Пойкилотермные и гомойотермные организмы реферат

Обновлено: 02.07.2024

В природе одним из важных лимитирующих факторов среды является температура. Влияние температуры на большинство организмов проявляется в регулировании биохимических и физиологических процессов жизнедеятельности. Температура может влиять на характер поведения и географическое распределение организмов. Для температурного фактора характерны широкие географические, сезонные и суточные колебания. Пределами толерантности для любого вида являются температуры, при которых наступает денатурация белков. Это приводит к потере активности ферментов и необратимому изменению коллоидных свойств цитоплазмы. Диапазон переносимых температур у разных видов сильно варьирует, но, как правило, находится в пределах от 0 до +50 °C.

Пойкилотермные и гомойотермные организмы

В зависимости от способа терморегуляции выделяют две группы организмов: пойкилотермные и гомойотермные.

Пойкилотермные организмы (от греч. poikilos — изменчивый, меняющийся, therme — тепло) — организмы, температура тела которых непостоянна и изменяется вместе с температурой окружающей среды. К ним относятся все растения, грибы, протисты, беспозвоночные животные, рыбы, земноводные и пресмыкающиеся.

Гомойотермные организмы (от греч. homoios — одинаковый, сходный, therme — тепло) — организмы, способные поддерживать относительно постоянную температуру тела при изменении температуры окружающей среды. К ним относятся птицы и млекопитающие (в том числе человек). Гомойотермные организмы способны сохранять активность в широком диапазоне температур. Пойкило термные организмы впадают в оцепенение при низких температурах, а некоторые обитатели пустынь — и при высоких температурах.

Всегда ли гомойотермные организмы поддерживают постоянную температуру тела? Известно, что некоторые виды млекопитающих и птиц способны впадать в оцепенение, внешне сходное с холодовым оцепенением пойкилотермных животных. При этом температура их тела снижается практически до уровня температуры окружающей среды. Нерегулярное оцепенение наблюдается у ласточек, стрижей, многих грызунов, некоторых сумчатых в связи с резким похолоданием, дождями или снегопадами. Сезонное оцепенение, которое принято называть зимней спячкой, характерно для сурков, сусликов, ежей, летучих мышей, бурых медведей. Вышеназванные виды птиц и млекопитающих выделяют в отдельную группу гетеротермных животных (от греч. heteros — иной, другой, therme — тепло).

Адаптации растений к различным температурным условиям

Жизнедеятельность растений в значительной степени зависит от температуры окружающей среды. По потребности к количеству тепла их разделяют на три экологические группы: теплолюбивые, мезотермные и холодостойкие.

Теплолюбивые растения произрастают в тропическом, субтропическом поясах и хорошо прогреваемых местообитаниях умеренного пояса. У теплолюбивых растений выработались адаптации к действию высоких температур. Мезотермные и холодостойкие растения, населяющие умеренный и холодный пояса, вынуждены адаптироваться к низким температурам. Все адаптации растений к температуре можно разделить на три типа: биохимические, физиологические и морфологические.

Биохимические адаптации

При высокой температуре в цитоплазме клеток теплолюбивых растений увеличивается содержание защитных веществ (органических кислот, солей, слизи). Они препятствуют свертыванию цитоплазмы и нейтрализуют токсичные вещества.

У холодостойких растений при низких температурах происходит накопление углеводов (в основном глюкозы) в клеточном соке, что снижает точку замерзания воды.

Физиологические адаптации

Эффективной защитой растений от перегрева служит усиленная транспирация (испарение воды) благодаря большому количеству устьиц.

У растений пустынь и степей короткий цикл развития позволяет избегать действия высоких температур. Вся вегетация у них происходит ранней весной. А летнюю жару они переживают в состоянии покоя. Однолетние растения, у которых состояние покоя проходит в виде семян, называют эфемерами (мак). Многолетники, переживающие неблагоприятный период в виде луковиц, клубней или корневищ, называют эфемероидами (тюльпан).

Крайней мерой в борьбе с холодом или жарой является переход растений в состояние анабиоза (обратимая приостановка жизненных процессов) вследствие обезвоживания. Например, мхи и лишайники могут длительное время находиться в таком состоянии.

Морфологические адаптации

Действие высоких температур на растения субтропического и тропического поясов снижается за счет усиления отражения солнечных лучей и уменьшения светопоглощающей поверхности.

Повышению отражения солнечного света способствует светлая окраска листьев, их блестящая или опушенная поверхность.

Уменьшение поглощения света достигается благодаря видоизменению листовых пластинок. Это могут быть колючки (кактусы) или мелкие (саксаул), рассеченные (пальмы), свернутые (ковыль) листья.

Противодействует перегреву растений вертикальное по отношению к солнечным лучам расположение листьев. Изменение угла их наклона может происходить при повороте листовой пластинки.

Адаптации у растений холодного климата проявляются в виде формирования карликовых жизненных форм (березы, ивы). Встречаются также стелющиеся (кедровый стланик, можжевельник туркестанский) и подушковидные (высокогорные и арктические растения-подушки) жизненные формы. Такие растения меньше подвержены воздействию ветра, лучше укрыты снегом зимой, полнее используют тепло почвы летом.

Адаптации животных к различным температурным условиям

Разнообразие адаптаций животных к неблагоприятным температурным условиям объясняется разными способами терморегуляции у пойкилотермных и гомойотермных организмов. Все адаптации животных по механизму действия разделяют на биохимические, физиологические, морфологические и поведенческие.

Биохимические адаптации

У арктических и антарктических рыб отмечается повышенное содержание ненасыщенных жирных кислот в составе жиров, что снижает температуру их затвердевания.

У гомойотермных организмов борьба с переохлаждением происходит за счет повышения интенсивности обмена веществ. У млекопитающих усиливается расщепление особой жировой ткани (бурого жира). Она богата митохондриями и пронизана многочисленными кровеносными сосудами.

Физиологические адаптации

У пойкилотермных организмов регуляция теплообмена происходит благодаря особенностям строения кровеносной системы.

При высоких температурах как у пойкилотермных, так и у гомойотермных организмов теплоотдача усиливается за счет испарения влаги с поверхности тела (потоотделение). Влага может испаряться через слизистые оболочки ротовой полости и верхние дыхательные пути (тепловая одышка и др.).

В случае воздействия низких температур у животных может возникнуть мышечная дрожь. Они могут также впадать в спячку.

У млекопитающих с короткой и редкой шерстью важную роль в терморегуляции играют сосудистые реакции. Расширение или сужение мелких поверхностных сосудов кожи усиливает или снижает теплоотдачу.

Морфологические адаптации

Уменьшению потерь тепла у организмов способствуют теплоизолирующие покровы. Пресмыкающиеся имеют роговой покров, птицы — перьевой, млекопитающие — волосяной. Сохранению тепла способствует подкожный жир, особенно выраженный у обитателей холодного климата (ластоногие и китообразные).

Поведенческие адаптации

У пойкилотермных животных существует два типа поведенческих адаптаций. Это активный выбор мест с наиболее благоприятным температурным режимом и смена поз.

В первом случае насекомые, пресмыкающиеся и земноводные активно отыскивают освещенные солнцем места. Получив необходимое количество тепла, животные перемещаются в тень или прячутся в норах и поддерживают температуру за счет мышечных сокращений. У водных животных перемещение происходит между мелководными, хорошо прогреваемыми зонами и более глубоководными прохладными участками.

Для гомойотермных животных также характерно адаптивное поведение. Оно проявляется в виде выбора мест для защиты от холода или жары, сезонных миграций. Животные могут зарываться в снег, образовывать тесные скопления особей для снижения энергозатрат на терморегуляцию и т. д.

Температура может оказывать лимитирующее действие на организмы вследствие денатурации белков. Это приводит к потере активности ферментов и необратимому изменению коллоидных свойств цитоплазмы. В зависимости от способа терморегуляции организмы разделяют на пойкилотермные и гомойотермные. По отношению к разным температурным условиям среды у организмов выработались биохимические, физиологические, морфологические, а у животных еще и поведенческие адаптации.

Пойкилотермные животные
(от греч. poikílos — различный, переменчивый и thérme — тепло)
холоднокровные животные, животные с непостоянной температурой тела, меняющейся в зависимости от температуры внешней среды. К П. ж. относятся все беспозвоночные, а из позвоночных — рыбы, земноводные и пресмыкающиеся.
Гомойотермные животные
(от греч. hómoios — сходный, одинаковый и thérmë— тепло)
животные с постоянной, устойчивой температурой тела, почти не зависящей от температуры окружающей среды. К Г. ж. относятся птицы и млекопитающие.

Вложенные файлы: 1 файл

Пойкилотермные животные.docx

(от греч. poikílos — различный, переменчивый и thérme — тепло)

холоднокровные животные, животные с непостоянной температурой тела, меняющейся в зависимости от температуры внешней среды. К П. ж. относятся все беспозвоночные, а из позвоночных — рыбы, земноводные и пресмыкающиеся. Температура тела П. ж. обычно всего на 1—2 °С выше температуры окружающей среды или равна ей. Терморегуляция у П. ж. несовершенна. Температура тела у многих из них повышается под влиянием поглощения солнечного тепла или мышечной работы. Например, у шмелей в полёте она может достигать 38 и даже 44 °С при температуре воздуха 4—8 °С. Однако после прекращения полёта тело быстро охлаждается до температуры внешней среды. При повышении или понижении температуры внешней среды за пределы оптимума П. ж. впадают в оцепенение или гибнут. Многие из них находятся в оцепенении большую часть года (например, степная черепаха активна всего 3 мес в году). Отсутствие совершенных терморегуляционных механизмов у П. ж. объясняется относительно слабым развитием их нервной системы, особенно центральной, пониженным уровнем обмена веществ, который примерно в 20—30 раз ниже, чем у гомойотермных животных (См. Гомойотермные животные), и др. особенностями, связанными с более примитивной организацией П. ж. по сравнению с птицами и млекопитающими. ПОЙКИЛОТЕРМНЫЕ ЖИВОТНЫЕ, животные, чья температура тела меняется в зависимости от температуры внешней среды. Пойкилотермные животные часто называютсяхолоднокровными. К ним относятся пресмыкающиеся, земноводные, рыбы и беспозвоночные. Они могут контролировать температуру своего тела только за счет определенного поведения, - перемещаясь в тень или на солнце, или же поворачиваясь таким образом, чтобы поглощать больше или меньше солнечного тепла. см. также ГОМОЙОТЕРМНЫЕ ЖИВОТНЫЕ.

(от греч. hómoios — сходный, одинаковый и thérmë— тепло)

животные с постоянной, устойчивой температурой тела, почти не зависящей от температуры окружающей среды. К Г. ж. относятся птицы и млекопитающие. Характерная черта Г. ж. — наличие у них механизмов терморегуляции (См. Терморегуляция) — химической (регуляция продукции тепла в организме) и физической (регуляция отдачи тепла во внешнюю среду). Ср. Пойкилотермные животные.

(от греч. homoios — сходный, одинаковый и therme — тепло), теплокровные животные, животные, температура тела которых более или менее постоянна и как правило не зависит от температуры окружающей среды. К ним относятся птицы и млекопитающие. Температура тела различна у разных видов (35—45°С), но существенно выше температуры среды. Разность между температурой тела и температурой среды возрастает по мере охлаждения воздуха, что сопровождается пропорциональным возрастанием скорости теплоотдачи через кожу. Например, животные, у которых температура тела поддерживается на уровне 40°С, теряют тепло при температуре среды 20°С почти вдвое быстрее, чем при температуре 30°С. Чтобы поддерживать температуру тела на постоянном уровне, гомойотермные животные должны восполнять теряемое тепло за счет энергии, высвобождаемой в процессе метаболизма. См. также Плата за регулирование.

Температура тела

Температура тела — комплексный показатель теплового состояния организма животных и человека.

Поддержание температуры тела в определенных пределах является одним из важнейших условий нормальной жизнедеятельности организма. У пойкилотермных животных, к которым относятся беспозвоночные, рыбы, земноводные, пресмыкающиеся, температура тела близка к температуре окружающей среды. Гомойотермные животные — птицы и млекопитающие — в процессе эволюции приобрели способность поддерживать постоянную температуру тела при колебаниях температуры окружающей среды.

В гомойотермном организме условно различают две температурные зоны — оболочку и ядро. Оболочку составляют поверхностно расположенные структуры и ткани — кожа, соединительная ткань, ядро — кровь, внутренние органы и системы. Температура ядра выше, чем оболочки, и относительно стабильна: разница температур между внутренними органами составляет несколько десятых градуса, причем наиболее высокую температуру имеет печень (около 38°). Температура других внутренних органов, в том числе мозга, близка к температуре крови в аорте, определяющей среднюю температуру ядра. В мозге у кроликов и некоторых других животных отмечена разница температуры коры головного мозга и гипоталамуса, достигающая 1°.

Температура оболочки ниже температуры ядра на 5—10° и неодинакова на разных участках тела, что связано с различием их кровоснабжения, величиной подкожного жирового слоя и другого. Температура поверхности тела существенно зависит от температуры окружающей среды. При кратковременном нагревании тела (например, в финской сауне при температуре воздуха 80—100°) температура кожи конечностей, составляющая в норме около 30°, может подниматься до 45—48°, а при охлаждении падать до 5—10°.

Наличие в организме зон с разной температурой не позволяет однозначно определить температуру тела. Для характеристики ее часто пользуются понятием средневзвешенной температуры, которую вычисляют как среднюю температур всех участков тела. Более точно температуру тела может характеризоваться температурной схемой — распределением температуры по поверхности тела (рис. 1.) или в его ядре. Используется также характеристика температуры тела градиентом температуры, который изображается вектором, направленным в сторону наибольшего значения температуры, причем величина вектора соответствует изменению температуры, приходящемуся на единицу длины. Изображение температурной схемы тела в виде изотерм и значений градиента взаимно дополняют друг друга: чем ближе расположены изотермы, тем больший градиент температур имеют участки тела.

Измерение температуры тела производят с помощью различных термометров и датчиков температуры. Температуру ядра достаточно точно (с ошибкой менее 0,5°) можно измерить, размещая термометр в подмышечной впадине, под языком, в прямой кишке или наружном слуховом проходе. Нормальная температура тела человека, измеренная в прямой кишке, близка к 37°. Температура, измеренная под языком, меньше на 0,2—0,3°, в подмышечной впадине меньше на 0,3 — 0,4°.

У большинства людей хорошо выражены суточные колебания температуры тела, лежащие в диапазоне 0,1—0,6°. Наиболее высокая температура тела наблюдается во второй половине дня, наиболее низкая — ночью. Имеют место и сезонные колебания температуры тела: летом она на 0,1—0,3° выше, чем зимой. У женщин выражен также месячный ритм изменения температуры тела: при овуляции она повышается на 0,6—0,8°. Повышение температуры тела наблюдается при интенсивной мышечной работе, сильных эмоциональных переживаниях.

Поддержание жизни у гомойотермных животных и человека возможно только в определенном диапазоне температуры тела. Интервал между нормальной и верхней летальной температурой внутренних органов составляет около 6°. У человека и высших млекопитающих верхняя летальная температура приблизительно 43°, у птиц 46—47°. Причинами гибели гомойотермных животных и человека при превышении температуры тела верхнего критического предела считают нарушение биохимического равновесия в организме вследствие влияния изменения температуры на скорости разных биохимических реакций, а также нарушение структуры мембран в результате термического изменения конформации макромолекул, термическую инактивацию ферментов, идущую со скоростью, превышающей скорость их синтеза, денатурацию белков в результате нагрева, недостаток кислорода. Нижняя летальная температура тела составляет 15—23°. При искусственном охлаждении организма (смотри Гипотермия искусственная), когда принимаются специальные меры для сохранения его жизнеспособности, температуру тела можно понизить до более низких величин без риска для жизни. Поддержание постоянной температуры тела у человека и гомойотермных животных осуществляется путем взаимодействия механизмов теплопродукции и теплоотдачи. Устойчивость внутренней температуры при этом обеспечивается функциональной системой, в которую включены терморецепторы кожи, сосудов, гипоталамуса, центры терморегуляции в мозге и эфферентные механизмы, регулирующие теплопродукцию и теплоотдачу. При повышении температуры крови усиливается теплоотдача — расширяются сосуды кожи, увеличивается потеря тепла конвекцией, излучением, путем испарения пота, одновременно тормозятся механизмы теплопродукции. При понижении температуры тела уменьшается теплоотдача за счет сужения сосудов кожи и уменьшения ее теплопроводности, растет теплопродукция за счет увеличения мышечной деятельности. В начале охлаждения увеличивается терморегуляторный мышечный тонус (несократительный термогенез), а при более глубоком охлаждении возникает и нарастает мышечная дрожь (сократительный термогенез). При длительных и регулярных охлаждениях включается механизм химической терморегуляции, обусловливающий усиление метаболизма клеток и рост теплопродукции.

Длительное повышение температуры тела связано с изменением теплорегуляции, вызываемым образованием в организме специфических веществ — пирогенов, которые изменяют пределы нормальной установки температуры тела центрами терморегуляции. Пирогены появляются при действии на организм патогенных бактерий, вирусов, эндотоксинов. Возникающее под действием пирогенов повышение температуры (лихорадочное состояние) является выработанной в процессе эволюции адаптивной реакцией организма, которая приводит к накоплению дополнительного тепла, стимулирует обменные процессы и в большинстве случаев способствует борьбе организма с патогенными факторами. Местные повышения температуры могут происходить при локальных воспалительных процессах, развитии опухолей. Понижение температуры отдельных участков тела наблюдается при заболеваниях сосудов, приводящих к уменьшению местного кровотока,— ангиоспазмах, окклюзиях, облитерациях. Измерение местной температуры с помощью специальных датчиков или тепловизоров позволяет своевременно поставить диагноз, локализовать нарушение проходимости сосуда, прогнозировать динамику заболевания.

Температура тела является одним из важнейших показателей состояния организма. Повышение температуры на 1—2° часто служит признаком патологии. На заболевание может указывать и меньшее повышение температуры (на 0,5° и ниже), удерживающееся длительное время или возникающее периодически.

У птиц есть способность постоянно поддерживать температуру тела, благоприятную для их обменных процессов и комфортного состояния. Принято также считать, что организм птиц обладает способностью поддерживать температуру внутренних областей тела на относительно постоянном и достаточно высоком уровне (40—42° у птиц) независимо от изменений температуры окружающей среды. Совокупность физиологических процессов, обеспечивающих постоянство температуры тела у птиц, как у теплокровных животных, осуществляется путем изменения интенсивности теплопродукции (при окислительных процессах в организме) и путем изменения теплоотдачи через кожу. В организме птиц тепло образуется в процессе обмена веществ и энергии, а отдача тепла происходит путем теплопроведения, теплоизлучения и испарения и осуществляется через кожу. Различают химическую и физическую терморегуляции.

Химическая терморегуляция представляет собой освобождение теплопродукции при питании и дыхании живого и рефлекторном повышении эндогенного теплообразования при понижении температуры окружающей среды или других явлениях. В процессе химической теплоотдачи участвуют запасы в печени, полосные сальники, подкожная жировая клетчатка и запасы в скелетной мускулатуре.

Общие механизмы терморегуляции

Однако следует заметить, что понятие гомойотермности не является абсолютным, то есть в полной степени присущим только птицам и млекопитающим. Зачатки механизмов терморегуляции есть даже у насекомых. Так, например, жесткокрылые (различные виды жуков) перед началом полета трепещут надкрыльями, поднимая таким образом температуру своего тела на несколько градусов, что необходимо для осуществления ими полета.

С другой стороны, изотермия в полном объеме присуща только взрослым гомойотермным организмам. Новорожденные особи всех видов млекопитающих (это относится и к человеку) имеют весьма несовершенную систему терморегуляции и гораздо более, чем взрослые, подвержены переохлаждению и перегреванию. В старческом возрасте механизмы терморегуляции вновь становятся менее совершенными и температурный фактор в отношении старых особей имеет гораздо большее патогенное влияние, нежели для находящихся в расцвете физических сил. Взрослые млекопитающие некоторых видов обладают способностью периодически (например, во время зимней спячки) утрачивать гомойотермность. В этот период у них резко снижается уровень обменных процессов, и они в определенной степени становятся пойкилотермными.

Несмотря на то, что температура внутренней среды организма гомойотермных животных является достаточно жесткой физиологической константой (у человека при измерении температуры в прямой кишке она в норме поддерживается в пределах 37.2 - 37.5°С), изотермичными, в полном смысле этого слова, являются только кровь, циркулирующая в глубоких сосудах тела, и внутренние органы, защищенные от окружающей среды мощными мышечными и жировыми прослойками. Температура наружных покровов тела меняется в весьма широких пределах, что очень хорошо демонстрируется на рисунке.*****28

Температура тела человека характеризуется циркадианными (околосуточными) биоритмами с относительно небольшими акрофазами (пики максимумов и минимумов) - в пределах 0.5° - 0.7° С. Максимальных значений температура тела достигает в 16-18 час, минимальная температура регистрируется в 3-4 час (впервые эта закономерность была подмечена в 1736 г. Де Кортером). Суточные колебания температуры тела отражают ритмическое изменение интенсивности обменных процессов в организме. У животных, ведущих активный ночной образ жизни, эти колебания имеют противоположную направленность.

Постоянство температуры внутренней среды организма достигается за счет уравновешенности (баланса) процессов теплопродукции и теплооотдачи. Иначе говоря, в основе изотермии лежат физиологические механизмы, совместно регулирующие эти процессы. Учитывая их особенности, терморегуляцию разделяют на химическую и физическую.

Химическая терморегуляция (теплопродукция)осуществляется благодаря экзотермическим биохимическим реакциям, то есть идущим с выделением тепла.

Существуют два основных пути теплообразования. Во-первых, при распаде АТФ (в основном при мышечном сокращении) около 40% аккумулированной в ней энергии выделяется в виде тепла. Во-вторых, большое количество тепла образуется при свободном окислении углеводов (без образования АТФ), конечными продуктами которого являются вода и углекислота. Таким образом, теплопродукция зависит от интенсивности обменных процессов, прежде всего - в печени, и от мышечной работы. В последнем случае особенно важную роль играет мышечная дрожь, то есть хаотическое сокращение волокон скелетной мускулатуры. При этом мышца в целом, развивая напряжение за счет сокращения отдельных ее элементов, работы не совершает, и практически вся энергия, выделившаяся при распаде АТФ, реализуется в тепловой форме.

Резюмируя, можно сказать, что основными органами теплообразования являются мышцы и печень.

Физическая терморегуляция (теплоотдача) осуществляется путем потери тепла теплопроведением, теплоизлучением и испарением. В теплоотдаче принимают участие кожа, слизистые, легкие, сердечно-сосудистая и выделительная системы. Данные, характеризующие удельный вес различных путей в теплоотдаче, приведены в таблице.*****tab2

Особо важную роль в процессах теплоотдачи играет состояние кожных сосудов, а также частота сердечных сокращений и дыхания. Учащение сердечной деятельности и расширение кожных сосудов приводит к тому, что через поверхностно расположенные сосудистые магистрали в единицу времени проходит большее количество крови, что усиливает теплоотдачу. Аналогичный результат возникает и при учащении дыхания из-за выведения из организма большего количества нагретого воздуха.

Мощным фактором теплоотдачи является испарение жидкости (пота) с поверхности тела человека. Испарение 1 г воды с поверхности кожи приводит к теплопотере, равной 2.43 кДж (0.58 кКал). При тяжелой физической работе в условиях высокой температуры среды пребывания потоотделение может достигать 10-12 литров в сутки. Немаловажным является то обстоятельство, что вместе с потом теряется большое количество солей (в первую очередь - хлористого натрия) и витамина С. В связи с этим, нормы потребления данных веществ должны быть значительно расширены в рационе людей, работающих в горячих цехах и в условиях жаркого климата.

Говоря об испарении, следует заметить, что у животных, либо лишенных потовых желез, либо имеющих густую шерсть, затрудняющую потоотделение, весьма большое значение приобретает испарение жидкости со слизистой ротовой полости и особенно - языка, как, например, у собак, у которых значительное учащение дыхания при открытой ротовой полости и высунутом языке является важнейшим механизмом теплоотдачи в жаркую погоду.

Нервные механизмы терморегуляции в своей основе имеют рефлекторные дуги, в состав которых входят рецепторные образования (тепловые и холодовые рецепторы), заложенные в основном в поверхностных слоях кожи. Помимо этого, холодовые рецепторы (более многочисленные, нежели тепловые) локализуются и во внутренних органах. Максимум активности тепловые рецепторы обнаруживают в диапазоне температур 40-46°С, наибольшая активность холодовых рецепторов проявляется при 20-36°С. По афферентным нервным волокнам импульсация от рецепторного аппарата достигает ряда основных центров вегетативной регуляции, прежде всего - структур гипоталамуса. Эфферентной частью рефлекторной дуги являются симпатические и парасимпатические нервные волокна, иннервирующие внутренние органы, а также сосуды. Эфферентная импульсация осуществляется также и по двигательным соматическим волокнам, регулирующим деятельность скелетной мускулатуры. Важно иметь в виду, что и структуры центральной нервной системы (гипоталамус, ретикулярная формация, спинной мозг и др.) имеют собственные терморецепторы. В гипоталамусе они сосредоточены в передней его части - преоптической зоне. Таким образом, организм человека имеет двойную систему контроля температуры тела: воздействие внешней среды (тепловое или холодовое) обнаруживается кожными рецепторными образованиями, температура внутренней среды регистрируется терморецепторами внутренних органов и структур ЦНС.

Наибольшее значение в регуляции температуры внутренней среды организма имеет гипотала мус. Известно, что регуляция процесса теплообразования (химическая терморегуляция) осуществляется деятельностью ядер задней части гипоталамуса; процессы физической терморегуляции (теплоотдачи) обусловлены ядрами переднего гипоталамуса. Таким образом, можно говорить о наличии в гипоталамусе двух регулирующих центров: центра теплообразования и центра теплоотдачи.Сложные процессы взаимодействия этих центров определяют баланс теплопродукции и теплопотерь в нормальном организме и играют далеко не последнюю роль при развитии патологии терморегуляции, например, при лихорадочных состояниях.

Многие виды животных способны или неспособны к собственной терморегуляции, т. е. поддерживать постоянную температуру.

По этому признаку их делят на:

- пойкилотермных (от греч. poikiloi —-различный, переменный и therme — жар) - им присуща непостоянная температура;

Пойкилотермными являются все организмы, кроме млекопитающих и нескольких видов птиц. Температура их тела приближается к температуре среды. Лишь некоторые виды этих животных способны к изменению температуры своего тела, притом в определенных условиях. Например, этой способностью обладают тунцы. Важным для пойкилотермных организмов является то, что повышение температуры их тела происходит, когда увеличивается их активность, их обмен веществ.

- гомойотермных (от греч. homoios — равный и therme — жар) - им присуща постоянная температура .

Гомойотермными являются млекопитающие и некоторые виды птиц. Они способны к терморегуляции, которая обеспечивается физическими и химическими путями. Физическая терморегуляция осуществляется за счет накапливания подкожного жирового слоя, ведущего к сохранению тепла, или за счет учащенного дыхания. Химический путь терморегуляции заключается в потоотделении.

В ходе эволюция гомойотермные животные развили способность защищаться от холода (миграции, спячка, мех и т. д.).

Экологические группы рыб.

Первые рыбообразные животные возникли не позже силура и не имели челюстей (см. бесчелюстные, щитковые и панцирные рыбы). С развитием челюстей из одной из жаберных дуг возникли первые рыбы.

КлассификацияС таксономической точки зрения рыбы — парафилетическая группа, так как в неё должен входить гипотетический предок группы наземных животных — четвероногих (Tetrapoda), которые, очевидно, рыбами не являются. Делятся на два современных класса: хрящевые и костные. Отношения основных подгрупп рыб представлены в виде следующей кладограммы:

· Панцирные рыбы или плакодермы (Placodermi)

· Хрящевые рыбы (Chondrichthyes)

· Костные рыбы (Osteichthyes)

· Лучепёрые рыбы (Actinopterygii)

· Лопастепёрые рыбы (Sarcopterygii)

Некоторые палеонтологи считают, что конодонты (отряд Conodonta) были хордовыми животными, что позволяет считать их самыми примитивными рыбами.Экология рыб

В настоящее время рыбы — господствующая группа животных в водных биоценозах. Наряду с китообразными, они завершают цепи питания

.По местам обитания различают морских, пресноводных и проходных рыб.

При достаточно большом разнообразии видов по образу жизни всех рыб можно включить в состав нескольких экотипов:

литоральные (планктон) — обитают в прибрежной зоне (бычки, морские собачки).

пелагические рыбы (нектон) — держатся в толще воды;

донные (бентос) — например, скаты, камбалы, сомы;

Доказательства эволюции

Эволюционное учение Дарвина состоит из трех разделов, а именно: совокупность доводов в пользу того, что историческое развитие организмов действительно имеет место; положение о движущих силах эволюции; представления о путях эволюционных преобразований.

Доводы в пользу того, что эволюция действительно имеет место, Ч. Дарвин черпал из разных наук. Наиболее убедительные доказательства были взяты им из палеонтологии. Например, обнаружение в древнейших слоях ископаемых остатков организмов, сильно отличающихся от современных, и постепенное увеличение сходства ископаемых остатков организмов из позднейших слоев для Ч. Дарвина было летописью эволюции. Далее, Ч. Дарвин использовал данные эмбриологии того времени, которые свидетельствовали о единстве происхождения организмов, а также данные о закономерностях распределения организмов на суше и в воде и явной зависимости организации животных и растений от условий обитания (на материках и островах), которые свидетельствовали в пользу эволюции и разных направлений эволюции на материках и островах. Наконец, он широко использовал достижения сельскохозяйственной практики.

Доказательства эволюции получены в разных науках. Классические доказательства эволюции получены, прежде всего, в палеонтологии в результате изучения ископаемых организмов, живших в прошлые эпохи. Предполагают, что в ходе эволюции вымерло около 200 000 видов животных. В более глубоких слоях Земли обнаруживаются остатки более древних форм жизни, тогда как в поверхностных слоях находят остатки более поздних форм. Можно сказать, что история жизни на Земле написана на языке ископаемых остатков. Палеонтологический материал дает также основания судить о темпах и направлениях эволюции.

Доказательства эволюции получены в биогеографии, которая является наукой о распространении растений и животных. В биогеографии различают шесть биогеографических областей. Каждая из этих областей характеризуется специфическими обитателями (растениями и животными), называемыми эндемиками, под которыми понимают организмы видов, родов и таксонов, ограниченных в своем распространении определенными территориями.

В Палеоарктической области (Европа, африканский север от Сахары, часть Азии к северу от Гималаев, Азорские острова и острова Зеленого мыса) эндемичными, если говорить о животных, являются кроты, олени, быки, овцы, козы, скворцы и сороки.

В Неоарктической области (Гренландия и Северная Америка) эндемичными являются горные козлы, луговые собачки, опоссумы, скунсы, еноты, сойки и американские грифы. Кроме того здесь встречаются формы, андемичные для палеоарктической области.

В Неотропической области (Южная и центральная Америка, юг Мексики и острова Вест-Индии) обитают альпаки, ламы, цепко-хвостые обезьяны, тапиры, ленивцы, вампиры, муравьеды и многие виды птиц, не встречающиеся в других частях земного Шара.

В Эфиопской области (Африка к югу от Сахары, Мадагаскар) обитают шимпанзе, гориллы, зебры, носороги, трубкозубы, бегемоты, жирафы, многие виды птиц, пресмыкающихся и рыб, не обнаруживаемые в других областях.

В Восточной области (Индия, Цейлон, Индокитай, юг Китая, Малайский полуостров и отдельные острова Малайского архипелага) обитают орангутанги, черные пантеры, индийские слоны, гиббоны и долгопяты.

В Австралийской области (Австралия, Новая Зеландия, Новая Гвинея и др. острова Малайского архипелага) эндемичными являются утконосы, кенгуру, вомбаты, коала и другие сумчатые животные. Эндемичными являются бескрылые птицы эму и казуар, а также птица-лира и какаду.

Одно из основных положений биогеографии заключается в том, что каждый вид растений и животных возникал только однажды и только в одном месте (центре происхождения), откуда он расселялся до тех пор, пока не встречал какую-нибудь преграду, например, географическую, климатическую, пищевую и т. д. Географические ареалы близких видов, как правило, не совпадают, но они и не очень отдалены один от другого.

Экологические факторы и их классификация. Экологическая пластичность видов. Закон минимума Либиха и закон толерантности Шелфорда. Экологический фактор — условие среды обитания, оказывающее воздействие на организм. Среда включает в себя все тела и явления, с которыми организм находится в прямых или косвенных отношениях.Бывают: абиотические,биотические,антропогенные. Абиотические: включают компоненты и явления неживой природы, прямо или косвенно воздействующие на живые организмы: климатические (свет, влага, давление),почвенные (состав,плотность),орографические (рельеф),химические (кислотность).пирогенные (воздействие огня).Биотические:совокупность взаимоотношений живых организмов, а также их взаимовлияний на среду обитания:фитогенные (влияние растений друг на друга и на окружающую среду).зоогенные (влияние животных друг на друга и на окружающую среду),микробиогенные (вирусы).Антропогенные факторы влияние человека на окружающую среду и живые организмы. Человек, распахивая земли, создает сельскохозяйственные угодья, выводит высокопродуктивные и устойчивые к заболеваниям формы, расселяет одни виды и уничтожает другие. Эти воздействия (сознательные) носят отрицательный характер, например необдуманное расселение многих животных, микроорганизмов, хищническое уничтожение целого ряда видов, загрязнение среды,уничтожение лесов.Закон минимума Либиха: рост растений зависит от того элемента питания который присутствует в минимальном количестве.пример:Пусть в почве содержатся все элементы минерального питания, необходимые для данного вида растений, кроме одного из них, например бора или цинка. Рост растений на такой почве будет угнетен. Если добавить в почву нужное количество бора (цинка), то это приведет к увеличению урожая. Но если вносить любые другие химические соединения (например, азот, фосфор, калий) и даже удастся добиться того, что все они будут содержаться в оптимальных количествах, а бор (цинк) будет отсутствовать, это не даст никакого эффекта).Закон толерантности (В. Шелфорда).Закон, согласно которому существование вида определяется лимитирующими факторами, находящимися не только в минимуме, но и в максимуме. Пример: если поместить к-либо растение/животное в экспериментальную камеру и измерять в ней температуру воздуха, то состояние организма будет изменяться. Закон толерантности: Лимитировать может избыточное действие данного фактора(не только недостаток).Лимитирующим ф. понимается фактор, который ограничивает процесс развития или существования организма, вида или сообщества. Им может быть любой из действующих в природе экологических факторов: вода, тепло, свет, ветер. Экологическая пластичность организмов (экологическая валентность) – степень приспособляемости вида к изменениям фактора среды. Выражается диапазоном значений факторов среды, в пределах которого данный вид сохраняет нормальную жизнедеятельность. Чем шире диапазон, тем больше экологическая пластичность.Если фактор приближ.к придел.толер-ти(вынослив.)наз.лимитирующим.Виды, способные существовать при небольших отклонениях фактора от оптимума, называются узкоспециализированными, а виды, выдерживающие значительные изменения фактора – широкоприспособленными.Пример:Рыба форель не переносит большие колебания температур. Экологическая пластичность может рассматриваться как по отношению к отдельному фактору, так и по отношению к комплексу экологических факторов. Способность видов переносить значительные изменения определенных факторов:эвритермные (пластичны к температуре)- эвриголинные (соленость воды)- эврифотные (пластичны к свету)- эвригигрические (пластичны к влажности)- эвриойкные (пластичны к месту обитания)- эврифагные (пластичны к пище).Виды, обладающие широкой экологической пластичностью– эврибионты; виды с малой индивидуальной приспособляемостью – стенобионты. Например, в водной среде больше стенобионтов, так как она по своим свойствам относительно стабильна и амплитуды колебания отдельных факторов малы. В более динамичной воздушно-наземной среде преобладают эврибионты. У теплокровных животных экологическая валентность шире, чем у хладнокровных. Эврибионты широко распространены, а стенобионтность суживает ареалы; однако в некоторых случаях благодаря высокой специализированности стенобионтам принадлежат обширные территории. Например, рыбоядная птица скопа является типичным стенофагом, но по отношению к другим факторам среды – эврибионтом. В поисках необходимой пищи птица способна преодолевать в полете большие расстояния, поэтому занимает значительный ареал.

Температура как экологический фактор. Пойкилотермные и гомойотермные организмы. Способы регуляции температуры тела у животных.

Температура оказывает огромное влияние на многие стороны жизнедеятельности организмов их географии распространения, размножения и др. Пределы температур в которых может существовать жизнь, примерно от -200°С до +100°С. Любой вид способен жить только в пределах определенного интервала температур. За пределами этих критических крайних температур, холод или жара, наступает смерть организма. Где-то между ними находится оптимальная температура, при которой жизнедеятельность всех организмов идет активно.По толерантности организмов к температурному режиму они делятся на эвритермные и стенотермные, т.е. способные переносить колебание температуры в широких пределах или узких пределах. Например, лишайники могу жить при различной температуре.К пойкилотермным организмам относят все таксоны органического мира, кроме птиц и млекопитающих.П.характеризуются: неустойчивость, температуры их тела, меняющейся в широких пределах в зависимости от изменений температуры окружающей среды. Главным источником энергии у них является внешнее тепло. Этим объясняется прямая зависимость температуры тела пойкилотермных от температуры среды. К гомойотермным организмам относят птицы и млекопитающие. Высокий уровень метаболизма приводит к тому, что у таких животных в основе теплового баланса лежит использование собственной теплопродукции, значение внешнего обогрева относительно невелико. Поэтому птиц и млекопитающих относят к эндотермным организмам. Эндотермия – важное свойство, благодаря ему снижается зависимость жизнедеятельности организма от температуры внешней среды. Гомойотермные животные не только обеспечены теплом за счет собственной теплопродукции, но и способны активно регулировать его производство и расходование.Способы регуляции температуры тела у пойкилотермных животных: Важнейшая особенность животных – способность перемещаться в пространстве создает новые адаптивные возможности, в том числе и в терморегуляции. Животные, обладающие мускулатурой, производят гораздо больше собственного, внутреннего тепла. Чем мощнее и активнее мускулатура, тем больше тепла может генерировать животное.Пойкилотермные животные, эктотермными(получ.тепло из окр.среды), поскольку общий уровень их метаболизма не настолько высок, чтобы внутреннего тепла стало достаточно для обогревания тела. Например, при температуре +37 °C пустынная игуана потребляет кислорода в 7 раз меньше, чем грызуны такой же величины. Основные способы регуляции температуры тела у пойкилотермных животных – поведенческие: перемена позы, активный поиск благоприятных мест обитания, создание микроклимата (рытье нор, сооружение гнезд).Переменой позы животное может усилить или ослабить нагревание за счет солнечной радиации. Например, пустынная саранча в прохладные утренние часы подставляет солнечным лучам широкую боковую поверхность тела, а в полдень – узкую спинную.

Читайте также: