Графический метод решения тригонометрических уравнений и неравенств реферат

Обновлено: 03.07.2024

Тригонометрические неравенства — неравенства, в которых переменные находятся только под знаком тригонометрической функции.

Тригонометрические функции обозначаются как:

При доказательстве тригонометрических неравенств применяют общие приемы доказательства алгебраических неравенств.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

При этом в тригонометрии спектр применяемых математических методов богаче.

К ним относятся:

  • метод от обратного;
  • аналитико-синтетический метод;
  • методы математического анализа;
  • метод математической индукции;
  • элементы геометрии;
  • векторная алгебра;
  • графический метод.

Виды тригонометрических неравенств

Неравенства в тригонометрии подразделяются на два вида:

По однородности они делятся на два типа:

В однородных неравенствах у всех слагаемых степень одинакова по сумме.

Примеры таких неравенств:

В неоднородных — степени слагаемых будут отличаться друг от друга.

Простейшие

Простейшие тригонометрические неравенства имеют вид:

sin х m, cos x m, tg x m, ctg >m; ctg Пример

\(sin 3x - sin x > 0; \)

\(cos x - 5x + 2 > 0.\)

Методы решения тригонометрических неравенств

Общие сведения по решению тригонометрических неравенств

При решении тригонометрических неравенств используют свойство монотонности тригонометрических функций и промежутки их знакопостоянства.

Монотонность характерна как для убывающих, так и для возрастающих функций. Она означает, что в определенном промежутке большему по значению аргумента будет соответствовать большее или меньшее значение функции в зависимости от возрастания или убывания функции, соответственно.

О промежутках знакопостоянства говорят, когда множеству значений аргумента соответствуют только положительные или только отрицательные значения функции.

Чтобы решить простейшее тригонометрическое неравенство, необходимо найти множество всех значений аргумента, которые обращают данное неравенство в верное числовое неравенство.

Важные моменты в решении простейших тригонометрических неравенств:

sin x = 0, если \(\mathrm x=\mathrm, \ R\in Z;\)

sin x = -1, если \(x=-\frac\pi R+2\pi R\,, \ R\in Z;\)

sin x = 1, если \(x=\frac\pi2+2\pi R, \ R\in Z;\)

sin x > 0, если \(2\pi R

для cos x:

cos x = 0, если \(x=\frac\pi2+\pi R,\ R\in Z;\)

cos x = -1, если \ \(x=\pi+2\pi R, \ R\in Z;\)

cos x = 1, если \(x=2\pi R, \ R\in Z;\)

cos x > 0, если \(2\pi R-\frac\pi2

cos x \(2\pi R+\frac\pi2

tg x > 0, если \(\pi R

tg x \(\pi R-\frac\pi2

тангенс не существует, если \(x=\frac\pi2+\pi R, \ R\in Z.\)

Нестандартные способы решения тригонометрических неравенств включают в себя несколько методик:

  1. Графический метод.
  2. Метод постановки.
  3. Метод интервалов.
  4. Метод секторов.
  5. Метод концентрических окружностей для систем тригонометрических неравенств.

Для решения простейших тригонометрических неравенств применяют графический способ решения и решение с помощью числовой окружности.

Решение тригонометрических неравенств с помощью единичной окружности

Решите неравенство: sin x > ½.

Построим единичную окружность. Построим на ней дуги AC и \(AC_1\) . Их синус должен быть равен ½.

Задача 1

Из окружности видно, что все дуги, начинающиеся в точке А и заканчивающиеся в любой внутренней точке дуги \(CBC_1\) , удовлетворяют данному неравенству.

Чтобы получить все решения данного неравенства, прибавим к концам этого промежутка 2πR.

Ответ: \(\frac\pi6+2\pi R

Решите неравенство: cos 3x > ½.

Обозначим 3х через α.

Неравенство примет вид:

Задача 2

Этому неравенству удовлетворяют все точки \[P_\alpha\] единичной окружности, абсциссы которых больше или равны -1/2.

На окружности видно, что эти точки дуги лежат на прямой \(х=-1/2\) или правее ее.

Выделенная на рисунке дуга представляет собой множество всех точек, удовлетворяющих данному неравенству. Концы этой дуги входят в искомое множество. Их абсциссы равны -1/2, значит, удовлетворяют неравенству.

Учитывая периодичность косинуса, запишем решения для неравенства

\(-\frac<2\pi>3+2\pi R\leq\alpha\leq\frac<2\pi>3+2\pi R, \ R\in Z.\)

Вернемся снова к переменной х, получим искомый ответ:

Решите неравенство: tg 2x > 1.

Обозначим 2х через α.

Неравенство примет вид:

Построим окружность и проведем касательную к окружности в точке (1; 0). Эта линия является тангенсом.

Задача 3

Так как α является решением неравенства tg α ≥ 1, то ордината точки \(T_\alpha\) линии тангенсов tg α должна быть равна или больше 1. Луч АТ имеет все эти точки.

Точки \(P_\alpha\) окружности, соответствующие точкам \( P_\alpha\) , образуют дугу.

Для ее точек выполняется неравенство \(\frac\pi4\leq\alpha

Прибавим к этому промежутку период тангенса и получим решение неравенства \(T_\alpha\geq1:\)

Так как \(α=2х\) , получим ответ:

Графическое решение тригонометрических неравенств

Для решения простейших тригонометрических неравенств с помощью графического метода решения строят график тригонометрической функции (sin x, cos x и т. д.) и прямую у=а. Затем выделяют промежутки с помощью построенных графиков. Эти промежутки являются решением неравенства.

Решите неравенство: sin x > ½.

Построим графики функций \(y=sin\) \(x\) и \(y=1/2.\)

График функции

Из графика видно, что прямая у=1/2 пресекает синусоиду в бесконечном числе точек.

На нем выделены несколько значений аргументов, которые удовлетворяют данному неравенству: \(\frac\pi6, \frac<5\pi>6.\)

Учитывая периодичность синуса, запишем окончательный ответ:

\(\frac\pi6+2\pi R \(R\in Z.\)

Решите неравенство: tg x ≥ -1.

Построим графики функций \(y = tg\) \(x \) и \(y = -1.\)

Неравенство

Из графика видно, что одним из промежутков, который удовлетворяет неравенств, является:

Учтем периодичность тангенса и получим:

Решение тригонометрических неравенств методом интервалов

Решите неравенство: \(6\sin^2\left(x\right)-5\sin\left(x\right)+1\geq0.\)

Введем новую переменную:

Тогда данное неравенство можно записать в другом виде:

Это неравенство представляет собой квадратное уравнение с корнями:

\(y_1=\frac12 \ и \ y_2=\frac13.\)

Получим из данного трехчлена линейные множители, используя формулу:

Используем метод интервалов для его решения.

Объединим промежутки \(y\geq\frac12\) и \(y\leq\frac13.\)

Тогда получим, что

\(\sin\left(x\right)\leq\frac13\) и \(\sin\left(x\right)\geqslant\frac12.\) (2)

Теперь для решения полученных неравенств применим алгоритм решения по методу единичной окружности.

Окружность

Решая неравенство (1), на построенной слева окружности видим, что ему удовлетворяют такие значения х:

\(-\pi-arc\sin\frac13\leq x\leq arc\sin\frac13\) . (3)

Для получения всех решений неравенства к полученному промежутку добавим \(2\pi R.\)

\(-\pi-arc\sin\;\frac13+2\pi R\leq x\leq arc\sin\;\frac13+2\pi R,\;R\in Z\) . (4)

Для решения неравенства (2) так же построим окружность и увидим, что ему удовлетворяют значения х:

\(\frac\pi6+2\pi R\leq x\leq\frac<5\pi>6+2\pi R,\;R\in Z.\) (5)

Значения х, удовлетворяющие неравенствам (4) и (5) являются решением данного неравенства.

Задача 2

Решите неравенство: \(\frac

Введем новую переменную: \(у = cos x.\)

Неравенство примет вид:

После преобразований получим:

Используем метод интервалов.

Используем метод интервалов.

Неравенство \(\cos\;x решения не имеет.

Так как \(-1\leqslant\cos\;x\leqslant\) , то неравенство \(\frac12 надо заменить другим неравенством:

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Ставропольский Государственный Университет

РЕФЕРАТ

работу выполнил:

IV курса, Физ-Мат Факультета,

отделения МИИТ, гр. ”Б”

Неботов Виталий Дмитриевич

Ставрополь 1997 г.

1. Вступительное слово. 3

2. Этапы “большого пути”. 3

3. Тригонометрические отношения. 3

4. Тригонометрические функции. 3

5. Тригонометрические уравнения. 3

6. Тригонометрические неравенства. 3

7. Способы решения тригонометрических неравенств. 4

8. В помощь начинающему . 5

10. Список использованной литературы. 6

Решение тригонометрических неравенств стоит в одном ряду с такими важными темами, как решение числовых неравенств и решение систем неравенств с одной переменной. Исторически сложилось, что тригонометрическим уравнениям и неравенствам уделялось особое место в школьном курсе. Еще греки, на заре человечества, считали тригонометрию важнейшей из наук, ибо геометрия - царица математики, а тригонометрия - царица геометрии. Поэтому и мы, не оспаривая древних греков, будем считать тригонометрию одним из важнейших разделов школьного курса, да и всей математической науки в целом.

С чего же начинается обучение решению тригонометрических неравенств в школе? Естественно, с самих тригонометрических функций. Сначала даются сами отношения sin x, cos x, tg x и ctg x. Делается это на конкретных примерах рассматриваемых треугольников. Затем делается важный переход от синуса и косинуса в прямоугольном треугольнике к этим же отношениям, но уже в произвольном угле. Sin и cos освобождаются от конкретной геометрической привязки и эти понятия становятся шире.

Следующим этапом введения понятий sin x, cos x, tg x и ctg x является рассмотрение функциональных зависимостей или попросту функций y = sin x, y = cos x, y = tg x и y = ctg x соответственно. На этом этапе даются все основные свойства этих функций, рассматриваются области определения и значений, промежутки знакопостоянства, и главное - графики этих функций. Анализ функции нельзя считать полным, так как еще не усвоен и не применялся аппарат дифференцирования, но для решений тригонометрических неравенств почва уже подготовлена и ребята хорошо “вооружены” теоретическими знаниями.

Наконец последний подготовительный этап “большого пути” - решение тригонометрических уравнений. Здесь отрабатываются последние нюансы, ребенок учится оперировать сложными тригонометрическими конструкциями, но главное, именно сейчас даются основные тригонометрические тождества и производные от них. Помощь этого тригонометрического аппарата трудно переоценить. Знаниями полученными здесь и сейчас ученики смогут пользоваться всю оставшуюся жизнь. Мощь блока тригонометрических тождеств поистине потрясает, так как с его помощью управляться с громоздкими, “трехэтажными” тригонометрическими выражениями становится также просто, как и с алюминиевой вилкой.

И только теперь, хорошо освоив все предыдущие разделы ученики подходят к нашей теме, а именно решение тригонометрических неравенств. Естественно начинают решение таких неравенств с самых простейших: sin x > a, sin x a, cos x a, tg x 2 + ОУ 2 = R 2 . Таким образом, подставив синус и косинус получим: sin 2 x + cos 2 x = 1. Вот так мы и вышли на основное тригонометрическое тождество. Именно поэтому тригонометрический круг единичного радиуса.

Как я уже сказал, мы, с помощью тригонометрических тождеств, приводим неравенство к простейшему виду, а затем решаем его используя тригонометрический круг или график. Для успешного решения необходимо также знать следующее:

Определение и характеристика главных свойств тригонометрических и обратных тригонометрических функций. Изучение основных типов тригонометрических неравенств. Рассмотрение формул, упрощающих выражения и содержащих обратные тригонометрические функции.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 15.01.2017
Размер файла 332,0 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Основные понятия и формулы тригонометрии

2. Изучение основных типов тригонометрических уравнений и методы их решения

3. Изучение основных типов тригонометрических неравенств и методы их решения

3.1 Решение простейших тригонометрических неравенств

3.2 Решение тригонометрических неравенств с помощью единичной окружности

3.3 Решение тригонометрических неравенств графическим методом

Введение

Специфика математики, ее роль в современных условиях позволяет через математику, через ее использование показать различные стороны многих современных процессов.

Значительную часть школьного курса математики составляет материал, связанный с уравнениями и неравенствами. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач.

Данная работа посвящена методам решения тригонометрических уравнений и неравенств.

В первом параграфе приведены основные теоретические сведения:

определение и свойства тригонометрических и обратных тригонометрических функций; таблица значений тригонометрических функций для некоторых аргументов; выражение тригонометрических функций через другие тригонометрических функции, что очень важно для преобразования тригонометрических выражений, в особенности содержащих обратные тригонометрические функции; кроме основных тригонометрических формул, хорошо известных из школьного курса, приведены формулы упрощающие выражения, содержащие обратные тригонометрические функции.

Во втором параграфе изложены основные методы решения тригонометрических уравнений. Рассмотрены решение элементарных тригонометрических уравнений, метод разложения на множители, методы сведения тригонометрических уравнений к алгебраическим.

В третьем параграфе рассматриваются тригонометрические неравенства. Подробно рассмотрены методы решения элементарных тригонометрических неравенств, как на единичной окружности, так и графическим методом.

1. Основные понятия и формулы тригонометрии

В тригонометрии угол рассматривается как мера вращения, при котором один луч, вращаясь вокруг вершины угла, переходит в положение другого луча. При этом первый луч называют начальной стороной угла, а конечное положение второго (подвижного) луча называют конечной стороной угла. тригонометрический неравенство формула

Угол считается положительным, если переход от его начальной стороны к конечной совершается вращением подвижного луча против часовой стрелки, и отрицательным, если такой переход совершается вращением по часовой стрелке.

Единичный круг - круг с центром в начале координат и радиусом, равным по длине единице. Окружность этого круга называется единичной окружностью.

Координатные оси делят единичный круг и его окружность на четыре равные части, которые называются четвертями, или квадрантами.

Синус - отношение ординаты конца подвижного радиуса к длине этого радиуса.

Косинус - отношение абсциссы конца подвижного радиуса к длине этого радиуса.

Тангенс - отношение ординаты конца подвижного радиуса к его абсциссе.

Котангенс - отношение абсциссы конца подвижного радиуса к его ординате.

Секанс - отношение длины подвижного радиуса к абсциссе его конца.

Косеканс - отношение длины подвижного радиуса к ординате его конца.

Линия тангенсов - касательная к единичной окружности в конце горизонтального диаметра.

Линия котангенсов - касательная к единичной окружности в конце вертикального диаметра.

Синус и косинус угла равны соответственно ординате и абсциссе конца подвижного радиуса единичной окружности.

Если продолжить единичный радиус до пересечения с линией тангенсов, то тангенс угла равен ординате соответствующей точки на линии котангенсов.

Если продолжить единичный радиус до пересечения с линией котангенсов, то котангенс угла равен абсциссе соответствующей точки на линии котангенсов.

Основные тригонометрические тождества:

Тождественные преобразования тригонометрических выражений.

Функция называется четной, если значение не изменяется при замене на , т.е. функция ) называется четной, если .

Функции , , - четные функции, а , , - нечетные.

Теоремы сложения позволяют, зная значения тригонометрических функций двух аргументов и , вычислять значения тригонометрических функций от суммы и разности этих аргументов.

Формулы, при помощи которых тригонометрические функции произвольного угла можно выразить через тригонометрические функции острого угла, называются формулами приведения.

Формулы удвоения и деления аргумента.

Формулы преобразования произведения тригонометрических функций в сумму

2. Изучение основных типов тригонометрических уравнений и методы их решения

Тригонометрические уравнения - обязательная тема любого экзамена по математике. Основные приемы их решения - замена переменной и разложение на множители. Для успешного решения тригонометрических уравнений нужно хорошо знать тригонометрические формулы, причем не только основные, но и дополнительные (преобразование суммы тригонометрических функций в произведение и произведения в сумму, формулы понижения степени и другие).

Разумеется, должны четко знать стандартные формулы корней простейших тригонометрических уравнений (полезно помнить или уметь получать с помощью тригонометрической окружности упрощенные формулы для корней уравнений

Определение. Тригонометрическим уравнением называется уравнение, содержащее переменную под знаком тригонометрических функций.

Определение. Простейшие тригонометрические уравнения - это уравнения вида

В таких уравнениях переменная находится под знаком тригонометрической функции, -- данное число.

При решении тригонометрических уравнений все задачи сводятся к тому, чтобы привести к такому виду, чтобы слева стояла элементарная тригонометрическая функция, а справа - число. После того, как это будет достигнуто, следует найти значение аргумента функции, используя одну из основных формул выражения аргумента через обратные тригонометрические функции.

Методы решения тригонометрических уравнений.

1) Алгебраический метод.

Этот метод нам хорошо известен из алгебры (метод замены переменной и подстановки).

Пример. Решить уравнение

Решение. Используя формулы приведения, имеем

откуда следует два случая:

2) Разложение на множители.

Приводим уравнение к виду и представляем левую часть уравнения в виде произведения ). Тогда данное уравнение приводится к совокупности уравнений: . Следует помнить, что эта совокупность не всегда равносильна исходному уравнению и что здесь надо руководствоваться правилом: произведение равно нулю тогда и только тогда, когда один из множителей равен нулю, а все остальные при этом имеют смысл.

Этот метод рассмотрим на примере.

Пример. Решить уравнение .

Решение. Перенесём все члены уравнения влево

преобразуем и разложим на множители выражение в левой части уравнения:

3) Приведение к однородному уравнению.

Уравнение называется однородным относительно и , если все его члены одной и той же степени относительно и одного и того же угла. Чтобы решить однородное уравнение, надо:

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на ( или ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно .

Пример. Решить уравнение: .

корни этого уравнения: , отсюда

3.1 Решение простейших тригонометрических неравенств

Большинство авторов современных учебников по математике предлагают начать рассмотрение данной темы с решения простейших тригонометрических неравенств. Принцип решения простейших тригонометрических неравенств основан на знаниях и умениях определять на тригонометрической окружности значения не только основных тригонометрических углов, но и других значений.

Между тем, решение неравенств вида можно осуществлять следующим образом: сначала находим какой-нибудь промежуток , на котором выполняется данное неравенство, а затем записываем окончательный ответ, добавив к концам найденного промежутка число кратное периоду синуса или косинуса: . При этом значение находится легко, т.к. или . Поиск же значения опирается на интуицию учащихся, их умение заметить равенство дуг или отрезков, воспользовавшись симметрией отдельных частей графика синуса или косинуса. А это довольно большому числу учащихся иногда оказывается не под силу. В целях преодоления отмеченных трудностей в учебниках в последние годы применялся разный подход к решению простейших тригонометрических неравенств, но улучшения в результатах обучения это не давало.

Мы на протяжении ряда лет для нахождения решения тригонометрических неравенств довольно успешно применяем формулы корней соответствующих уравнений.

Изучение данной темы осуществляем таким образом:

1. Строим графики и , считая, что .

Затем записываем уравнение и его решение . Придавая , находим три корня составленного уравнения: . Значения являются абсциссами трёх последовательных точек пересечения графиков и . Очевидно, что всегда на интервале () выполняется неравенство , а на интервале - неравенство .

Добавив к концам этих промежутков число, кратное периоду синуса, в первом случае получим решение неравенства в виде: ; а во втором случае - решение неравенства в виде: .

2. Далее проводим аналогичные рассуждения для косинуса

Только в отличие от синуса из формулы , являющейся решением уравнения , при получаем два корня , а третий корень при в виде . И опять являются тремя последовательными абсциссами точек пересечения графиков и . В интервале выполняется неравенство , в интервале - неравенство .

Теперь нетрудно записать решения неравенств и . В первом случае получим: ; а во втором: .

Подведём итог. Чтобы решить неравенство или , надо составить соответствующее уравнение и решить его. Из полученной формулы найти корни и , и записать ответ неравенства в виде: .

При решении неравенств , из формулы корней соответствующего уравнения находим корни и , и записываем ответ неравенства в виде: .

Данный приём позволяет научить решать тригонометрические неравенства всех учащихся, т.к. этот приём полностью опирается на умения, которыми учащиеся владеют прочно. Это умения решать простейшие и находить значение переменной по формуле. Кроме того, становится совершенно необязательным тщательное прорешивание под руководством учителя большого количества упражнений для того, чтобы продемонстрировать всевозможные приёмы рассуждений в зависимости от знака неравенства, значения модуля числа a и его знака. Да и сам процесс решения неравенства становится кратким и, что очень важно, единообразным.

Ещё одним из преимуществ данного способа является то, что он позволяет легко решать неравенства даже в том случае, когда правая часть не является табличным значением синуса или косинуса.

Продемонстрируем это на конкретном примере. Пусть требуется решить неравенство . Составим соответствующее уравнение и решим его: .

Найдём значения и .

Записываем окончательный ответ данного неравенства:

В рассмотренном примере решения простейших тригонометрических неравенств недостаток может быть только один - наличие определенной доли формализма. Но если всё оценивать только с этих позиций, то тогда можно будет обвинить в формализме и формулы корней квадратного уравнения, и всех формул решения тригонометрических уравнений, и многое другое.

Предложенный метод хоть и занимает достойное место в формировании умений и навыков решения тригонометрических неравенств, но нельзя и преуменьшать важность и особенности других методов решения тригонометрических неравенств.

3.2 Решение тригонометрических неравенств с помощью единичной окружности

При решении тригонометрических неравенств вида , где - одна из тригонометрических функций, удобно использовать тригонометрическую окружность для того, чтобы наиболее наглядно представить решения неравенства и записать ответ. Основным методом решения тригонометрических неравенств является сведение их к простейшим неравенствам типа . Разберём на примере, как решать такие неравенства.

Пример. Решите неравенство .

Решение. Нарисуем тригонометрическую окружность и отметим на ней точки, для которых ордината превосходит .

Для решением данного неравенства будут . Ясно также, что если некоторое число будет отличаться от какого-нибудь числа из указанного интервала на , то также будет не меньше . Следовательно, к концам найденного отрезка решения нужно просто добавить . Окончательно, получаем, что решениями исходного неравенства будут все .

Для решения неравенств с тангенсом и котангенсом полезно понятие о линии тангенсов и котангенсов. Таковыми являются прямые и

соответственно, касающиеся тригонометрической окружности.

Легко заметить, что если построить луч с началом в начале координат, составляющий угол с положительным направлением оси абсцисс, то длина отрезка от точки до точки пересечения этого луча с линией тангенсов в точности равна тангенсу угла, который составляет этот луч с осью абсцисс. Аналогичное наблюдение имеет место и для котангенса.

3.3 Решение тригонометрических неравенств графическим методом

Заметим, что если - периодическая функция, то для решения неравенства необходимо найти его решения на отрезке, длина которого равна периоду функции . Все решения исходного неравенства будут состоять из найденных значений , а также всех , отличающихся от найденных на любое целое число периодов функции .

Пример. Рассмотрим решение неравенства .

Решение. Рассмотрим график функции .

и выберем из промежутка на оси значения аргумента , которым соответствуют точки графика, лежащие выше оси . Таким промежутком является интервал . Учитывая периодичность функции все решения неравенства можно записать так:

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведем решения уравнений, иллюстрирующие типичные случаи появления посторонних корней и методы > с ними.

Пример. Найти корни уравнения: .

Решение этого уравнения распадается на два этапа: 1) решение уравнения, получающегося из данного возведением в квадрат обеих его частей; 2) отбор тех корней, которые удовлетворяют условию . При этом заботится об условии нет необходимости. Все значения , удовлетворяющие возведенному в квадрат уравнению, этому условию удовлетворяют.

Первый шаг нас приводит к уравнению , откуда .

Теперь надо определить, при каких будет . Для этого достаточно для рассмотреть значения т. е. >, поскольку дальше значения косинуса начнут повторяться, получившиеся углы будут отличаться от уже рассмотренных на величину, кратную .

Итак, основная схема отбора корней состоит в следующем. Находится наименьший общий период всех тригонометрических функций входящих в уравнение. На этом периоде отбираются корни, а затем оставшиеся корни периодически продолжаются.

Литература

3. Шабашова О.В. Приемы отбора корней в тригонометрических уравнениях //Математика в школе. 2004. №1. С.20-24.

6. Мордкович А.Г . Алгебра и начала анализа. 10-11 кл.: Учебник для общеобразовательных учреждений. - М.: Мнемозина, 2000. - 336с.:ил.

7. Мордкович А.Г. Методические проблемы изучения тригонометрии в общеобразовательной школе // Математика в школе. 2002. №6.

Подобные документы

Углы и их измерение, тригонометрические функции острого угла. Свойства и знаки тригонометрических функций. Четные и нечетные функции. Обратные тригонометрические функции. Решение простейших тригонометрических уравнений и неравенств с помощью формул.

учебное пособие [876,9 K], добавлен 30.12.2009

История развития тригонометрии, характеристика ее основных понятий и формул. Общие вопросы, цели изучения и способы определения тригонометрических функций числового аргумента в школьном курсе. Рекомендации и методы решения тригонометрических уравнений.

курсовая работа [257,7 K], добавлен 19.10.2011

Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

дипломная работа [1,9 M], добавлен 06.05.2010

Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.

курсовая работа [1,1 M], добавлен 21.12.2009

Характеристика тригонометрических понятий. Свойства тригонометрических функций, особенности их практического применения в электротехнике. Исследование электрических сигналов путем визуального наблюдения графика сигнала на экране с помощью осциллографа.

презентация [287,9 K], добавлен 28.05.2016

Углы и их измерение. Соответствие между углами и числовым рядом. Геометрический смысл тригонометрических функций. Свойства тригонометрических функций. Основное тригонометрическое тождество и следствия из него. Универсальная тригонометрическая подстановка.

учебное пособие [1,4 M], добавлен 18.04.2012

Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.

Математика уже давно стала основным аппаратом физики и техники. В последние годы все настойчивее проникают математические методы исследований в такие науки, как химия, биология, геология, экономика, лингвистика, педагогика, медицина, археология. Поэтому не удивительно, что на многих (даже гуманитарных!) факультетах университетов и институтов поступающие сдают экзамен по математике. Математику нельзя выучить за одну ночь. Только регулярные систематические занятия могут принести успех, только глубокое знание школьных учебников сделает вопросы на экзамене простыми и легкими.

Прикрепленные файлы: 1 файл

реферат.docx

Данное уравнение имеет тогда и только тогда, когда

Множество решений записывается в виде

Особо отметим некоторые частные случаи, к которым обычно приходят в процессе решения данного уравнения:

Данное уравнение разрешимо при любом . Все решения задаются формулой

Особо отметим некоторые частные случаи, к которым обычно приходят в процессе решения данного уравнения:

Данное уравнение разрешимо при любом . Все решения задаются формулой

Особо отметим некоторые частные случаи, к которым обычно приходят в процессе решения данного уравнения:

3. six + cosx ³ Ösinx cosx, x Î [2np; p /2 + 2np], n Î Z.

Тригонометрическое неравенство называется условным, если оно справедливо не при всех значениях неизвестных, входящих в неравенство.

1. sin x ³ ½, что выполняется только на отрезках [ p /6+2kp; 5 /6p+2kp], k Î Z;

2. cos x £ 0, что выполняется только на отрезках [ p /2 + 2np; 3 /2 p+2np], n Î Z;

3. ctg x p /6+np;np), n Î Z.

Решить тригонометрическое неравенство – это значит найти множество значений неизвестных, входящих в неравенство, при которых неравенство выполняется. Мы знаем, что тригонометрические функции sin x и cos x имеют наименьший положительный период 2p, а tg x и ctg x имеют наименьший положительных период p. При решении неравенств с тригонометрическими функциями следует использовать периодичность этих функций, их монотонность на соответствующих промежутках.

Для того чтобы решить неравенство, содержащее только sin x или только cos x, достаточно решить это неравенство на каком-либо отрезке длины 2p. Множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида 2np, где n Î Z. Для неравенств, содержащих только tg x и ctg x, решения находятся в промежутке длиной p, а множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида np, где n Î Z. Тригонометрические неравенства можно решать, прибегая к графикам функций y=sin x, y=cos x, y=tg x и y=ctg x. Решим неравенства, пользуясь окружностью единичного радиуса. При решении тригонометрических неравенств в конечном итоге мы будем приходить к неравенствам sinx > > ³ £ a, cos x ³ £a, tg x > > ³ £ a, ctg x ³ £ a.

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=sint и y=a.

3. Находим такие две соседние точки пересечения графиков (поближе к оси Оу), между которыми синусоида располагает ся ниже прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период синуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду.

Для построения графика функции y=sinx выберем единичный отрезок, равный двум клеткам. Тогда по горизонтальной оси Ох значение π (≈3,14) составит шесть клеток. Рассчитываем остальные значения аргументов (в клетках).

Вот как будет выглядеть координатная плоскость.

Эти точки мы взяли из таблицы значений синуса. Также используем свойство нечетности функции y=sinx (sin (-x)=-sinx), периодичность синуса (наименьший период Т=2π) и известное равенство: sin (π-x)=sinx. Проводим синусоиду

Теперь нам предстоит определить такие две точки пересечения синусоиды и прямой, между которыми синусоида располагается ниже, чем прямая. Крайняя точка справа определена, абсцисса ближайшей искомой отстоит от начала отсчета влево на 8 клеток. Построим ее и определим.

Между этими (выделенными) значениями аргумента и находится та часть синусоиды, которая лежит ниже данной прямой, а значит, промежуток между этими выделенными точками удовлетворяет данному неравенству. Учтем период синуса, запишем результат в виде двойного неравенства, а ответ в виде числового промежутка.

Решим второе неравенство.

Синусоиду строим так же, а прямая будет параллельна оси Оt и отстоять от нее на 1клетку вниз.

Определяем промежуток, внутри которого точки синусоиды лежат ниже прямой.

Записываем промежуток значений введенной переменной t. Возвращаемся к первоначальному значению аргумента (2х). Все части двойного неравенства делим на 2 и определяем промежуток значений х. Записываем ответ в виде числового промежутка.

Аналогично решаем и третье неравенство.

При выполнении данной работы я изучил свойства числовых неравенств, методы решения линейных, квадратных, показательных, логарифмических и тригонометрических неравенств, что позволило мне расширить свой математический кругозор и заглянуть за рамки программы. Рассмотрев графики функций: у = ax 2 +bx+c, у = k /x, у = √x, у =|x|, у = x 3 , у = x 4 , у = 3 √x, я заметила, что все эти графики строятся по правилу параллельного переноса относительно осей x и y.

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

Работа над данной темой доставила мне не только трудности, но и удовольствие.

Я восстановил в памяти весь теоретический материал, углубила и расширила свои знания по методам решения неравенств.

Материалы моей работы можно использовать для самостоятельной подготовки к тестовому контролю знаний, используемому на централизованном тестировании, вступительных и выпускных экзаменах.

Читайте также: