.5. Озоновая дыра в атмосфере

3. Вывод.
4. Список литературы.

Воздушная оболочка, окружающая земной шар называется атмосферой.

Историю образования атмосферы пока не удалось восстановить абсолютно достоверно. Тем не менее, выявлены некоторые вероятные изменения ее состава. Становление атмосферы началось сразу после формирования Земли. Имеются довольно веские основания полагать, что в процессе эволюции Праземли и обретения ею близких к современным размеров и массы она практически полностью утратила свою первоначальную атмосферу. Считается, что на раннем этапе Земля находилась в расплавленном состоянии и около 4,5 млрд. лет назад оформилась в твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени происходила и медленная эволюция атмосферы. Некоторые геологические процессы, как, например, излияния лавы при извержениях вулканов, сопровождались выбросом газов из недр Земли. В их состав, вероятно, входили азот, аммиак, метан, водяной пар, оксид и диоксид углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода с образованием углекислого газа. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным ее компонентом, хотя некоторая его часть связывалась в ходе химических реакций.

В атмосфере постоянно происходят разнообразные процессы: химические, физические, биологические и др. В результате данных процессов происходит изменение как нижних, так и верхних слоев атмосферы.

Происходящие в атмосфере процессы происходят закономерно и взаимосвязано. На атмосферу оказывает воздействие космическое пространство, поверхность земли, водоемов, растительного и снежного покрова. Происходит взаимообмен газами, теплом, влагой, жидкими и твердыми частицами. Солнечное излучение является основным источником энергии для атмосферных частиц. В атмосфере, благодаря происходящим в ней различным процессам, происходят некоторые химические реакции, которые изменяют ее состав. Развиваются движения воздушных масс, образуются облака, осадки, наблюдаются электрические, акустические и оптические явления. Состояние атмосферы постоянно изменяется во времени и в пространстве.

Атмосфера не имеет определенной верхней границы. Она постепенно переходит в межпланетную среду. Условно верхнюю границу атмосферы принято считать на высоте 1000-1200 км. Спутниковые данные изменения плотности воздуха с высотой позволяют считать, что плотность атмосферы приближается к плотности межпланетной среды, начиная с высоты 2000-3000 км.

В настоящее время Земля обладает атмосферой массой примерно 5,27х1018 кг. Половина всей массы атмосферы сосредоточена в слое до 5 км, 75% - до высоты 10 км, 95%- до 20км. Около поверхности она содержит 78,08% азота, 20,95% кислорода, 0,94% инертных газов, 0,03% углекислого газа и в незначительных количествах другие газы. Давление и плотность в атмосфере убывают с высотой. Половина воздуха содержится в нижних 5,6 км, а почти вся вторая половина сосредоточена до высоты 11,3 км. На высоте 95 км плотность воздуха в миллион раз ниже, чем у поверхности. На этом уровне и химический состав атмосферы уже иной. Растет доля легких газов, и преобладающими становятся водород и гелий. Часть молекул разлагается на ионы, образуя ионосферу. Выше 1000 км находятся радиационные пояса. Их тоже можно рассматривать как часть атмосферы, заполненную очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.

Атмосфера является одним из необходимых условий возникновения и существования жизни на Земле. Она участвует в формировании климата на планете, регулирует ее тепловой режим, способствует перераспределению тепла у поверхности. Часть лучистой энергии Солнца поглощается атмосферой, а остальная энергия, достигая поверхности Земли, частично уходит в почву, водоемы, а частично отражается в атмосферу.

Атмосфера предохраняет Землю от резких колебаний температуры. При отсутствии атмосферы и водоемов температура поверхности Земли в течение суток колебалась бы в интервале 200 °С. Благодаря наличию кислорода атмосфера участвует в обмене и круговороте веществ в биосфере.

В современном состоянии атмосфера существует сотни миллионов лет, все живое приспособлено к строго определенному ее составу. Газовая оболочка защищает живые организмы от губительных ультрафиолетовых, рентгеновских и космических лучей. Атмосфера предохраняет Землю от падения метеоритов.

В атмосфере распределяются и рассеиваются солнечные лучи, что создает равномерное освещение. Она является средой, где распространяется звук. Из-за действия гравитационных сил атмосфера не рассеивается в мировом пространстве, а, окружая Землю, вращается вместе с ней.

2. Химические процессы в атмосфере и изменения происходящие под их влиянием

2. 1. Химическое загрязнение атмосферы.

Есть много факторов, которые приводят к ухудшению состояния атмосферы. Человек загрязняет атмосферу уже тысячелетиями, однако последствия употребления огня, которым он пользовался весь этот период, были незначительны. Приходилось мириться с тем, что дым мешал дыханию, сажа ложилась черным покровом на потолке и стенах жилища. Получаемое тепло было для человека важнее, чем чистый воздух и не закопченные стены пещеры. Это начальное загрязнение воздуха не представляло проблемы, ибо люди обитали тогда небольшими группами, занимая неизменно обширную нетронутую природную среду. И даже значительное сосредоточение людей на сравнительно небольшой территории, как это было в классической древности, не сопровождалось еще серьезными последствиями. Так было вплоть до начала девятнадцатого века. Лишь за последние сто лет развитие промышленности "одарило" нас такими производственными процессами, последствия которых вначале человек еще не мог себе представить. Возникли города-миллионеры, рост которых остановить нельзя. Все это результат великих изобретений и завоеваний человека. В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места. Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух окислы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов. Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170% ежегодно добываемого твердого и жидкого топлива. Оксид углерода получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает в атмосферу не менее 1250 млн.т. Оксид углерода является соединением, активно реагирующим с составными частями атмосферы, и способствует повышению температуры на планете, и созданию парникового эффекта. Сернистый ангидрид выделяется в процессе сгорания серу- содержащего топлива или переработки сернистых руд (до 170 1млн.т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 165 процентов от общемирового выброса. Серный ангидрид образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 11 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшихся в местах оседания капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида. Сероводород и сероуглерод. Они поступают в атмосферу раздельно или вместе с другими соединениями серы. Основными источниками выброса являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также нефтепромыслы. В атмосфере при взаимодействии с другими загрязнителями подвергаются медленному окислению до серного ангидрида. Окислы азота - основными источниками выброса являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество окислов азота, поступающих в атмосферу, составляет 120 млн.т. в год. Соединения фтора - источниками загрязнения являются предприятия по производству алюминия, эмалей, стекла, керамики, стали, фосфорных удобрений. Фторосодержащие вещества поступают в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами. Соединения хлора - поступают в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие пестициды, органические красители, гидролизный спирт, хлорную известь, соду. В атмосфере встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией. В металлургической промышленности при выплавке чугуна и при переработке его на сталь происходит выброс в атмосферу различных тяжелых металлов и ядовитых газов. Так, в расчете на 11 т. 0передельного чугуна выделяется кроме 12,7 кг. сернистого газа и 14,5 кг. пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и редких металлов, смоляных веществ и цианистого водорода. Аэрозольное загрязнение атмосферы. Аэрозоли - это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки. Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с водяным паром. Средний размер аэрозольных частиц составляет 11-51мкм. В атмосферу Земли ежегодно поступает около 11 куб.км. пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также в ходе производственной деятельности людей.

Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Аэрозольные частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании оста- точных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы - искусственные насыпи из переотложенного материала, преимущественно вскрышных пород, образуемых при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Источником пыли и ядовитых газов служат массовые взрывные работы. Так, в результате одного среднего по массе взрыва ( 1250-3000 тонн взрывчатых веществ) в атмосферу выбрасывается около 12 тыс.куб.м. 0условного оксида углерода и более 1150 т. пыли. Производство цемента и других строительных материалов также является источником загрязнения атмосферы пылью. Основные технологические процессы этих производств - измельчение и химическая обработка шихт, полуфабрикатов и получаемых продуктов в потоках горячих газов всегда сопровождается выбросами пыли и других вредных веществ в атмосферу. К атмосферным загрязнителям относятся углеводороды - насыщенные и ненасыщенные, включающие от 11 до 13 атомов углерода. Они подвергаются различным превращениям, окислению, полимеризации, взаимодействуя с другими атмосферными загрязнителями после возбуждения солнечной радиацией. В результате этих реакций образуются перекисные соединения, свободные радикалы, соединения углеводородов с оксидами азота и серы часто в виде аэрозольных частиц. При некоторых погодных условиях могут образовываться особо большие скопления вредных газообразных и аэрозольных примесей в приземном слое воздуха. Обычно это происходит в тех случаях, когда в слое воздуха непосредственно над источниками газопылевой эмиссии существует инверсия - расположения слоя более холодного воздуха под теплым, что препятствует воздушных масс и задерживает перенос примесей вверх. В результате вредные выбросы сосредотачиваются под слоем инверсии, содержание их у земли резко возрастает, что становится одной из причин образования ранее неизвестного в природе фотохимического тумана.

2.2. Фотохимический туман (смог)

Фотохимический туман представляет собой многокомпонентную смесь газов и аэрозольных частиц первичного и вторичного происхождения. В состав основных компонентов смога входят озон, оксиды азота и серы, многочисленные органические соединения перекисной природы, называемые в совокупности фотооксидантами. Фотохимический смог возникает в результате фотохимических реакций при определенных условиях: наличии в атмосфере высокой концентрации оксидов азота, углеводородов и других загрязнителей, интенсивной солнечной радиации и безветрия или очень слабого обмена воздуха в приземном слое при мощной и в течение не менее суток повышенной инверсии. Устойчивая безветренная погода, обычно сопровождающаяся инверсиями, необходима для создания высокой концентрации реагирующих веществ. Такие условия создаются чаще в июне-сентябре и реже зимой. При продолжительной ясной погоде солнечная радиация вызывает расщепление молекул диоксида азота с образованием оксида азота и атомарного кислорода. Атомарный кислород с молекулярным кислородом дают озон. Казалось бы, последний, окисляя оксид азота, должен снова превращаться в молекулярный кислород, а оксид азота - в диоксид. Но этого не происходит. Оксид азота вступает в реакции с олефинами выхлопных газов, которые при этом расщепляются по двойной связи и образуют осколки молекул и избыток озона. В результате продолжающейся диссоциации новые массы диоксида азота расщепляются и дают дополнительные количества озона. Возникает циклическая реакция, в итоге которой в атмосфере постепенно накапливается озон. Этот процесс в ночное время прекращается. В свою очередь озон вступает в реакцию с олефинами. В атмосфере концентрируются различные перекиси, которые в сумме и образуют характерные для фотохимического тумана оксиданты. Последние являются источником, так называемых свободных радикалов, отличающихся особой реакционной способностью. Такие смоги - нередкое явление над Лондоном, Парижем, Лос-Анджелесом, Нью-Йорком и другими городами Европы и Америки. По своему физиологическому воздействию на организм человека они крайне опасны для дыхательной и кровеносной сис- темы и часто бывают причиной преждевременной смерти городских жителей с ослабленным здоровьем.

2.3. Парниковые газы.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар (36-70%), углекислый газ (9-26%), метан (4-9%), оксид азота.

Угольные электростанции, заводские трубы, автомобильные выхлопы и другие созданные человечеством источники загрязнения вместе выбрасывают в атмосферу около 22 миллиардов тонн углекислого газа и других парниковых газов в год. Животноводство, применение удобрений, сжигание угля и другие источники дают около 250 миллионов тонн метана в год. Около половины всех парниковых газов, выброшенных человечеством, осталось в атмосфере. Около трёх четвертей всех антропогенных выбросов парниковых газов за последние двадцать лет вызваны использованием нефти, природного газа и угля (рис.6). Большая часть остального вызвана изменениями ландшафта, в первую очередь вырубкой лесов.

В настоящее время вследствие хозяйственной деятельности человека происходит интенсивное загрязнение атмосферы. Это искусственное, или антропогенное загрязнение. Также ученые выделяют естественное загрязнение воздушной оболочки в связи с воздействием факторов неживой природы.

Содержание работы

Введение. 3
1. Химический состав атмосферы. 4
2. Природные источники формирования химического состава атмосферы. 8
3.Антропогенные источники формирования химического состава атмосферы. 10
Заключение…………………………………. ………. ………………………. 13
Список использованных источников…………………………………………. 14

Файлы: 1 файл

химия окр среды.docx

Кафедра Физико-химической технологии защиты биосферы

Предмет: Химия окружающей среды

1. Химический состав атмосферы. . . 4

2. Природные источники формирования химического состава атмосферы. 8

3.Антропогенные источники формирования химического состава атмосферы. . . . . 10

Список использованных источников…………………………………………. . 14

Воздушная оболочка, окружающая земной шар называется атмосферой. В атмосфере постоянно происходят разнообразные процессы: химические, физические, биологические и другие. В результате данных процессов происходит изменение как нижних, так и верхних слоев атмосферы.

Происходящие в атмосфере процессы происходят закономерно и взаимосвязано. На атмосферу оказывает воздействие космическое пространство, поверхность земли, водоемов, растительного и снежного покрова. Происходит взаимообмен газами, теплом, влагой, жидкими и твердыми частицами. Солнечное излучение является основным источником энергии для атмосферных частиц. В атмосфере, благодаря происходящим в ней различным процессам, происходят некоторые химические реакции, которые изменяют ее состав. Развиваются движения воздушных масс, образуются облака, осадки, наблюдаются электрические, акустические и оптические явления. Состояние атмосферы постоянно изменяется во времени и в пространстве.

Атмосфера регулирует климат Земли. Она пропускает тепловое излучение, сохраняет тепло, является источником влаги, средой распространения звука, источником кислородного дыхания. Атмосфера является средой, которая воспринимает газообразные продукты обмена веществ, оказывает влияние на процессы теплообмена и теплорегуляции. Резкое изменение качества воздушной среды может отрицательно сказаться на здоровье населения, заболеваемости, рождаемости, физическом развитии, показателях работоспособности и т. д.

Химический состав воздуха имеет важное значение в осуществлении дыхательной функции. Атмосферный воздух – это смесь газов: кислорода, углекислого газа, аргона, азота, неона, криптона, ксенона, водорода, озона и др. Состояние атмосферы постоянно изменяется во времени и в пространстве.

Естественное изменение состава атмосферы обычно играет весьма небольшую роль по сравнению с возможными последствиями его искусственного нарушения. Это нарушение, преимущественно связанное с производственной деятельностью населения, устройствами для бытового обслуживания и транспортом, в состоянии приводить даже к денатурации воздушной среды, т. е. к выраженным отличиям ее свойств и состава от соответствующих показателей природной атмосферы.

В настоящее время вследствие хозяйственной деятельности человека происходит интенсивное загрязнение атмосферы. Это искусственное, или антропогенное загрязнение. Также ученые выделяют естественное загрязнение воздушной оболочки в связи с воздействием факторов неживой природы.

1. Химический состав атмосферы

Воздушная оболочка — это наиболее динамичная часть природы нашей планеты. Наряду с переносом в самой атмосфере, между ней, поверхностью Земли, гидросферой и биосферой происходит постоянный обмен газами, водой и теплом. С атмосферой связана также циркуляционная и циклоническая деятельность.

Если говорить об экологической роли атмосферы, то наряду с процессами дыхания, поддержания теплового режима, переноса веществ и защиты биоты от опасных лучей и холода космоса, она защищает нас и от метеоритов.

Наиболее экологически важными компонентами атмосферы являются следующие:

  1. вода, отражающая и поглощающая тепловое излучение Земли и тем самым сохраняющая температуру в нижних слоях атмосферы;
  2. озон, поглощающий жесткое ультрафиолетовое излучение Солнца, защищая биоту и нагревая стратосферу;
  3. углекислый газ, отражающий тепло Земли и создающий парниковый эффект.

Таблица 1.1 - Состав незагрязненного воздуха

Различают постоянные, переменные и случайные составные части атмосферы.

Постоянные составляющие. К постоянным составляющим воздуха относятся азот, кислород, инертные газы (табл. 1.2). По ним состав воздуха в тропосфере, стратосфере и части ионосферы одинаков по всей высоте и над любой точкой поверхности.

Таблица 1.2 - Количественный состав атмосферы по основным составляющим

Неон и другие инертные газы

Важной составной частью атмосферного воздуха является кислород, количество которого в земной атмосфере составляет около 1,181015 тонн. Постоянное содержание кислорода поддерживается за счет непрерывных процессов обмена его в природе. Кислород потребляется при дыхании человека и животных, расходуется на поддержание процессов горения и окисления, а поступает в атмосферу за счет процессов фотосинтеза растений. Наземные растения и фитопланктон океанов полностью восстанавливают естественную убыль кислорода. Они ежегодно выбрасывают в атмосферу 0,5106 млн. тонн кислорода. Источником образования кислорода является также фотохимическое разложение водяных паров в верхних слоях атмосферы под влиянием УФ-излучения Солнца. Этот процесс играл главную роль в генерации кислорода до возникновения жизни на Земле. В дальнейшем основная роль в этом отношении перешла к растениям. В результате интенсивного перемешивания воздушных масс концентрация кислорода в воздухе промышленных городов и сельских населенных мест остается практически постоянной.

Азот по количественному содержанию является наиболее существенной составной частью атмосферного воздуха. Это инертный газ. В атмосфере азота невозможна жизнь. Азот воздуха усваивается азотфиксирующими бактериями почвы, синезелеными водорослями, под влиянием электрических разрядов превращается в оксиды азота, которые, выпадая с атмосферными осадками, обогащают почву солями азотистой и азотной кислот. Соли азотной кислоты служат для синтеза белка.

Также азот выделяется в атмосферу. Свободный азот образуется при процессах горения древесины, угля, нефти, небольшое количество его образуется при разложении органических соединений. Таким образом, в природе происходит непрерывный круговорот азота, в результате которого азот атмосферы превращается в органические соединения, восстанавливается и поступает в атмосферу, затем вновь связывается биологическими объектами.

Важным составным элементом атмосферного воздуха является диоксид углерода – углекислый газ (СО2). В природе СО2 находится в свободном и связанном состояниях в количестве 146 млрд. тонн, из них в атмосферном воздухе содержится лишь 1,8% от его общего количества. Основная масса его (до 70%) находится в растворенном состоянии в воде морей и океанов. В состав некоторых минеральных соединений, известняков и доломитов входит около 22% общего количества СО2. Остальное количество приходится на животный и растительный мир, каменный уголь, нефть и гумус.

В природных условиях происходят непрерывные процессы выделения и поглощения СО2. В атмосферу он выделяется за счет дыхания человека и животных, процессов горения, гниения и брожения, при промышленном обжиге известняков и доломитов. Одновременно в природе идут процессы ассимиляции углекислого газа, который поглощается растениями в процессе фотосинтеза. Процессы образования и ассимиляции СО2 взаимосвязаны, благодаря чему содержание СО2 в атмосферном воздухе относительно постоянно и составляет 0,03%.

За последнее время отмечается увеличение его концентраций в воздухе промышленных городов в результате интенсивности загрязнения продуктами сгорания топлива. Поэтому среднегодовое содержание СО2 в воздухе городов может повышаться до 0,037 %.

Переменные составляющие. К переменным составляющим относятся углекислый газ и водяной пар Их содержание в воздухе меняется.

Содержание углекислого газа изменяется в пределах одной сотой процента в ту и другую сторону от средней величины, которая составляет 0,3% от объема атмосферы. Ежедневно на Земле сжигается несколько миллионов тонн топлива, следовательно, среднее содержание углекислого газа увеличивается.

Важная составная часть атмосферы – водяной пар. Его концентрация составляет около 0,16% от объема атмосферы, колеблясь от 3% у земной поверхности до 0,00002% в Антарктиде. С высотой его количество быстро убывает. В результате конденсации водяного пара в капли образуются облака. Облака, которые обычно закрывают около половины всей поверхности Земли находятся в тропосфере. В верхней части атмосферы облака редки. Это так называемые перламутровые или серебристые облака.

Случайные составные части. Содержание случайных веществ зависит от источника их выделения, количества выхода в атмосферу, метеорологических условий и от плотности рассматриваемых примесей. Если выделяющиеся примеси легче воздуха, то они быстрее рассеиваются в верхних слоях атмосферы. Тяжелые примеси более длительное время задерживаются у поверхности Земли и могут даже устойчиво заполнять неровности местности (овраги, рвы, впадины). Случайными примесями являются различные газы, образующиеся в результате жизнедеятельности организмов, разложения органических веществ, пожаров, деятельности вулканов или иных выбросов природных газов в атмосферу, а также газы, образующиеся в результате промышленной деятельности человека. Можно привести следующие примеры случайных газов: сернистый газ, вблизи металлургических заводов; аммиак, образующийся в результате распада органических остатков; радиоактивные примеси.

Кроме главных газов – азота, кислорода, аргона, в воздухе присутствуют и различные следовые газы, время жизни которых приведено в табл. 1.3.

Тропосферы достигает УФ излучение достаточно низкой энергии с λ>300 нм, поскольку более коротковолновые практически полностью поглощаются в более высших слоях в процессах фотодиссоциации О2 и О3.

УФ-излучение низкой энергии не вызывает фотохимических реакций основных компонентов, т.е. О2 и N2. Реакции с участием основных компонентов могут протекать например при газовых разрядах



И затем доокисляя


Но в фотохимических реакциях в тропосфере участвуют ряд примесей, средняя концентрация которых в атмосфере мала, но локальная может быть значительной в результате активной хозяйственной деятельности – это прежде всего NOx, у/в, озон.

В тропосфере образуется и накапливается сильный окислитель озон, но по механизму, отличающемуся от стратосферного, где к образованию озона приводит атом О( 3 р), образующийся при фотодиссоциации О2.

Озон в тропосфере образуется в фотолитическом цикле диоксида азота.


NO2 поступает в атмосферу в значительных количествах от стационарных и передвижных источников, сжигающих органическое топливо непосредственно при сжигании образуется NOx, который постепенно доокисляется до NO2 []

NO2 легко диссоциирует под действием УФ-излучения с λ 1 Д), выделяющегося при фотолизе озона (в основном эта реакция идет в верхних слоях тропосферы, куда проникает излучение с λ -12 и 8·10 -15 ).

При окислительных превращениях гомологов метана возможен еще один очень важный путь развития процесса, связанный с реакцией карбонильного радикала с О2


В случае с метаном простейший карбонильный радикал - , образовавшийся из формальдегида, приводит к СО (по рассматриваемым реакциям)

В случае с другими углеводородами карбонильный радикал (со структурой, определяемой структурой исходного углеводорода) присоединяет О2


Давая ацилпероксидный радикал, который в конечном итоге приводит к образованию важнейших (с точки зрения воздействия на ОС) продуктов веществ группы ПАН – пероксиацилнитратов.

ПАН- вещества общей формулы (R – углеводородный радикал) являются наиболее опасными компонентами фотохимического смога. Из них наиболее известен пероксиацетил нитрат, т.е.

Таким образом фотохимические и окислительные превращения углеводородов с участие NОx являются главной причиной образования фотохимического смога – смеси газообразных веществ в сильными окислительными свойствами.

Образование фотохимического смога – обычное явление для крупных городов в большим количество автотранспорта. Выхлопные газы ДВС содержат в сове составе NОx и у/в, которые распространяются в фактически в зоне дыхания.

Обобщим все что говорилось об окислении у/в в единую схему, которой принято описывать образование фотохимического смога


Реакционноспособоные у/в (с двойными связями) также легко окисляются озоном, образуя при это альдегид (либо кетон – в зависимости от строения алкена) и кислоту – продукт последующего окисления по общей схеме:


Значительную долю у/в в атмосфере составляют ароматические у/в (в городах 30-40% от всех органических соединений). Они окисляются гидроскорадикалом по различны механизмам. Основным направление окисление является раскрытие цикла

C образованием перокидного радикала, который окисляется О2 с участием NO через ряд промежуточных стадий, включающих внутримолекулярную циклизацию пероксидного радикала) с раскрытием цикла с образованием дикарбонильных соединений.

Таким образом, фотохимический смог – смесь разнообразных продуктов фотохимических и окислительных реакций озона, альдегидов, кислот, пероксидных соединений, свободных радикалов, ПАН, главным из которых является окислители – озон и вещества группы ПАН. ПАН отличаются высокой токсичностью для человека, а также подавляют процесс фотосинтеза. Кроме того компоненты фотохимического смога будучи сильными окислителями, оказывают разрушительное действие на конструкционные материалы – усиливают коррозию металлических конструкций, разрушение строительных соединений.

Вредное воздействие смога на живые организмы обусловлено также присутствием альдегидов – весьма токсичных веществ.

Интересно проследить за изменением концентрации основных компонентов, участвующих в образовании фотохимического смога (например для города с активными физико-химическими условиями) в течение суток


График 3.1. изменение концентраций компонентов смога в городе в течение суток

Как видно из графиков – содержание NO достигает максимум быстрее по мере увеличения интенсивности движения транспорта, чем содержание NO2 (со смещением в несколько часов).

Концентрация окислителей достигает максимума только после нескольких часов воздействия солнечного света.

Образование фотохимического смога – один из процессов, в котором участвуют гидроксильные радикалы, окисляя у/в.

Читайте также: